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With the dramatic increase of digital document collections such as online journal articles, the Arxiv,
conference proceedings, blogs, to name a few, there is a great demand for developing automatic
text analysis models for analyzing these collections and organizing its content. Statistical admix-
ture topic models [1] were proven to be a very useful tool to attain that goal and have recently
gained much popularity in managing large collection of documents. Via an admixture model, one
can project each document into a low dimensional space where their latent semantic (such as topical
aspects) can be captured. This low dimensional representation can then be used for tasks like clas-
sifications, measuring document-document similarity or merely as a visualization tool that gives a
bird’s eye view of the collection and guides its exploration in a structured fashion.

An admixture topic model posits that each document is sampled from a fixed-dimensional mixture
model according to a document’s specific mixing vector over the fopics. The variabilities in the topic
mixing vectors of the documents are usually modeled as a Dirichlet distribution [1], although other
alternatives have been explored in the literature [2, 3]. The components of this Dirichlet distribution
encode the popularity of each of the topics in the collection. However, document collections often
come as temporal streams where documents can be organized into epochs; examples of an epoch
include: documents in an issue of a scientific journal, the proceeding of a conference in a given
year, or the news articles published in a given week. Documents inside each epoch are assumed
to be exchangeable while the order between documents is maintained across epochs. With this
organizations, several aspects of the aforementioned static topic models are likely to change over
time, specifically: topic popularity, topic word distribution and the number of topics.

Several models exist that could accommodate the evolution of some but not all of the aforementioned
aspects. In [4], the authors proposed a dynamic topic model in which the topic’s word distribution
and popularity are linked across epochs using state space models, however, the number of topics are
kept fixed. In [5], the authors presented the topics over time model that captures topic popularity
over time via a beta distribution, however, topic distributions over words and the number of topics
were fixed over time, although the authors discussed a non-parametric extension over the number
of topics. On the other hand, several models were proposed that could potentially evolve all the
aforementioned aspect albeit in a simple clustering settings, i.e. each document is assumed to be
sampled from a single topic [6, 7, 8]. Accommodating the evolution of the aforementioned aspects
in a full-fledged admixture setting is non-trivial and introduces its own hurdles. Moreover, it is
widely accepted [1] that admixture models are superior compared to simple clustering models for
modeling text documents, especially for long documents such as research papers.

In this paper we introduce iDTM: infinite dynamic topic models which can accommodate the evo-
lution of the aforementioned aspects. iDTM allows for unbounded number of topics: topics can
born and die at any epoch, the topics’ word distributions evolve according to a first-order state space
model, and the topics’ popularity evolve using the rich-gets richer scheme via a A-order process.
iDTM is built on top of the recurrent Chinese restaurant franchise (RCRF) process which we in-
troduce and define in Section 2. The RCRF profecc introduces dependencies between the atom
locations (topics) and weights (popularity) of each epoch-specific CRF process [9]. Inference is car-
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Figure 1: The recurrent Chinese restaurant franchise (RCRF) precoces. The figure shows a first-order process
with no decay to avoid cluttering the display,however see the text for the description of a general A-order
process.

ried via A Gibbs sampling algorithm and we give demonstrations over simulated and real datasets
(leaving final full results to be presented at the workshop and the full version of the paper).

1 Settings and Background

In this section, we lay the foundation for the rest of this paper by first detailing our settings and then
reviewing the CRFP. We are interested in modeling an ordered set of documents = (x,, - , 1),
where 1" denotes the number of epochs and x, denotes the documents at epoch ¢. Furthermore, x; =
(a:tJ) -t ,» where n; is the number of documents at epoch ¢. Moreover, each document comprises a
set of n,; words, x,; = (x”,)l 7, where each word z,;, € {1,---,W}. Our goal is to discover
potentially an unbounded number of topics (¢, ),- , where each topic &, = (¢k’tk] o 7¢k,tk2)
spans a set of epoches where 1 < ¢, <t,, <T,and ¢, is the topic’s word distribution at epoch ¢.

