Dirichlet Processes

Machine Learning: Jordan Boyd-Graber
University of Maryland

INTRODUCTION
Clustering as Probabilistic Inference

- GMM is a probabilistic model (unlike $K$-means)
- There are several latent variables:
  - Means
  - Assignments
  - (Variances)
Clustering as Probabilistic Inference

- GMM is a probabilistic model (unlike *K*-means)
- There are several latent variables:
  - Means
  - Assignments
  - (Variances)
- Before, we were doing EM
Clustering as Probabilistic Inference

- GMM is a probabilistic model (unlike \( K \)-means)
- There are several latent variables:
  - Means
  - Assignments
  - (Variances)
- Before, we were doing EM
- Today, new models and new methods
Nonparametric Clustering

- What if the number of clusters is not fixed?
- Nonparametric: can grow if data need it
- Probabilistic distribution over number of clusters
Dirichlet Process

- Distribution over distributions
- Parameterized by: $\alpha, G$
Dirichlet Process

- Distribution over distributions
- Parameterized by: $\alpha, G$
- Concentration parameter
Dirichlet Process

- Distribution over distributions
- Parameterized by: $\alpha, G$
- Concentration parameter
- Base distribution

You can then draw observations from $x \sim \text{DP}(\alpha, G)$. 
Dirichlet Process

- Distribution over distributions
- Parameterized by: $\alpha, G$
- Concentration parameter
- Base distribution
- You can then draw observations from $x \sim \text{DP}(\alpha, G)$. 
Defining a DP

- Break off sticks

\[
V_1, V_2, \cdots \sim_{\text{iid}} \text{Beta}(1, \alpha) \tag{1}
\]

\[
C_k \equiv V_k \prod_{j=1}^{k-1} (1 - V_j) \tag{2}
\]
Defining a DP

- Break off sticks

\[ V_1, V_2, \ldots \sim_{\text{iid}} \text{Beta}(1, \alpha) \]  \hspace{1cm} (1)

\[ C_k \equiv V_k \prod_{j=1}^{k-1} (1 - V_j) \]  \hspace{1cm} (2)

- Draw atoms

\[ \Phi_1, \Phi_2, \ldots \sim_{\text{iid}} G \]
Defining a DP

- Break off sticks

\[ V_1, V_2, \ldots \sim_{\text{iid}} \text{Beta}(1, \alpha) \]  \hspace{1cm} (1)

\[ C_k \equiv V_k \prod_{j=1}^{k-1} (1 - V_j) \]  \hspace{1cm} (2)

- Draw atoms

\[ \Phi_1, \Phi_2, \ldots \sim_{\text{iid}} G \]

- Merge into complete distribution

\[ \Theta = \sum_{k \in \mathbb{N}} C_k \delta_{\Phi_k} \]
Properties of a DPMM

- Expected value is the same as base distribution
  \[ E_{DP(\alpha,G)}[x] = E_G[x] \]  
  (3)

- As $\alpha \to \infty$, $DP(\alpha, G) = G$

- Number of components unbounded

- Impossible to represent fully on computer (truncation)

- You can nest DPs
Effect of scaling parameter $\alpha$
DP as mixture Model
The Chinese Restaurant as a Distribution

To generate an observation, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.
The Chinese Restaurant as a Distribution

To generate an observation, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.
The Chinese Restaurant as a Distribution

To generate an observation, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.
The Chinese Restaurant as a Distribution

To generate an observation, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.

\[
x \sim \mu_1 \\
\frac{2}{7}
\]

\[
x \sim \mu_2 \\
\frac{3}{7}
\]

\[
x \sim \mu_3 \\
\frac{2}{7}
\]
The Chinese Restaurant as a Distribution

To generate an observation, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.

\[ x \sim \mu_1 \quad x \sim \mu_2 \quad x \sim \mu_3 \]

But this is just Maximum Likelihood

Why are we talking about Chinese Restaurants?
Always can squeeze in one more table . . .

