Chapter 15

Nonmonotonic Logic
Jobhn F. Horty

15.1. Introduction

The goal of a logic is to define a consequence relation between a set of formulas I”
and, in most cases, an individual formula A. This definition generally takes one of
two forms, From a proof theoretic standpoint, A is said to be a consequence of I'
whenever there is a deduction of A from the set I, viewed as a set of premises; from
a model theoretic standpoint, A is said to be a consequence of I whenever A holds
in every model that satisfics each formula in T,

Although the detailed inferences sanctioned by particular logics vary widely de-
pending on the connectives present and the properties attributed to them, certain
abstract features of the consequence relation are remarkably stable across logics.
Among these is the property of monotonicity: if A is a consequence of I', then A is
a consequence of I' U [ B}. What this means is that any conclusion drawn from a set
of premises will be preserved as a conclusion even if the premise set is supplemented
with additional information ~ that the set of conclusions grows monotonically as the
premise set grows.

The monotonicity property flows from assumptions that arc deeply rooted in both
the proof theory and the semantics, not only of classical logic, but of most philo-
sophical logics as well. From the proof theoretic standpoint, monotonicity follows
from the fact that any derivation of the formula A from the premise set I also
counts as a derivation of that formula from the expanded premises set I' U | B]; the
addition of further premises cannot perturb a denivation, since standard inference
rules depend only on the presence of information, not its absence. The verification
of monotonicity is, if anything, even morec immediate from the model theoretic
standpoint: since every model of ' U [ B} is a model of T, it follows at once, if the
formula A holds in every model of I', that it must hold also in every model of
U (B}

A nonmonotonic logic is simply one whose consequence relation fails to satisfy the
monotonicity property — where the addition of further premises can lead to the
retraction of a conclusion already drawn, so that the conclusion set need not increase
monotonically with the premise set. Although certain philosophical logics, such as
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relevance logic [see chapter 13], could be classified as nonmonotonic in this sense,
the phrase is gencrally reserved for a family of logics originating in the field of
artificial intelligence (Al), and aimed at formalizing the patterns of default reasoning
that seem to guide much of our intelligent behavior.

Without attempting anything like a formal definition, one can think of default
reasoning, very roughly, as reasoning that relics on the absence of information as
well as its presence, often mediated by rules of the general form: given P, conclude
Q unless there is information to the contrary. It is casy to sec why a logical account
of this kind of reasoning requires a nonmonotonic consequence relation. Suppose,
for example, that the generic truth ‘Birds fly” is taken to express such a default: given
that xis a bird, conclude that x flies unless there is information to the contrary. And
suppose one is told that Tweery is a bird. Taken alone, these two premises - that
birds fly, and that Tweety is a bird - would then support the conclusion that Tweety
flies, since the premise set contains no information to the contrary. But now, imag-
ine thar this premise set is supplemented with the additional information that Tweety
does not fly (perhaps Tweety is a penguin, or a baby bird). In that case, the original
conclusion that Tweety flics would have to be withdrawn, since the default leading
to this conclusion relied on the absence of information to the contrary, but the new
premise set now contains such information.

The field of nonmonotonic logic began in the late 1970s as an attempt to rep-
resent this kind of reasoning within a general logical framework. Since then, the
arca has been the focus of intense activity, giving rise to hundreds of conference
and journal papers, most of which, however, are still confined to the Al lirerature.
At this point, it would be impossible to provide a balanced survey of the field
in anything less than a full-length monograph. The present chapter is intended,
instead, only as an introductory presentation of two of the main lines of approach -
a fixed-point theory and a model-preference theory — in a way that is accessible to
a philosophical audience, with an emphasis on conceptual rather than implementa-
tional issues.

15.2. Some Motivating Problems

Here are some of the problems that led to development of nonmonotonic logics,
namely, the frame problem, first noticed by McCarthy and Hayes (1969), what is
known as the gualification problem, and the problems of closed-world reasoning and
defeasible inberitance reasoning.

15.2.1. The frame problem

One of the most important reasoning tasks studied within Al is that of planning -
the problem of finding, in the simplest case, a sequence of actions to achieve a
specified goal from a specified initial state. Within a logical framework, the planning
problem is often studied from the standpoint of the situation calculus, a first-order
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formalism containing cxpressions of the form H|[¢, 5] to represent the fact that
the proposition ¢ holds in the situation 5, and allowing also for a description of the
cffects of various actions.

