Motivating Example

Goal

Automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)

- yes I’d like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I’d like to place a call on my master card please (CallingCard)
- I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)
Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of examples
- obtain rule of thumb
- apply to second subset of examples
- obtain second rule of thumb
- repeat T times
Details

- How to **choose** examples
- How to **combine** rules of thumb
Details

- How to **choose** examples
 concentrate on *hardest* examples (those most often misclassified by previous rules of thumb)
- How to **combine** rules of thumb
Details

- How to **choose** examples
 concentrate on *hardest* examples (those most often misclassified by previous rules of thumb)

- How to **combine** rules of thumb
 take (weighted) majority vote of rules of thumb
Boosting

Definition

general method of converting rough rules of thumb into highly accurate prediction rule

- assume given *weak learning algorithm* that can consistently find classifiers (rules of thumb) at least slightly better than random, say, accuracy $\geq 55\%$ (in two-class setting)
- given sufficient data, a boosting algorithm can provably construct single classifier with very high accuracy, say, 99%
Formal Description

- Training set \((x_1, y_1) \ldots (x_m, y_m)\)
- \(y_i \in \{-1, +1\}\) is the label of instance \(x_i\)
Formal Description

- Training set \((x_1, y_1) \ldots (x_m, y_m)\)
- \(y_i \in \{-1, +1\}\) is the label of instance \(x_i\)
- For \(t = 1, \ldots T\):
 - Construct distribution \(D_t\) on \(\{1, \ldots, m\}\)
 - Find weak classifier
 \[
 h_t : \mathcal{X} \rightarrow \{-1, +1\} \tag{1}
 \]
 with small error \(\epsilon_t\) on \(D_t\):
 \[
 \epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i] \tag{2}
 \]
Formal Description

- Training set \((x_1, y_1) \ldots (x_m, y_m) \)
- \(y_i \in \{-1, +1\} \) is the label of instance \(x_i \)
- For \(t = 1, \ldots T \):
 - Construct distribution \(D_t \) on \(\{1, \ldots, m\} \)
 - Find weak classifier
 \[
 h_t : \mathcal{X} \rightarrow \{-1, +1\}
 \]
 with small error \(\epsilon_t \) on \(D_t \):
 \[
 \epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]
 \]
 - Output final classifier \(H_{\text{final}} \)
AdaBoost (Schapire and Freund)

- Data distribution D_t
AdaBoost (Schapire and Freund)

Data distribution D_t

- $D_1(i) = \frac{1}{m}$
- Given D_t and h_t:

$$D_{t+1}(i) \propto D_t(i) \cdot \exp \left\{ -\alpha_t y_i h_t(x_i) \right\}$$

where $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right) > 0$
AdaBoost (Schapire and Freund)

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t:
 \[
 D_{t+1}(i) \propto D_t(i) \cdot \exp \left\{ -\alpha_t y_i h_t(x_i) \right\}
 \]
 (3)

 where $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right) > 0$

 Bigger if wrong, smaller if right
AdaBoost (Schapire and Freund)

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t:

$$D_{t+1}(i) \propto D_t(i) \cdot \exp \left\{ -\alpha_t y_i h_t(x_i) \right\}$$ \hspace{1cm} (3)

where $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$

Weight by how good the weak learner is
AdaBoost (Schapire and Freund)

- **Data distribution** D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t:
 \[
 D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{ -\alpha_t y_i h_t(x_i) \right\} \tag{3}
 \]
 where \(\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t} \right) > 0 \)

- **Final classifier**:
 \[
 H_{\text{fin}}(x) = \text{sign}\left(\sum_t \alpha_t h_t(x) \right) \tag{4}
 \]
Toy Example
Example

Round 1
Round 2

\[\varepsilon_2 = 0.21 \]

\[\alpha_2 = 0.65 \]
Round 3

\[\epsilon_3 = 0.14, \quad \alpha_3 = 0.92 \]
Final Classifier

\[H_{\text{final}} = \text{sign} \left(0.42 + 0.65 + 0.92 \right) \]
Generalization
Generalization

C4.5 test error

(bootstrapping C4.5 on “letter” dataset)
Training Error

First, we can prove that the training error goes down. If we write the error at time t as $\frac{1}{2} - \gamma_t$, we have:

$$\hat{R}(h) \leq \exp \left\{ -2 \sum_t \gamma_t^2 \right\}$$

(5)

- If $\forall t : \gamma_t \geq \gamma > 0$, then $\hat{R}(h) \leq \exp \{-2\gamma^2 T\}$

Adaboost: do not need γ or T a priori
Training Error Proof: Preliminaries

Repeatedly expand the definition of the distribution.

\[
D_{t+1}(i) = \frac{D_t(i) \exp \left\{ -\alpha_t y_i h_t(x_i) \right\}}{Z_t} \tag{6}
\]

\[
D_{t-1}(i) \exp \left\{ -\alpha_{t-1} y_i h_{t-1}(x_i) \right\} \exp \left\{ -\alpha_t y_i h_t(x_i) \right\} \frac{Z_{t-1}}{Z_t} \tag{7}
\]

\[
exp \left\{ -y_i \sum_{s=1}^{t} \alpha_s h_s(x_i) \right\} \frac{\prod_{s=1}^{t} Z_s}{m} \tag{8}
\]
Training Error Intuition

- On round t weight of examples incorrectly classified by h_t is increased.
- If x_i incorrectly classified by H_T, then x_i wrong on (weighted) majority of h_t's.
 - If x_i incorrectly classified by H_T, then x_i must have large weight under D_T.
 - But there can’t be many of them, since total weight ≤ 1.

