Multilayer Networks

Machine Learning: Jordan Boyd-Graber
University of Maryland

INTRODUCTION
Deep Learning was once known as “Neural Networks”
But it came back . . .

More data
Better tricks (regularization)
Faster computers
And companies are investing …

Google Hires Brains that Helped Supercharge Machine Learning

BY ROBERT MCMILLAN 03.13.13 | 6:30 AM | PERMALINK
And companies are investing …

‘Chinese Google’ Opens Artificial-Intelligence Lab in Silicon Valley

BY DANIELA HERNANDEZ 04.12.13 | 6:30 AM | PERMALINK
And companies are investing …

Facebook’s ‘Deep Learning’ Guru Reveals the Future of AI

BY CADE METZ 12.12.13 | 6:30 AM | PERMALINK

Facebook’s ‘Deep Learning’ Guru Reveals the Future of AI
Map inputs to output

\[h_{w,b}(x) = \sum_{i} W_i x_i + b \]

Activation function:

\[f(z) = 1 + \exp(-z) \]
Map inputs to output

Input

Vector \(x_1 \ldots x_d \)

inputs encoded as real numbers

\[
h_{w,b}(x) = \sum_{i} W_i x_i + b
\]

Activation \(f(z) \equiv 1 + \exp(-z) \)
Map inputs to output

\[h_{w,b}(x) = \sum_i W_i x_i + b \]

multiply inputs by

\[f \left(\sum_i W_i x_i + b \right) \]
Map inputs to output

Input

Vector $x_1 \ldots x_d$

Output

$$f \left(\sum_i W_i x_i + b \right)$$

add bias
Map inputs to output

Input
Vector $x_1 \ldots x_d$

Output
$f\left(\sum_i W_i x_i + b \right)$

Activation
$f(z) \equiv \frac{1}{1 + \exp(-z)}$

pass through nonlinear sigmoid
Why is it called activation?
In the shallow end

- This is still logistic regression
- Engineering features x is difficult (and requires expertise)
- Can we learn how to represent inputs into final decision?
Better name: non-linearity

- **Logistic / Sigmoid**
 \[f(x) = \frac{1}{1 + e^{-x}} \]

- **tanh**
 \[f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1 \]

- **ReLU**
 \[f(x) = \begin{cases}
 0 & \text{for } x < 0 \\
 x & \text{for } x \geq 0
\end{cases} \]

- **SoftPlus**: \[f(x) = \ln(1 + e^x) \]