To illustrate the use of this formalism, imagine thar four blocks - A, B, C, and D
- are arranged on a table, with blocks A, C, and D set on the table’s surface, block
B stacked on top of block A, and none of the others having anything on top of
them. If this situation is referred to as sl, some of the relevant facts from the
situation might be depicted through the formulas

H{On(B, A), s1]
H([Clear(B), s1]
H|[ Clear(C), sl1]
H| Clear{D), s1)

(15.1)

which state thar the proposition that block B is on block A holds in the situation sl
as do the propositions that the blocks B, C, and D are clear. Note that expressions
like On(B, A) and Clear(B) are treated grammatically as complex terms referring to
propositions or facts, not as sentences.

Suppose then that these blocks must be manipulated using a robot arm that can
perform only two primitive actions: stacking one block on another and unstacking
one block from another (and placing it on the table). Let Srack( X, Y') and Unstack( X,
Y') represent the actions of stacking X on Y and unstacking X from Y, the effects
of these actions can be captured through the axioms

(H[Clear(X), s| A H[Clear(Y),s) A X# Y) D H{On( X, Y), Res({Stack( X, Y)), 5)]

(H{On(X, Y), 5] A~ H[Clear( X), 5]) D H[Clear(Y), Res({Unstack(X, Y)), 5]
(15.2)

in which it is assumed that all variables are universally quantified. Where a is a
sequence of actions, the expression Res(a, 5) denotes the situation that results when
the actions in @ are executed in turn, beginning with situation s. What the first of
these two axioms says, then, is that, as long as the distinct blocks X and Y arc both
clear in the situation s, the situation that results from s when X is stacked on Y is
one in which X is on Y; the second axiom says that, if X is on Y and X is clear in
5, then Y is clear in the situation that results from s by unstacking X from Y.

Of course, these two axioms define the effects only of action sequences containing
a single action, the base case. The effects of longer sequences can be defined induc-
tively by stipulating that

R“((Ah RN | Au)v ‘) = R“(<A-)v Rtr((“lls 1eey A'—l)v ’) (15-3)

when #» is greater than onc; the result of executing a sequence of » actions in a
situation s is equivalent to the result of executing the last of these actions in the
situation that results from executing all bur the last.
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Now suppose that I is a set of sentences containing a description of some initial
situation 5, as well as axioms specifying the effects of the available actions and perhaps
some bookkeeping material, such as the inductive definition of the Res function; and
let ¢ represent the proposition desired as a goal. Then the planning problem is the
problem of finding an action sequence a whose execution in the initial state s can be
proved from the information in T to yield a state in which the goal proposition ¢
holds - more formally, a sequence « for which it can be shown that

'k H[¢, Res(a, 5)]

where F is the classical consequence relation.

As a concrete example, imagine that s1 above is the initial state, and that I’
contains the statements (15.1)-(15.3): the four sentences describing the initial state,
the axioms describing the Stack and Unstack actions, and the inductive specification
of the Res function. Now suppose the goal is to achieve a situation in which block
A is stacked on top of block C ~ that is, a situation in which the statement On( A,
C) holds. In this simple case, it is casy to find an appropriate plan: first unstack B
from A, then stack A on C. More formally, the appropriate plan appears to be
(Unstack( B, A), Stack{ A, C)), and it scems intuitively - just thinking about how this
sequence of actions should work - that it should be possible to verify the correctness
of this plan by establishing that

't H[On(A, C), Res{(Unstack( B, A), Stack{ A, C)), 51)]

showing that the plan achieves its goal.

In fact, however, this resuit cannot be established, and it is important to see why.
Because I' contains the statements On( B, A) and Clear( B), one can indeed conclude
from the Unstack axiom that

H| Clear{ A), Res({Unstacki B, A)), s1)]

which states that the block A is clear in the situation that results from s1 when B is
unstacked from A. And because I" contains H[ Clear(C), s1], one knows that the
block C was already clear in the initial state. Since A is now clear as well, it is
reasonable to think that a goal state could now be achieved simply by stacking block
A onto block C - that is, that the Stack axiom could be used to derive

H{On( A, C), Res((Stack( A, C)), Res({Unstack( B, A)), 51))]

from which the desired conclusion would then follow by the definition of the Res
function. Unfortunately, this application of the Stack axiom would require one to
know, not just that C is clear in the original state, but that C remains clear also in
the state that results from the Unstack( B, A) action - that is, one would need to be
able to establish

H|[ Clear(C), Res({Unstack( B, A)), s1)| (15.4)
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as an intermediate step.