- The posterior of a DP is CRP
- A new observation has a new table / cluster with probability proportional to $\alpha$
- But this must be balanced against the probability of an observation given a cluster

$$\Theta = \sum_{k \in \mathbb{N}} C_k \delta_{\Phi_k}$$
Gibbs Sampling

- We want to know the cluster assignment of each observation
- Take a random guess initially
Gibbs Sampling

- We want to know the cluster assignment of each observation
- Take a random guess initially
- This provides a mean for each cluster
Gibbs Sampling

- We want to know the cluster assignment of each observation
- Take a random guess initially
- This provides a mean for each cluster
- Let the number of clusters grow
Gibbs Sampling

- We want to know the cluster assignment of each observation (tables)
- Take a random guess initially
- This provides a mean for each cluster
- Let the number of clusters grow
Gibbs Sampling

- We want to know $\tilde{z}$
- Compute $p(z_i | z_1 \ldots z_{i-1}, z_{i+1}, \ldots z_m, x, \alpha, G)$
- Update $z_i$ by sampling from that distribution
- Keep going . . .
Gibbs Sampling

- We want to know $\tilde{Z}$
- Compute $p(z_i | z_1 \ldots z_{i-1}, z_{i+1}, \ldots z_m, x, \alpha, G)$
- Update $z_i$ by sampling from that distribution
- Keep going . . .

Notation

\[
p(z_i = k | z_{-i}) \equiv p(z_i | z_1 \ldots z_{i-1}, z_{i+1}, \ldots z_m)
\] (4)
Gibbs Sampling for DPMM

\[ p(z_i = k \mid \tilde{z}_{-i}, \tilde{x}, \{\theta_k\}, \alpha) \]  

(5) (6)
Gibbs Sampling for DPMM

\[
p(z_i = k | \tilde{z}_{-i}, \tilde{x}, \{ \theta_k \}, \alpha) = p(z_i = k | \tilde{z}_{-i}, x_i, \tilde{x}, \theta_k, \alpha)
\]  

Dropping irrelevant terms
Gibbs Sampling for DPMM

\[ p(z_i = k | \hat{z}_{-i}, \hat{x}, \{ \theta_k \}, \alpha) \]  
\[ = p(z_i = k | \hat{z}_{-i}, x_i, \hat{x}, \theta_k, \alpha) \]  
\[ = p(z_i = k | \hat{z}_{-i}, \alpha) p(x_i | \theta_k, \hat{x}) \]

Chain rule
Gibbs Sampling for DPMM

\begin{align*}
p(z_i = k \mid \tilde{z}_i, \tilde{x}, \{\theta_k\}, \alpha) \quad & \quad (5) \\
= p(z_i = k \mid \tilde{z}_i, x_i, \tilde{x}, \theta_k, \alpha) \quad & \quad (6) \\
= p(z_i = k \mid \tilde{z}_i, \alpha) p(x_i \mid \theta_k, \tilde{x}) \quad & \quad (7) \\
= \begin{cases} 
\left( \frac{n_k}{n + \alpha} \right) \int_{\theta} p(x_i \mid \theta) p(\theta \mid G, \tilde{x}) & \text{existing} \\
\frac{\alpha}{n + \alpha} \int_{\theta} p(x_i \mid \theta) p(\theta \mid G) & \text{new} 
\end{cases} \quad & \quad (8)
\end{align*}

Applying CRP
Gibbs Sampling for DPMM

\[ p(z_i = k \mid \tilde{z}_{-i}, \tilde{x}, \{ \theta_k \}, \alpha) \]
\[ = p(z_i = k \mid \tilde{z}_{-i}, x_i, \tilde{x}, \theta_k, \alpha) \]
\[ = p(z_i = k \mid \tilde{z}_{-i}, \alpha)p(x_i \mid \theta_k, \tilde{x}) \]
\[ = \begin{cases} \left( \frac{n_k}{n + \alpha} \right) \int_\theta p(x_i \mid \theta)p(\theta \mid G, \tilde{x}) & \text{existing} \\ \frac{\alpha}{n + \alpha} \int_\theta p(x_i \mid \theta)p(\theta \mid G) & \text{new} \end{cases} \]
\[ = \begin{cases} \left( \frac{n_k}{n + \alpha} \right) \mathcal{N}(x, \frac{n\tilde{x}}{n+1}, 1) & \text{existing} \\ \frac{\alpha}{n + \alpha} \mathcal{N}(x, 0, 1) & \text{new} \end{cases} \]

Scary integrals assuming \( G \) is normal distribution with mean zero and unit variance. (Derived in optional reading.)
Algorithm for Gibbs Sampling

1. Random initial assignment to clusters
2. For iteration $i$:
   2.1 “Unassign” observation $n$
   2.2 Choose new cluster for that observation
Toy Example

New cluster created!
Toy Example

And repeat …
Differences between EM and Gibbs

- Gibbs often faster to implement
- EM easier to diagnose convergence
- EM can be parallelized
- Gibbs is more widely applicable
In class and next week

- Walking through DPMM clustering
- Clustering discrete data with more than one cluster per observation