Contents

1 Default logic

1.1 Default rules .. 1
1.2 Fixed priority default theories 1
1.3 Stability ... 1
1.4 Proper scenarios and extensions 2
1.5 Some consequence relations 3
1.6 Defeasible arguments .. 3
1.7 Reiter default theories ... 4
1.8 Normal default theories ... 5
1 Default logic

1.1 Default rules

- Background language, logical closure
- Rules of form $X \rightarrow Y$
- Where $\delta = X \rightarrow Y$, have $Premise(\delta) = X$, $Conclusion(\delta) = Y$. Also, if S set of defaults, have $Conclusion(S) = \{Conclusion(\delta) : \delta \in S\}$
- Priorities

1.2 Fixed priority default theories

- Definition 1 (Fixed priority default theories) A fixed priority default theory Δ is a structure of the form $\langle W, D, < \rangle$, in which W is a set of ordinary formulas, D is a set of default rules, and $<$ is a strict partial ordering on D.

- Definition 2 (Extensions) Let $\Delta = \langle W, D, < \rangle$ be a fixed priority default theory. Then E is an extension of Δ just in case, for some proper scenario S based on this theory,

$$E = Th(W \cup Conclusion(S)).$$

1.3 Stability

- Definition 3 (Triggered defaults) Let $\Delta = \langle W, D, < \rangle$ be a fixed priority default theory, and S a scenario based on this theory. Then the defaults from D that are triggered in the context of the scenario S are those belonging to the set

$$Triggered_{W,D}(S) = \{\delta \in D : W \cup Conclusion(S) \vdash Premise(\delta)\}.$$

- Definition 4 (Conflicted defaults) Let $\Delta = \langle W, D, < \rangle$ be a fixed priority default theory, and S a scenario based on this theory. Then the defaults from D that are conflicted in the context of the scenario S are those belonging to the set

$$Conflicted_{W,D}(S) = \{\delta \in D : W \cup Conclusion(S) \vdash \neg Conclusion(\delta)\}.$$
• Definition 5 (Defeated defaults: preliminary definition) Let \(\Delta = \langle W, D, < \rangle \) be a fixed priority default theory, and \(S \) a scenario based on this theory. Then the defaults from \(D \) that are defeated in the context of the scenario \(S \) are those belonging to the set

\[
\text{Defeated}_{W,D,<}(S) = \{ \delta \in D : \text{there is a default } \delta' \in \text{Triggered}_{W,D}(S) \text{ such that}
\]
\[
(1) \ \delta < \delta',
(2) \ W \cup \{ \text{Conclusion}(\delta') \} \vdash \neg \text{Conclusion}(\delta)\}.
\]

• Definition 6 (Binding defaults) Let \(\Delta = \langle W, D, < \rangle \) be a fixed priority default theory, and \(S \) a scenario based on this theory. Then the defaults from \(D \) that are binding in the context of the scenario \(S \) are those belonging to the set

\[
\text{Binding}_{W,D,<}(S) = \{ \delta \in D : \delta \in \text{Triggered}_{W,D}(S), \delta \notin \text{Conflicted}_{W,D}(S), \delta \notin \text{Defeated}_{W,D,<}(S) \}.
\]

• Definition 7 (Stable scenarios) Let \(\Delta = \langle W, D, < \rangle \) be a fixed priority default theory, and \(S \) a scenario based on this theory. Then \(S \) is a stable scenario based on the theory \(\Delta \) just in case

\[
S = \text{Binding}_{W,D,<}(S).
\]

1.4 Proper scenarios and extensions

• Definition 8 (Approximating sequences) Let \(\Delta = \langle W, D, < \rangle \) be a fixed priority default theory and \(S \) a scenario based on this theory. Then \(S_0, S_1, S_2, \ldots \) is an approximating sequence that is based on the theory \(\Delta \) and constrained by the scenario \(S \) just in case

\[
S_0 = \emptyset,
S_{i+1} = \{ \delta : \delta \in \text{Triggered}_{W,D}(S_i), \delta \notin \text{Conflicted}_{W,D}(S), \delta \notin \text{Defeated}_{W,D,<}(S) \}.
\]

• Definition 9 (Proper scenarios) Let \(\Delta \) be a default theory and \(S \) a scenario based on this theory, and let \(S_0, S_1, S_2, \ldots \) be an approximating sequence that is based on \(\Delta \) and constrained by \(S \). Then \(S \) is a proper scenario based on \(\Delta \) just in case \(S = \bigcup_{i \geq 0} S_i \).
• **Theorem 1** Let $\Delta = \langle W, D, < \rangle$ be a fixed priority default theory and S a proper scenario based on this theory. Then S is also a stable scenario based on the theory Δ.

• **Theorem 2** A fixed priority default theory $\Delta = \langle W, D, < \rangle$ has an inconsistent extension just in case W is inconsistent.

• **Theorem 3** If a fixed priority default theory has an inconsistent extension, this is its only extension.