Of course, this intermediate step scems perfectly natural from the standpoint of
one’s ordinary reasoning abour actions: since Cis clear in the initial state, it is natural
to suppose that it would remain clear even after B is unstacked from A. In fact, how-
ever, nothing in I' allows this intermediate step to be derived - and indeed, the step
should not be derivable as a matter of logic, for it is always possible, at least, that the
removal of B from A does interfere with the fact that Cis clear. (Perhaps blocks B
and D are connected by a wire in such a way that removing B from A causes D to be
pulled to the top of C; this possibility is consistent with the information in I'.) What
one has here is the notorious frame problem, originally noticed by McCarthy and
Hayes (1969). When an action is performed, some facts change and some do not.
How can one tell which are which, and in particular, how does one propagate those
facts that do not change from the original to the resulting sitvation in a natural way?

15.2.2. The qualification problem

Look again at the axiom governing the Stack action. Notice that it does not state
that X will be on Y in any situation that results from a Stack( X, 7) action, but only
that X will be on Y as long as X and Y are distinct blocks that are both clear in the
original situation. These qualifications are necessary, of course, because the robot
arm cannot recach blocks thar are not clear, and because it is impossible to stack a
block on top of itself.

But once these qualifications are in place, is the Stack axiom then correct? Well,
no. What if the block X is so slippery that the robot arm cannot pick it up? What if
X is so heavy thar it will crush the block Y? What if Y is a bomb thar will explode
if another block is placed on top of i? The difficulty suggested by these peculiar
considerations is known as the gualification problem: how does one arrive at an
accurate, suitably qualified formulation of the axioms governing actions?

One might respond to this problem by deciding simply to fold all the various
possible qualifications into the antecedent of the axioms, either explicitly or impli-
citly. In the present case, for example, one might introduce a new propositional
constant Weird to represent the occurrence of a weird circumstance that would
interfere with the Stack action, and then modify the axiom governing this action
with the further precondition that no such weird circumstances occur:

(H| Clear(X), s) A H|Clear(Y), s) A X# Y A= Weird)
D H[OWX, T), Res((Stack(X, T)), 5)] (15.5)

The interfering circumstances imagined in the previous paragraph could then be
classified, quite naturally, as weird:
Slipperv(X) D Weird
Heavy(X) O Weird (15.6)
Bomb(Y) D Wesrd
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There are, however, two problems with this suggestion. The first - to which |
know of no solution — is that the list of circumstances that might interfere with a
stacking action is open-ended. No conceivable list of possible interfering circum-
stances could be complete. What if a metcor hits the laboratory and destroys the
robot? Then the stack action would not be successful. What if there is an evil demon
in the room that does not want to see X on 7 and will knock X out of the hand of
the robot arm as it approaches 17

The second problem is more subtle, and would arise even if there was a relatively
exhaustive list of qualifications. The point of placing preconditions in the antecedent
of an action axiom is that one must verify that the preconditions are satisfied before
concluding that the action is successful. And it does seem reasonable, in the case of
the Stack axiom, that one should have to verify that the blocks X and 7 must both
be clear before one can know that the result of stacking X on Y is successful. But it
scems less reasonable to suppose that one must actually have to verify that all of the
various weird circumstances that might interfere with this action do not occur - that
there is no bomb, no meteor, no evil demon, and so on. It would be better to be
able simply to assume that weird circumstances like these do not occur unless there
is information to the contrary.

15.2.3. Closed-world reasoning

Suppose I ask my travel agent if United Airlines has a direct flight from Washington
to Barcelona. The travel agent has access to a database containing flight information.
From a logical standpoint, one can think of this database as a set of sentences of the
form

Connects( UA354, Baltimore, Boston)
Connects( UA750, Washington, London) (15.7)
Connects( UA8B67, London, Barcelona)

and so on; the travel agent answers my question by drawing inferences from these
sentences, Suppose 1 am told: No, there is no direct flight from Washington to
Barcelona. How can the travel agent reach this conclusion? The airline database only
says what cities are connected by what flights; it does not list the cities that are not
connected, and certainly this kind of negartive information does not follow as an
ordinary logical consequence from the positive information provided.