Training Error Proof: It’s all about the Normalizers

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}[y_i g(x_i) \leq 0] \]
\[\text{Definition of training error} \]
Theoretical Analysis

Training Error Proof: It’s all about the Normalizers

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}[y_i g(x_i) \leq 0] \]

(9)

\[\leq \frac{1}{m} \sum_{i=1}^{m} \exp\{-y_i g(x_i)\} \]

(10)

(11)

\[\mathbb{1}[u \leq 0] \leq \exp^{-u} \text{ is true for all real } u. \]
Training Error Proof: It’s all about the Normalizers

\[
\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} 1[y_i g(x_i) \leq 0] \quad (9)
\]

\[
\leq \frac{1}{m} \sum_{i=1}^{m} \exp \{-y_i g(x_i)\} \quad (10)
\]

(11)

Final distribution \(D_{t+1}(i)\)

\[
D_{t+1}(i) = \frac{\exp \{-y_i \sum_{s=1}^{t} \alpha_s h_s(x_i)\}}{m \prod_{s=1}^{t} Z_s} \quad (12)
\]
Training Error Proof: It’s all about the Normalizers

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} [y_i g(x_i) \leq 0] \]
\[\leq \frac{1}{m} \sum_{i=1}^{m} \exp \{-y_i g(x_i)\} \]
\[= \frac{1}{m} \sum_{i=1}^{m} \left[m \prod_{t=1}^{T} Z_t \right] D_{T+1}(i) \]

\(m \)'s cancel, \(D \) is a distribution
Theoretical Analysis

Training Error Proof: It’s all about the Normalizers

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} 1 \left[y_i g(x_i) \leq 0 \right] \] \hfill (9)

\[\leq \frac{1}{m} \sum_{i=1}^{m} \exp \left\{ -y_i g(x_i) \right\} \] \hfill (10)

\[= \frac{1}{m} \sum_{i=1}^{m} \left[m \prod_{t=1}^{T} Z_t \right] D_{T+1}(i) \] \hfill (11)

\[= \prod_{t=1}^{T} Z_t \] \hfill (12)
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[Z_t = \sum_{i=1}^{m} D_t(i) \exp \left\{ -\alpha_t y_i h_t(x_i) \right\} \] \quad (13)

\[= \] \quad (14)

\[= \] \quad (15)

\[= \] \quad (16)
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[Z_t = \sum_{i=1}^{m} D_t(i) \exp \{-\alpha_t y_i h_t(x_i)\} \] \hspace{1cm} (13)

\[= \sum_{i:\text{right}} D_t(i) \exp \{-\alpha_t\} + \sum_{i:\text{wrong}} D_t(i) \exp \{\alpha_t\} \] \hspace{1cm} (14)

\[= \hspace{1cm} (15) \]

\[= \hspace{1cm} (16) \]
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp \{-\alpha_t y_i h_t(x_i)\}
\]
(13)

\[
= \sum_{i: \text{right}} D_t(i) \exp \{-\alpha_t\} + \sum_{i: \text{wrong}} D_t(i) \exp \{\alpha_t\}
\]
(14)

\[
= (1 - \epsilon_t) \exp \{-\alpha_t\} + \epsilon_t \exp \{\alpha_t\}
\]
(15)

\[
=
\]
(16)
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[Z_t = \sum_{i=1}^{m} D_t(i) \exp \{-\alpha_t y_i h_t(x_i)\} \]

\[= \sum_{i:\text{right}} D_t(i) \exp \{-\alpha_t\} + \sum_{i:\text{wrong}} D_t(i) \exp \{\alpha_t\} \]

\[= (1 - \epsilon_t) \exp \{-\alpha_t\} + \epsilon_t \exp \{\alpha_t\} \]

\[= (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} \]
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[Z_t = (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} \] \hspace{1cm} (13)

Normalization Product

\[\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2 \sqrt{\epsilon_t (1 - \epsilon_t)} = \sqrt{1 - 4 \left(\frac{1}{2} - \epsilon_t \right)^2} \] \hspace{1cm} (14)

\[\] \hspace{1cm} (15)
Theoretical Analysis

Training Error Proof: Weak Learner Errors

Normalization Product

\[
\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t (1 - \epsilon_t)} = \sqrt{1 - 4 \left(\frac{1}{2} - \epsilon_t\right)^2} \quad (13)
\]

\[
\leq \prod_{t=1}^{T} \exp \left\{ -2 \left(\frac{1}{2} - \epsilon_t\right)^2 \right\} \quad (14)
\]

\[
(15)
\]
Training Error Proof: Weak Learner Errors

Normalization Product

\[
\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t (1 - \epsilon_t)} = \sqrt{1 - 4 \left(\frac{1}{2} - \epsilon_t \right)^2} \tag{13}
\]

\[
\leq \prod_{t=1}^{T} \exp \left\{ -2 \left(\frac{1}{2} - \epsilon_t \right)^2 \right\} \tag{14}
\]

\[
= \exp \left\{ -2 \sum_{t=1}^{T} \left(\frac{1}{2} - \epsilon_t \right)^2 \right\} \tag{15}
\]
Generalization

VC Dimension

\[\leq 2(d + 1)(T + 1) \log [(T + 1)e] \]

Margin-based Analysis

AdaBoost maximizes a linear program maximizes an \(L_1 \) margin, and the weak learnability assumption requires data to be linearly separable with margin \(2\gamma \).
Practical Advantages of AdaBoost

- fast
- simple and easy to program
- no parameters to tune (except T)
- flexible: can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
 - shift in mind set: goal now is merely to find classifiers barely better than random guessing
- versatile
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification
Caveats

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
 - weak classifiers too complex
 - overfitting
 - weak classifiers too weak ($\gamma_t \rightarrow 0$ too quickly)
 - underfitting
 - low margins \rightarrow overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise