Structured Prediction

Machine Learning: Jordan Boyd-Graber
University of Maryland

INEXACT SEARCH IS “GOOD ENOUGH”
Preliminaries: algorithm, separability

- Structured perceptron maintains set of “wrong features”

\[\Delta \Phi(x, y, z) \equiv \Phi(x, y) - \Phi(x, z) \quad (1) \]

- Structured perceptron updates weights with

\[\tilde{w} \leftarrow \tilde{w} + \Delta \Phi(x, y, z) \quad (2) \]

- Dataset D is linearly separable under features Φ with margin δ if

\[\tilde{u} \cdot \Delta \Phi(x, y, z) \geq \delta \quad \forall x, y, z \in D \quad (3) \]

given some oracle unit vector u.
Violations vs. Errors

- It may be difficult to find the highest scoring hypothesis
- It’s okay as long as inference finds a violation

\[\vec{w} \cdot \Delta \Phi(x, y, z) \leq 0 \]

(4)

- This means that \(y \) might not be the answer algorithm gives (i.e., wrong)
Limited number of mistakes

- Define diameter R as

$$R = \max_{(x,y,z)} ||\Delta \tilde{\phi}(x,y,z)||$$ \hspace{1cm} (5)
Limited number of mistakes

- Define diameter R as

$$R = \max_{(x,y,z)} \| \Delta \tilde{\Phi}(x, y, z) \|$$ \hspace{1cm} (5)

- Weight vector \tilde{w} grows with each error
- We can prove that $\| \tilde{w} \|$ can’t get too big
- And thus, algorithm can only run for limited number of iterations k where it updates weights
- Indeed, we’ll bound it from two directions

$$k^2 \delta^2 \leq \| w^{(k+1)} \|^2 \leq kR^2$$ \hspace{1cm} (6)
Lower Bound

\[k^2 \delta^2 \leq \| w^{(k+1)} \|^2 \]
Lower Bound

\[k^2 \delta^2 \leq \| \mathbf{w}^{(k+1)} \|^2 \]

\[\hat{\mathbf{w}}^{(k+1)} = \mathbf{w}^{(k)} + \Delta \hat{\Phi}(x, y, z) \] \hspace{1cm} (7)

Update equation
Lower Bound

\[k^2 \delta^2 \leq \| w^{(k+1)} \|^2 \]

\[\tilde{w}^{(k+1)} = w^{(k)} + \Delta \tilde{\Phi}(x, y, z) \quad (7) \]

\[\tilde{u} \cdot \tilde{w}^{(k+1)} = \tilde{u} \cdot w^{(k)} + \tilde{u} \cdot \Delta \tilde{\Phi}(x, y, z) \quad (8) \]

Multiply both sides by \(\tilde{u} \)
Lower Bound

\[k^2 \delta^2 \leq \| \mathbf{w}^{(k+1)} \|^2 \]

\[\mathbf{\hat{w}}^{(k+1)} = \mathbf{w}^{(k)} + \Delta \Phi(x, y, z) \] \hspace{1cm} (7)

\[\mathbf{\hat{u}} \cdot \mathbf{\hat{w}}^{(k+1)} = \mathbf{\hat{u}} \cdot \mathbf{w}^{(k)} + \mathbf{\hat{u}} \cdot \Delta \Phi(x, y, z) \] \hspace{1cm} (8)

\[\mathbf{\hat{u}} \cdot \mathbf{\hat{w}}^{(k+1)} \geq \mathbf{\hat{u}} \cdot \mathbf{w}^{(k)} + \delta \] \hspace{1cm} (9)