The answer is that the travel agent’s reasoning is governed by a convention
known as the closed-world assumption (Reiter, 1978), which states, in the simplest
case, that all relevant positive information is explicitly listed. Because of this conven-
tion, it is legitimate to conclude that a positive proposition is false whenever it is not
explicitdy present in the database; the travel agent can legitimately conclude, for
cxample, that there is no direct flight between Washington and Barcelona simply
because no such flight is listed.
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The closed-world assumption applies, of course, not only to the airline database,
but to any number of situations in which positive information is overwhelmed by
negative information. When I look at a list of people invited to a party, I can
conclude, if I am not on the list, that I am not invited to the party; when [ look at
my desk calendar, I can conclude, if there is no doctor’s appointment listed for
Thursday at 3:00, that 1 have no doctor’s appointment at that time. Reasoning
based on the closed-world assumption cxemplifies the general pattern of default
reasoning as relying on the absence of information: lacking information to the
contrary, one can assume that there is no direct flight between two citics; an entry in
the database provides information to the contrary.

15.2.4. Defeasible inberitance reasoning

Returning to the initial example: birds fly, Tweety is a bird, thercfore Tweety flies.
Reasoning like this is known in Al as inheritance rcasoning, and was originally
developed in response to the need for an efficient way of representing and accessing
taxonomic information. Rather than having to list explicitly the properties of cach
individual, it is imagined that classes and properties are arranged in a taxonomic
hierarchy, and that individuals inherit their properties from the classes to which they
belong. It is not necessary to state explicitly that Tweety flies, since this property is
inherited from the general class of birds.

This kind of taxonomic reasoning has been familiar since Aristotle, and was ex-
plored in some detail by medieval philosophers; what is new in Al is the idea that -
again, for reasons of efficiency — the taxonomy is often allowed to represent defeasible
as well as strict information. An example of such a defeasible inheritance network is
provided in Figure 15.1, known as the Tweety Triangle. Here, strict links are
represented by the strong arrow = and defeasible links by the weak arrow —, so
that the displayed network provides the following information: Tweety is a penguin;
penguins are birds; as a rule, birds tend to fly, and penguins tend not to.

When these defeasible inhentance networks were first introduced, they were sup-
plied only with a *procedural’ semantics, according to which the meaning of the
representations was supposed to be specified implicidy by the inference algorithms
operating on them. [t was soon realized, however, that these algorithms could lead

Flying Thing

Bird

/

Penguin

/

Tweety
Figure 15.1 The Tweety Triangle
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to bizarre and unintuitive results in complicated cases, and rescarchers felt the need
to provide an implementation independent account of the meaning of these network
formalisms. One natural idea involved providing a logical interpretation of the net-
works — interpreting the individual links in the network as logical formulas, and so
the entire network as a collection of formulas, whose meaning could then be speci-
fied by the appropriate logic. The logical interpretation of strict links, of course,
presents no problems: a link like Tweety = Penguin, for example, could naturally be
represented as an atomic statement, such as Pr, and a link like Penguin = Bird as a
universal statement of the form Vx(Px D Bx). But there is nothing in ordinary logic
to represent the defeasible links Bird — Flyand Penguin -4 Fly, carrying the intuitive
meaning birds fly and that penguins do not.

15.3. A Fixed-Point Approach: Default Logic

Perhaps the best known and most widely applied formalism for nonmonotonic
reasoning is defanlt logic, introduced by Reiter (1980). This formalism results from
supplementing ordinary logic with new rules of inference, known as defawnlt rules,
and then modifying the standard notion of logical consequence to accommodate
these new rules.

15.3.1. Basic ideas

An ordinary rule of inference (with a single premise) can be depicted simply as a
premise /conclusion pair, such as ( A/ B); this rule commits the reasoner to Bonce A
has been established. By contrast, a default rule is a triple, of the form (A : C/B).
Very roughly, such a rule commits the reasoner to B once A has been established
and, in addition, C is consistent with the reasoner’s conclusion set. The formula A
is referred to as the preveguisite of this default rule, B as its consequent, and C as its
Justification.' A default theory is a pair A= (W, D), in which W is a set of ordinary
formulas and D is a set of default rules.