2 The Recurrent Chinese Restaurant Franchise Process

The recurrent Chinese restaurant franchise (RCRF) process shown in Figure 1 is a generalization
of the CRF process introduced in [9]. Figure 1 depicts a RCRF process of order one for clarity,
however, in this section we give a description of a general process of order A. The RCRF operates
in epochs, where customers are not allowed to stay in any of the restaurants after the end of the
epoch. At the end of epoch ¢ — 1, the consumption of the dishes ordered from the menu in any of the
previous A epochs is analyzed. First any dish that was not ordered at least once in the last A epochs

is removed, and then a time-weighted average usage of dish k is calculated as m;t where:
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Where A is the decay factor of the exponential decay time-kernel, A is its finite width, and m,, ,_
is the number of tables served dish & in epoch ¢ — §. Those dishes are inherited in the global menu
at time ¢. Customer x,;; entering restaurant j at epoch ¢ can sit on table b that has n,;, customers
and serves dish 1), ;, with probability — "” . He then shares this dish w1th those customers. Alter-
natively, he can choose to sit on a new table bys" with probability ~—* o and orders a new dish.
He has three alternatives. First, he can order an inherited dish ¢,,, which is already served in at least
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of dishes in the global menu at epoch ¢. Second, he can choose an inherited dish not served in any
table in any restaurant, i.e. m,, = 0, with probability Mkt , however in this case he can

one table in any restaurant, i.e. m,, > 0 with probability S , K, is the total number
=
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choose the cooking style of this dish: ¢,, ~ P(.|¢,.._,). Finally, he can order an unplanned dish

from the global menu, ¢ynew ~ H, with probability ﬁ and increment K;. Putting
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everything together, we have:
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where the first summand in (3 is over dishes served in at least one table, and the second summand
is over dishes inherited but not yet ordered. Moreover, we have conveniently defined m,, to be zero

for newly born dishes at epoch ¢, and m,,, to be zero for inherited but not yet ordered dishes at epoch
t.

The hyperparameters of the RCRF process are given by: the concentration parameters ¢,y which
are endowed with an uninformative gamma prior, the variance parameter of the base measure H
which is taking as a normal distribution, the parameters of the the topic’s dynamic kernel P(.|¢)
which is modeled as a radome walk, and the parameters of the time-kernel (A, A). Inference is
carried via a Gibbs sampling algorithm that takes into consideration the non-conjugacy between the
normal base measure and the multinomial emission (details are removed for lack of space).
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Figure 2: Mlustrating Simulation results. Left: Topic’s death-birth over time (topics numbered from bottom-
top). Ground truth is shown in red and recovered in blue. Each topic puts its math uniformly on 4-words :
either a row or a column shown as black squares in the figure. Right: from top to bottom, topics’ distribution
after iteration 1, a posterior sample, ground truth (numbered from left to right), and finally a set of documents
at different time epochs from the training data. Each document is represented as a unigram distribution over
the 16-word vocabulary where the lighter the color assigned to a word, the lower its probability under this
document

Topic

3 Results

Here we show simple demonstrations of the model when applied to simulated and real data. First,
Figure 2 shows how the model was able to recover the death and birth of topics in a simulated corpus.
Second, Figure 3 shows some of the topics, with their life span, discovered from the NIPS12 data
collection. The result obtained using the model can be used to recover the timeline of topics in the
corpus: when each topic was born, as well as the timeline of each topis: what are the key papers
in each topic at each year. Moreover, we can also identify seminal papers as the papers that spawn
new topics or cause dramatic change in the language model of each topic which can be measured as
the KL divergence between the multinomial distribution of the topic at two successive time epochs.
Due to lack of space, we defer full analysis of the result to be presented at the workshop and in the
final version of the paper.
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Figure 3: Illustrating Results over the NIPS dataset. Left: The word distribution of some topics over their
lifespan. Right: The evolution of topic’s popularity (intensities)
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