Definition of margin
Lower Bound

\[k^2 \delta^2 \leq \| w^{(k+1)} \|^2 \]

\[\tilde{w}^{(k+1)} = w^{(k)} + \Delta \tilde{\Phi}(x, y, z) \] \hspace{1cm} (7)

\[\tilde{u} \cdot \tilde{w}^{(k+1)} = \tilde{u} \cdot w^{(k)} + \tilde{u} \cdot \Delta \tilde{\Phi}(x, y, z) \] \hspace{1cm} (8)

\[\tilde{u} \cdot \tilde{w}^{(k+1)} \geq \tilde{u} \cdot w^{(k)} + \delta \] \hspace{1cm} (9)

By induction, \(\tilde{u} \cdot \tilde{w}^{(k+1)} \geq k \delta \) (Base case: \(\tilde{w}^0 = \tilde{0} \))
Lower Bound

\[k^2 \delta^2 \leq ||w^{(k+1)}||^2 \]

\[\tilde{u} \cdot \tilde{w}^{(k+1)} \geq \tilde{u} \cdot w^{(k)} + \delta \] \hfill (7)

By induction, \(\tilde{u} \cdot \tilde{w}^{(k+1)} \geq k\delta \) (Base case: \(\tilde{w}^0 = \tilde{0} \))

\[||\tilde{u}|| ||\tilde{w}^{(k+1)}|| \geq \tilde{u} \cdot \tilde{w} \geq k\delta \] \hfill (8)

For any vectors, \(||\tilde{a}|| ||\tilde{b}|| \geq a \cdot b \)
Lower Bound

\[
k^2 \delta^2 \leq ||w^{(k+1)}||^2
\]

\[
\tilde{u} \cdot \tilde{w}^{(k+1)} \geq \tilde{u} \cdot w^{(k)} + \delta
\] \hspace{1cm} (7)

By induction, \(\tilde{u} \cdot \tilde{w}^{(k+1)} \geq k\delta \) (Base case: \(\tilde{w}^0 = \tilde{0} \))

\[
||\tilde{u}|| \ ||\tilde{w}^{(k+1)}|| \geq \tilde{u} \cdot \tilde{w} \geq k\delta
\] \hspace{1cm} (8)

\[
||\tilde{w}^{(k+1)}|| \geq k\delta
\] \hspace{1cm} (9)

\(\tilde{u} \) is a unit vector
Lower Bound

\[k^2 \delta^2 \leq \| w^{(k+1)} \|^2 \]

\[\hat{u} \cdot \hat{w}^{(k+1)} \geq \hat{u} \cdot w^{(k)} + \delta \] \hspace{1cm} (7)

By induction, \(\hat{u} \cdot \hat{w}^{(k+1)} \geq k \delta \) (Base case: \(\hat{w}^0 = \vec{0} \))

\[\| \hat{u} \| \| \hat{w}^{(k+1)} \| \geq \hat{u} \cdot \hat{w} \geq k \delta \] \hspace{1cm} (8)

\[\| \hat{w}^{(k+1)} \| \geq k \delta \] \hspace{1cm} (9)

\[\| \hat{w}^{(k+1)} \|^2 \geq k^2 \delta^2 \] \hspace{1cm} (10)

Square both sides, and we’re done!
Upper Bound

$$\| \tilde{\mathbf{w}}^{(k+1)} \|^2 \leq kR^2$$ (11)

(12)
Upper Bound

\[\| \mathbf{\hat{w}}^{(k+1)} \|^2 \leq kR^2 \] \hspace{1cm} (11)

\[\| \mathbf{\hat{w}}^{(k+1)} \|^2 = \| \mathbf{\hat{w}}^{(k)} + \Delta \Phi(x, y, z) \|^2 \] \hspace{1cm} (12)

Update rule
Upper Bound

Upper Bound

\[\| \mathbf{\hat{w}}^{(k+1)} \|^2 \leq kR^2 \] (11)

\[\| \mathbf{\hat{w}}^{(k+1)} \|^2 = \| \mathbf{\hat{w}}^{(k)} + \Delta \Phi(x, y, z) \|^2 \] (12)

\[\| \mathbf{\hat{w}}^{(k+1)} \|^2 = \| \mathbf{\hat{w}}^{(k)} \|^2 + \| \Delta \Phi(x, y, z) \|^2 + 2 \mathbf{w}^{(k)} \cdot \Delta \Phi(x, y, z) \] (13)

Law of cosines
Upper Bound

\[\| \hat{w}^{(k+1)} \|^2 \leq kR^2 \] (11)

\[
\begin{align*}
\| \hat{w}^{(k+1)} \|^2 &= \| \hat{w}^{(k)} + \Delta \Phi(x, y, z) \|^2 \\
\| \hat{w}^{(k+1)} \|^2 &= \| \hat{w}^{(k)} \|^2 + \| \Delta \Phi(x, y, z) \|^2 + 2w^{(k)} \cdot \Delta \Phi(x, y, z)
\end{align*}
\] (12) (13)

Definition of diameter
Upper Bound

\[\| \hat{w}^{(k+1)} \|^2 \leq kR^2 \] (11)

\[\| \hat{w}^{(k+1)} \|^2 = \| \hat{w}^{(k)} + \Delta \Phi(x, y, z) \|^2 \] (12)

\[\| \hat{w}^{(k+1)} \|^2 = \| \hat{w}^{(k)} \|^2 + \| \Delta \Phi(x, y, z) \|^2 + 2w^{(k)} \cdot \Delta \Phi(x, y, z) \] (13)

\[\| \hat{w}^{(k+1)} \|^2 \leq \| \hat{w}^{(k)} \|^2 + R^2 + 2w^{(k)} \cdot \Delta \Phi(x, y, z) \] (14)
Upper Bound

\[\| \hat{w}^{(k+1)} \|^2 \leq kR^2 \] \hspace{1cm} (11)

\[\| \hat{w}^{(k+1)} \|^2 = \| \hat{w}^{(k)} + \Delta \Phi(x, y, z) \|^2 \] \hspace{1cm} (12)

\[\| \hat{w}^{(k+1)} \|^2 = \| \hat{w}^{(k)} \|^2 + \| \Delta \Phi(x, y, z) \|^2 + 2w^{(k)} \cdot \Delta \Phi(x, y, z) \] \hspace{1cm} (13)

\[\| \hat{w}^{(k+1)} \|^2 \leq \| \hat{w}^{(k)} \|^2 + R^2 + 2w^{(k)} \cdot \Delta \Phi(x, y, z) \] \hspace{1cm} (14)

If violation, \(z \) is highest scoring candidate (so must be negative)
Upper Bound

\[
\left\| \hat{\mathbf{w}}^{(k+1)} \right\|^2 \leq kR^2 \quad (11)
\]

\[
\left\| \hat{\mathbf{w}}^{(k+1)} \right\|^2 = \left\| \hat{\mathbf{w}}^{(k)} + \Delta \hat{\Phi}(x, y, z) \right\|^2 \quad (12)
\]

\[
\left\| \hat{\mathbf{w}}^{(k+1)} \right\|^2 = \left\| \hat{\mathbf{w}}^{(k)} \right\|^2 + \left\| \Delta \hat{\Phi}(x, y, z) \right\|^2 + 2\mathbf{w}^{(k)} \cdot \Delta \hat{\Phi}(x, y, z) \quad (13)
\]

\[
\left\| \hat{\mathbf{w}}^{(k+1)} \right\|^2 \leq \left\| \hat{\mathbf{w}}^{(k)} \right\|^2 + R^2 + 2\mathbf{w}^{(k)} \cdot \Delta \hat{\Phi}(x, y, z) \quad (14)
\]
Upper Bound

\[\| \mathbf{\hat{w}}^{(k+1)} \|^2 \leq kR^2 \tag{11} \]

\[\| \mathbf{\hat{w}}^{(k+1)} \|^2 = \| \mathbf{\hat{w}}^{(k)} + \Delta \Phi(x, y, z) \|^2 \tag{12} \]