Before characterizing the new notion of logical consequence defined by Reiter,
consider how default logic might be used to represent the initial example, in which
one is told that Tweety is a bird and that birds fly. The generic statement that birds
fly can reasonably be taken to mean something like: once one learns of an object x
that it is a bird, one should conclude that x flies unless there is information to the
contrary — unless, that is, this conclusion is inconsistent with one’s beliefs. What this
suggests is that the generic statement should be represented as a sort of universally
quantified default rule, perhaps of the form Vx(Bx: Fx/Fx), but unfortunately it is
no more meaningful to quantify a default rule than it is to quantify an ordinary rule
of inference. To avoid this problem, Reiter allows open formulas to occur in defaults,
so that the generalization concerning birds can be expressed as ( Bx : Fx/Fx). However,
to avoid the resulting complexities ~ involving the application of these open defaults
to yicld closed formulas — the somewhat simpler approach of representing these
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defeasible generalizations, not by open defaults, but instead by appropriate instance
of these defaults for cach object in the domain is adoptred here. In the present case,
where Twecty is the only object of concern, the only default necessary is (Br: Fr/
Ft), which says that if Tweety is a bird, one should conclude that Tweety flics as
long as this is consistent with what is known. The information from this inital
example can then be represented through the default theory A, =(W,, D)), where
W, = | Bt} and D, = {(Bt: Ft/Fr)).

In this example, because one knows that Br, and because Fr is consistent with
one's knowledge, the default rule justifics drawing the conclusion Fr. The appropni-
atc conclusion set based on A, therefore secems to be Th(| B, Fr}), the logical closure
of what one is told to begin with, together with the conclusions of the applicable
defaults. If one is told, in addition, that Tweety does not fly, one moves to the
default theory A, =(#4, D), with D, =D, and W, =W, U |~Fr}. Here the default
rule (Bt : Ft/Ft) can no longer be applied, because its justification is now inconsist-
ent with one’s knowledge and so the appropriate conclusion set based on A, is
simply Th(W).

15.3.2. Extensions

The discussion of this example illustrates the kind of conclusion sets desired from
particular default theories. The task of arriving at a general definition of this notion,
however, is not trivial; the trick is to find a way of capturing the meaning of the new
component - the justification — present in default rules.

In ordinary logic, the conclusion set associated with a set of formulas W is simply
Thiw), the logical closure of W. It might secem, then, that the conclusion set associ-
ated with a default theory A ={W, D) should be

£=Th{(W)U |C:(A: B/C) E D, AE TH(W), ~B& Th(w))

the closure of W together with the consequents of those default rules whose prereq-
uisites are cntailed by and whose justifications are consistent with %W, A moment’s
thought, however, shows that this suggestion is inadequate. For one thing, the set £
defined in this way is not even closed under logical consequence: the addition of the
consequent from some default rule into the set £ may trigger new logical implica-
tions that should, intuitively, be included in the conclusion set, or worse still, the
addition of the consequent from one default rule may trigger the firing of another.
As an example, consider the default theory Ay =(W;, Dy in which W, =|A} and
D, ={(A: B/C), (C: D/E)}. The above definition correctly adds the consequent C
of the first default rule into the conclusion set E. It scems, though, that the presence
of C should then trigger the firing of the second rule, resulting also in the addition
of E to the conclusion set, but this statement is not included.

What this example suggests is that the definition of the appropriate conclusion set
for a default theory should be iterative. Perhaps one should take the conclusion set
of the default theory A= (%, D) to be
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£E=U %,
with
Eo= W

This suggestion responds to the previous concern, giving Th(|A, C, E}) as the
conclusion set for the default theory A;, as desired. Now, however, there is a new
problem, illustrated by the theory A =(W,, D,), with W,=[{A, BD ~C| and
D, = |(A: C/B)}. Tracing through the iteration, one can see that the rule (A : C/B)
is applicable at the first stage, since its prerequisite belongs to Th(®}) and its justi-
fication is consistent with this set; hence one has B in %,. Just a bit of additional
reasoning then shows that —~C must belong to £, and so to Z, since this formula is
a logical consequence of the information contained in %,. The rule (A : C/B) seems
initially to be applicable, since, prior to its application, there is no reason to con-
clude —~C; but once the rule has been applied, the information it provides doces allow
us to derive —C. The rule thus scems to undermine its own applicability.

Of course, a chain of reasoning like this showing that some default rule is under-
mined can be arbitrarily long; and so one cannot really be sure that a default rule is
applicable in some context until one has applied it, along with all the other rules that
scem applicable, and then one has surveyed the logical closure of the result. Because
of this, the conclusion set associated with a default theory cannot be defined in the
usual iterative way, by successively adding to the oniginal data the conclusions of the
applicable rules of inference, and then taking the limit of this process.

