Autoencoders

Machine Learning: Jordan Boyd-Graber
University of Maryland
SLIDES ADAPTED FROM IAN GOODELL
Problems of Autoencoders

- Unsupervised
 - Lots of data
 - Need priors / regularization
- Probabilistic loss function
 - does not work well for discrete data (more later)
 - hard to explain hidden layer probabilistically
Problems of Autoencoders

- **Unsupervised**
 - Lots of data
 - Need priors / regularization

- **Probabilistic loss function**
 - does not work well for discrete data (more later)
 - hard to explain hidden layer probabilistically

- So let’s use variational inference
Loss Function

\[
\ell_i \equiv -\mathbb{E}_{z \sim q_\theta(z|x_i)} \left[\log p_\phi(x_i | z) \right] + \text{KL}(q_\theta(z|x_i) \| p(z))
\]

- **Reconstruction error**
- **Variational representation** distribution
- **Regularization**
Loss Function

\[\ell_i \equiv -\mathbb{E}_{z \sim q_{\theta}(z|x_{i})} \left[\log p_{\phi}(x_{i} | z) \right] + KL(q_{\theta}(z | x_{i}) \| p(z)) \]

- Reconstruction error
- Variational representation distribution
- Regularization
Loss Function

\[\ell_i \equiv -\mathbb{E}_{z \sim q_\theta(z | x_i)} \left[\log p_\phi(x_i | z) \right] + \text{KL}(q_\theta(z | x_i) \| p(z)) \]

- Reconstruction error
- Variational representation distribution
- Regularization
Loss Function

\[\ell_i \equiv -\mathbb{E}_{z \sim q_{\theta}(z|x_i)} \left[\log p_{\phi}(x_i | z) \right] + \text{KL}(q_{\theta}(z | x_i) \| p(z)) \]

- Reconstruction error
- Variational representation distribution
- Regularization

Interpretation

- Lower bound on reconstruction of decoder
- Keep representation constrained
- Probabilistic parameterization
Make this Concrete

- $\text{KL}(q_\theta(z|x_i) \parallel p(z))$
- $q(z|x_i)$: normal distribution with output of NN as mean [variational distribution]
- $p(z)$: standard normal distribution
- Decoder $p_\phi(x|z)$ depends on model / data:
 - Grayscale Image? Bernoulli distribution for each pixel
 - Words? Multinomial over vocabulary
Make this Concrete

- $\text{KL}(q_\theta(z|x_i) \parallel p(z))$
- $q(z|x_i)$: normal distribution with output of NN as mean [variational distribution]
- $p(z)$: standard normal distribution
- Decoder $p_\phi(x|z)$ depends on model / data:
 - Grayscale Image? Bernoulli distribution for each pixel
 - Words? Multinomial over vocabulary
Make this Concrete

- $\text{KL}(q_\theta(z|x_i) \| p(z))$
- $q(z|x_i)$: normal distribution with output of NN as mean [variational distribution]
- $p(z)$: standard normal distribution
- Decoder $p_\phi(x|z)$ depends on model / data:
 - Grayscale Image? Bernoulli distribution for each pixel
 - Words? Multinomial over vocabulary
Variational Inference Story

\[\ell_i(\lambda) = \mathbb{E}_{q_\lambda(z|x_i)} \left[\log p_\phi(x_i|z) \right] - \text{KL}(q_\theta(z|x_i) \| p(z)) \]

- Want to optimize \(p_\phi(x|z) \) (likelihood)
- ELBO remains lower bound
- Difference is KL between variational distribution and \(p(z) \)
Variational Inference Story

\[\ell_i(\lambda) = \mathbb{E}_{q_{\lambda}(z|x_i)} \left[\log p_\phi(x_i | z) \right] - \text{KL}(q_\theta(z | x_i) \| p(z)) \] \hspace{1cm} (2)

- Want to optimize \[p_\phi(x | z) \] (likelihood)
- ELBO remains lower bound
- Difference is KL between variational distribution and \[p(z) \]
- Actually simpler than LDA
 - No global latent variables (only \(z \))
 - Can minibatch the data
\[\ell_i(\lambda) = \mathbb{E}_{q_{\lambda}(z|x_i)} \left[\log p_{\phi}(x_i|z) \right] - \text{KL}(q_{\theta}(z|x_i)||p(z)) \] (2)

- Want to optimize \(p_{\phi}(x|z) \) (likelihood)
- ELBO remains lower bound
- Difference is KL between variational distribution and \(p(z) \)
- Actually simpler than LDA
 - No global latent variables (only \(z \))
 - Can minibatch the data
 - But what about \(\phi \) (encoder)
Variational EM

- Learn variational parameters
- Update ϕ using supervised backprop
Variational EM

- Learn variational parameters
- Update ϕ using supervised backprop
- What if x is discrete? (Later)