• **Theorem 4** Let S and R be proper scenarios based on a fixed priority default theory, with $R \subseteq S$. Then $R = S$.

• **Theorem 5** Let E be an extension of the fixed point default theory $\Delta = \langle W, D, < \rangle$, and suppose $A \subseteq W$. Then E is is also an extension of the theory $\Delta' = \langle W \cup A, D, < \rangle$.

1.5 Some consequence relations

• **Definition 10 (Credulous consequence)** Let Δ be a default theory. Then Y is a credulous consequence of Δ—written, $\Delta \models_C Y$—just in case $Y \in E$ for some extension E of Δ.

• **Definition 11 (Skeptical consequence)** Let Δ be a default theory. Then Y is a skeptical consequence of Δ—written, $\Delta \models_S Y$—just in case $Y \in E$ for each extension E of Δ.

• Note that credulous consequence is crazy, in the epistemic case.

• **Observation 1**

If $\langle W, D, < \rangle \models_S A$ and $\langle W \cup \{A\}, D, < \rangle \models_S B$, then $\langle W, D, < \rangle \models_S B$.

1.6 Defeasible arguments

• **Definition 12 (Defeasible arguments)** Where S is a set of default rules and W is a set of propositions, a defeasible argument, originating from W and constructed from S, is a sequence of propositions X_1, X_2, \ldots, X_n such that each member X_i of the
sequence satisfies one of the following conditions: (1) \(X_i \) is an axiom of propositional logic; (2) \(X_i \) belongs to \(W \); (3) \(X_i \) follows from previous members of the sequence by modus ponens; or (4) there is some default \(\delta \) from \(S \) such that \(\text{Conclusion}(\delta) \) is \(X_i \) and \(\text{Premise}(\delta) \) is a previous member of the sequence.

- **Definition 13 (Argument extensions)** Let \(\Delta = \langle W, D, < \rangle \) be a fixed priority default theory. Then \(\Phi \) is an argument extension of \(\Delta \) just in case, for some proper scenario \(S \) based on this theory,

\[
\Phi = \text{Argument}_W(S).
\]

- **Definition 14 (Grounded scenarios)** Let \(\Delta = \langle W, D, < \rangle \) be a fixed priority default theory and \(S \) a scenario based on this theory. Then \(S \) is grounded in the theory \(\Delta \) just in case \(\text{Th}(W \cup \text{Conclusion}(S)) \subseteq \text{Conclusion}(\text{Argument}_W(S)) \).

- **Theorem 6** Let \(\Delta = \langle W, D, < \rangle \) be a fixed priority default theory and \(S \) a proper scenario based on this theory. Then \(S \) is also grounded in the theory \(\Delta \).

- **Theorem 7** Let \(\Delta = \langle W, D, < \rangle \) be a fixed priority default theory. Then \(S \) is a proper scenario based on the theory \(\Delta \) just in case \(S \) is both stable and also grounded in this theory.

1.7 Reiter default theories

- A **Reiter default** is a rule of the form \((A : C / B) \).

- If \(\delta \) is the Reiter default above, then \(\text{Premise}(\delta) = A, \text{Conclusion}(\delta) = B, \text{Justification}(\delta) = C \).

- **Definition 15 (Reiter default theories)** A Reiter default theory \(\Delta \) is a structure of the form \(\langle W, D \rangle \), in which \(W \) is a set of ordinary formulas and \(D \) is a set of Reiter default rules.

- **Definition 16 (R-conflicted defaults)** Let \(\Delta = \langle W, D \rangle \) be a Reiter default theory, and \(S \) a scenario based on this theory. Then the defaults from \(D \) that are R-conflicted
in the context of the scenario S are those belonging to the set

$$R\text{-conflicted}_{W,D}(S) = \{ \delta \in D : W \cup \text{Conclusion}(S) \vdash \neg \text{Justification}(\delta) \}.$$

- **Definition 17 (Approximating sequences)** Let $\Delta = \langle W, D, < \rangle$ be a Reiter default theory and S a scenario based on this theory. Then S_0, S_1, S_2, \ldots is an approximating sequence that is based on the theory Δ and constrained by the scenario S just in case

 $$S_0 = \emptyset,$$
 $$S_{i+1} = \{ \delta : \delta \in \text{Triggered}_{W,D}(S_i), \delta \notin R\text{-conflicted}_{W,D}(S) \},$$

- Not all Reiter default theories have proper scenarios, and so not all have extensions.

1.8 Normal default theories

- A normal default is a default of the form $A \rightarrow B$.

- A normal default can also be identified with a Reiter default of the form $(A : B / B)$. If the default δ is normal, then $\text{Justification}(\delta) = \text{Conclusion}(\delta)$.

- **Definition 18 (Normal default theories)** A normal default theory can be defined as either (A) a prioritized default theory whose priority ordering is empty, or as (B) a Reiter default theory containing only normal defaults.

- **Theorem 8** Every normal default theory has an extension.