Instead, Reiter is forced to adopt a fixed-point approach in specifying the appro-
priate conclusion sets of default theories ~ which are described as extensions. In fact,
he acrually offers two characterizations of the concept of an extension. The first
considered here, although not the official definition, is both more intuitive and
more uscful in practice. The idea behind this particular characterization is that, given
a defaulr theory, one first conjectures a candidate extension for the theory, and then
- using this candidate - defines a sequence of approximations to some conclusion
set. If this approximating sequence has the original candidate as its limit, the candi-
date is then certified as an extension for the default theory.

Definition 15.1 The set £ is an extension of the default theory A = (W, D) iff (if
and only if) there exists a sequence of scts Ey, E,, E,, . . . such that

£=U T,
yl)
To=W

Ca=ThE)U|C:(A:B/C)E D, AE Th(%,), ~B€E E|

Here, of course, the set € is the candidate, which is certified as a true extension of
A if it turns out that £ coincides with the union of the approximating sequence
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%oy s Ey. . . . Note that £ figures in the definition of £,,,: the approximating sequence
is defined in terms of the original candidate.

The fixed-point nature of extensions is more apparent in Reiter’s official definition,
which relies on an operator I that uses the information from a particular default
theory to map formula sets into formula sets.

Definition 15.2 Where A= (%, D) is a default theory and S is some set of
formulas, Ty(5) is the minimal sct satisfying three conditions:

I wCT,(S)
2 TT(S))=T4S)
3 Forcach (A:B/CYE D, if AET,(5) and =B & §, then CE I'(5).

The first two conditions in this definition simply state that I'y(S) contains the informa-
tion provided by the original theory, and that it is closed under logical consequence;
the third condition states that it contains the conclusions of the default rules applic-
able in §; and the minimality constraint prevents unwarranted conclusions from
creeping in. Where A= (%, D) is a default theory, the operator I'y maps any formula
set S into the minimal superset of % that is closed under both ordinary logical con-
sequence and the default rules from D that are applicable in S. The official definition
of extensions - here presented as a theorem - then identifies the extensions of a
default theory as the fixed points of this operator.

Theorem 15.1 The st £ is an extension of the default theory A iff T (Z)= £

As the reader can verify, the default theories A, and A; have, as desired, the
respective sets Th( [ Bt, Ft]) and Th(|Bt, —Ft}) as their extensions. It should be clear
that the notion of an extension defined here is a conservative generalization of the
corresponding notion of a conclusion set from ordinary logic: the extension of a
default theory (W, D), in which D is empty, is simply Th{®W). And it can be shown
also that default rules themsclves cannot introduce inconsistency: any extension of a
default theory (W, D) will be consistent as long as the ordinary component 3 of that
theory is consistent.

15.3.3. Default consequence

In contrast to the situation in ordinary logic, however, not every default theory leads
to a single extension, a single set of appropriate conclusions. Some default theories
have no extensions; A, is an example. The easiest way to see that this theory has no
extensions is to work with the Definition 1 of the notion, and then to suppose that
A, did have an extension - say, €. Evidently, one would then have cither ~C € € or
-C & Z. Suppose, first, that ~C € £, Well, since ~C & %,, and under the supposi-
tion that =C € Z it is casy to sce from the definition of the approximating sequence
that ~C & %,, that ~C & Z,, and so on. But since £ is simply the union of %, £,
%,, and so on, it follows, contrary to assumption, that —~C & £ Next, suppose
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—~C & £ In that case, it is casy to see that =C € E,, and since £, is a subset of £,
that =C € £, which again contradicts the assumption.

Default theories without extensions are often viewed as incoherent, and can per-
haps be dismissed simply as anomalous. But there are also perfectly coherent default
theories that allow multiple extensions. A standard example arises when one tries 1o
encode as a default theory the inheritance network depicted in Figure 15.2, known
as the Nixon Diamond, and representing the following set of facts:

Nixon is a Quaker.

Nixon is a Republican.

Quakers tend to be pacifists.
Republicans tend not to be pacifists.

Pacifist

L 3

Republican

N\ /

Nixon
Figure 15.2 The Nixon Diamond

If one instantiates for Nixon the general statements expressed here about Quakers
and Republicans, the resulting theory is Ag = (1}, 7%), with

We={On, Rn|
and
D= {(Qn: Pn/Pn), (Rn:=Pn/~Pn)|

This theory allows both Th(W, U | Pn}) and Th(‘w, U |=Pn}) as cxtensions. Initially,
before drawing any new conclusions, both of the default rules from 2y are applica-
ble, but once one adopts the conclusion of cither, the applicability of the other is
blocked.