\[\| \mathbf{\hat{w}}^{(k+1)} \|^2 = \| \mathbf{\hat{w}}^{(k)} \|^2 + \| \Delta \Phi(x, y, z) \|^2 + 2w^{(k)} \cdot \Delta \Phi(x, y, z) \tag{13} \]

\[\| \mathbf{\hat{w}}^{(k+1)} \|^2 \leq \| \mathbf{\hat{w}}^{(k)} \|^2 + R^2 + 2w^{(k)} \cdot \Delta \Phi(x, y, z) \tag{14} \]

\[\| \mathbf{\hat{w}}^{(k+1)} \|^2 \leq \| \mathbf{\hat{w}}^{(k)} \|^2 + R^2 + 0 \tag{15} \]
Upper Bound

\[\| w^{(k+1)} \|^2 \leq kR^2 \] (11)

\[\| w^{(k+1)} \|^2 = \| w^{(k)} \|^2 + \| \Phi(x, y, z) \|^2 + 2w^{(k)} \cdot \Phi(x, y, z) \] (12)

\[\| w^{(k+1)} \|^2 = \| w^{(k)} \|^2 + \| \Phi(x, y, z) \|^2 + 2w^{(k)} \cdot \Phi(x, y, z) \] (13)

\[\| w^{(k+1)} \|^2 \leq \| w^{(k)} \|^2 + R^2 + 2w^{(k)} \cdot \Phi(x, y, z) \] (14)

\[\| w^{(k+1)} \|^2 \leq \| w^{(k)} \|^2 + R^2 + 0 \] (15)

\[\| w^{(k+1)} \|^2 \leq kR^2 \] (16)

Induction!
Putting it together

- Sandwich:

\[k^2 \delta^2 \leq \|w^{(k+1)}\|^2 \leq kR^2 \] \hspace{1cm} (17)

- \[\text{Solve for } k \text{:} \]

\[k \leq R^2 \delta^2 \] \hspace{1cm} (18)

- What does this mean?
 - Limited number of errors (updates)
 - Larger diameter increases errors (worst possible mistake)
 - Larger margin decreases errors (bigger separation from wrong answer)
 - Finding the largest violation wrong answer is best (but any violation okay)
Putting it together

- Sandwich:
 \[k^2 \delta^2 \leq \| w^{(k+1)} \|^2 \leq kR^2 \] \hspace{1cm} (17)

- Solve for \(k \):
 \[k \leq \frac{R^2}{\delta^2} \] \hspace{1cm} (18)

What does this mean?

- Limited number of errors (updates)
- Larger diameter increases errors (worst possible mistake)
- Larger margin decreases errors (bigger separation from wrong answer)

Finding the largest violation wrong answer is best (but any violation okay)
Putting it together

- Sandwich:

\[k^2 \delta^2 \leq ||w^{(k+1)}||^2 \leq kR^2 \] \hspace{1cm} (17)

- Solve for \(k \):

\[k \leq \frac{R^2}{\delta^2} \] \hspace{1cm} (18)

- What does this mean?

 - Limited number of errors (updates)
 - Larger diameter increases errors (worst possible mistake)
 - Larger margin decreases errors (bigger separation from wrong answer)
 - Finding the largest violation wrong answer is best (but any violation okay)
Putting it together

■ Sandwich:

\[k^2 \delta^2 \leq ||w^{(k+1)}||^2 \leq kR^2 \] \hspace{1cm} (17)

■ Solve for \(k \):

\[k \leq \frac{R^2}{\delta^2} \] \hspace{1cm} (18)

■ What does this mean?

■ Limited number of errors (updates)
 - Larger diameter increases errors (worst possible mistake)
 - Larger margin decreases errors (bigger separation from wrong answer)

■ Finding the largest violation wrong answer is best (but any violation okay)
In Practice

Harder the search space, the more max violation helps

- Tagging: $b=1$
- Incremental parsing: $b=8$
- Bottom-up parsing
- Machine translation