In cascs like this, when a default theory leads to more than one extension, it is dif-
ficult to decide what conclusions a reasoner should actually draw from the information
contained in the theory, and several options have been discussed in the literature.
One option is to suppose that the reasoner should arbitrarily select one of the
theory’s several extensions and endorse the conclusions contained in it; a second
option is to suppose that the reasoner should be willing to endorse a conclusion as
long as it is contained in some extension of the default theory. These first two
options arc sometimes said to reflect a credulous reasoning strategy. A third option,
sometimes described as skeprical, is 1o supposc that the reasoner should endorse a
conclusion only if it is contained in every extension of the default theory.?
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The first of these options - pick an arbitrary extension - really does seem to reflect
a rational policy for reasoning in the face of conflicting information: often, given
such information, one simply adopts some internally coherent point of view in which
the conflicts are resolved in some particular way, regardless of the fact that there are
other coherent points of view available in which the conflicts are resolved in a
different way. Stll, although this reasoning policy is rational, it is hard to see how
such a policy could be codified as a formal consequence relation. If the choice of
extension really is arbitrary, different reasoners could easily select different extensions,
or the same reasoner might select different extensions at different times. Which
extension, then, would represent the consequence set of the theory?

The second option - endorse a conclusion whenever it is contained in some
extension of the default theory - can indeed be codified as a consequence relation,
but it would be a peculiar one. According to this policy, the consequence set of a
default theory need not be closed under standard logical consequence, and, in fact,
might easily be inconsistent. The consequence set of A;, for example, would contain
both Pn and —Pn, since each of these formulas belongs to some extension of the
default theory, but it would not contain Pn A —Pn. This second option seems to
provide a characterization, not so much of the formulas that should be believed on
the basis of a default theory, but instead of the formulas that are believable.?

Only the third, skeptical option — endorse a conclusion whenever it is contained in
every extension of the default theory — results in a natural consequence relation, as
follows.

Definition 15.3 Let A = (W, 7) be a default theory and A a formula. Then A is
a skeprical consequence of A — written, A b= A — just in case A € £ for cach extension

T of A.

And it is worth noting explicitly, now that a formal consequence relation has been
defined, that it is indeed nonmonotonic in two ways: both adding new factual
information to the #-component of a default theory and adding new default in-
formation to the P-component can force one to abandon consequences previously
supported. The first possibility can be illustrated by referring back to the default
theories A, and A,. Here, A, & Ft, but it is not the case that A, + Fr even though A,
is obtained by adding the new factual information that —Fr to the W-component of
A,. To illustrate the second case, consider the default theory Ag = (W,, D), where
W, =W, and D, = {(Qn : Pn/Pn)}; this theory is like the Nixon Diamond A;, except
without the default that Republicans tend not to be pacifists. It is easy to see that Ay
has Th(m}, U | Pn}) as its only extension, so that Ag + Pu. The theory A, however,
has two extensions, one of which does not contain Pn; so it is not the case that
A; + Pn, even though A, results from the addition of the new default information
(R#n : —Pn/—-Pn) to the D-component of A,.

15.3.4. Examples and non-normal defaults

Now, how can the motivating examples from section 15.2 be handled from the
perspective of default logic?

348



Nonmonotonic Logic

To begin with, the frame problem appears to have a straightforward solution that
results when one supplements the standard logical description of the initial situation
and the available actions with default rules which simply say that facts tend to
persist. To illustrate, one might encode the problem from section 15.2.1 into the
default theory A; = ('W., D), as follows. First, the factual component M. contains the
formulas (15.1) through (15.3), describing the initial situation, the axioms charac-
terizing the effects of the Stack and Unstack actions, and the inductive description of
sequences of actions. Second, the default component 2, contains all instances of the
default rule schema

(H[¢, 5] : H[¢, Res(a, 5)]/H[ ¢, Res(a, 5)])

which states that: whenever a fact ¢ holds in a situation s, if it is consistent to
conclude that ¢ sull holds after the performance of the action «, then one should
conclude by default that ¢ stll holds after the performance of a.

It is casy to verify that this default theory has a single extension containing the
formula (15.4), which is, of course, the intermediate step that was not derivable
earlier without the help of frame axioms. Although the proposition that block C is
still clear even after B is unstacked from A does not follow from the factual informa-
tion contained in (15.1) through (15.3) alone, it can be derived with the help of the
default rule which says to conclude, unless there is information to the contrary, that
facts tend to persist.*

Turning to the qualification problem, again a partial solution can be found using
default logic by supplementing the statement of the axioms governing actions with
default rules which say simply that peculiar circumstances that might interfere with these
actions tend not to occur. In the case of the example from section 15.2.2, the relevant
information might be formulated through the theory Ag = (', D), in which 9§ con-
tains, in addition to the appropniate background information, the modified Srack axiom
(15.5) as well as the specifications from (15.6) of the various weird circumstances
that might interfere with that action, and in which 24 contains the single default

(T i <Weird /< Weird )

which says to assume, absent information to the contrary, that no such weird cir-
cumstances occur (T stands for the universally true proposition). Of course, this
representation does not help to resolve the first of the two issues presented by the
qualification problem - that the list of conditions that might interfere with the Seack
action is open-ended. The representation does, however, offer a resolution to the
sccond of these issues. Given a list of various peculiar conditions that might conceiv-
ably interfere with the Stack action, one no longer actually verifies that cach of these
conditions fails in order to conclude that Stack has the desired effects; the default
rule allows one simply to assume that these conditions fail unless there is informa-
tion to the contrary.

Like the frame and qualification problems, the difficulties presented by closed-
world reasoning also seem to be amenable to a solution based on default logic. As
an initial suggestion, one might represent the information from section 15.2.3, for
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example, through the default theory Ag = (M}, 4), with M, containing the factual
data from (15.7) and 9, containing cach instance of the default rule schema

(T : =Connects(x, v, 3)/—Connects(x, y, z))

which says that, in the absence of information to the contrary, one should assume
that citics are not connected by a direct flight. This theory will then have a single
extension, allowing one to conclude (under reasonable assumptions, such as thar all
existing flights are named) that there is no direct flight between Baltimore and
Barcelona.

Now, step back and notice a common feature in our default logic representation
of these various examples illustrating the frame problem, the qualification problem,
and closed-world reasoning, as well as in our representation of the Nixon Diamond.
Each of these cases relied entirely on default rules of the special form (A : B/B), in
which the same formulas occurs as both justification and conclusion. Such defaule
rules are known as normal defaults, and theories containing only normal defaults as
normal defanlt theories. As shown in Reiter (1980), normal default theories possess
a number of attractive properties that are not shared by default theories in general -
most notably, normal theories are guaranteed to have extensions. Because of these
attractive properties, and because, as has been scen, many important examples can
be coded into normal theories, Reiter originally conjectured that the full expressive
power of default logic might not be needed in realistic applications, and it could be
limited to normal theories.

This conjecture, however, was soon seen to be incorrect, as is illustrated by
considering the final example - the Tweety Triangle from section 15.2.4. Consider-
ing only normal defaults, the information from the Tweety Triangle is naturally
represented in the theory Ay, = (W,,, Do) with W), containing the sentences Pt and
Vx(PxD Bx), stating that Twecty is a penguin and that all penguins are birds, and
with D,, containing the defaults (Be: Fr/Fr) and (Pt: —Ft/=Ft), instantiating for
Tweety the generic truths that birds tend to fly and that penguins tend not to. This
default theory, like the representation of the Nixon Diamond as A, contains two
conflicting default rules, and so leads to two extensions:

Th{ Wy, U | Fr}) and Th( MW,y U {—Ft])

But is this right? In the case of the Nixon Diamond, the multiple extensions are
reasonable, since the defaults concerning Quakers and Republicans appear to carry
equal weight. But in the case of the Tweety Triangle, it really does scem that the
default concerning penguins should be preferred to the default concerning birds,
since penguins are a specific kind of bird, and it is always best to reason on the basis
of the most specific information available. One way of capturing such preferences
among defaults - first explored by Etherington and Reiter (1983) - is to modify the
representation so that the reasons that might override the application of a default
rule are explicitly built into the statement of that rule. Following this approach, the
default concerning birds from the Tweety Triangle, for example, could be represented,
not by the normal default rule (Bt : Ft/Ft), but instead by the non-normal rule
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(Bt : [ Ft A —~Pt)/Fr)

What this rule says is that, once it is known that Tweety is a bird, if it is consistent
with what is known that Tweety flics and that he is not a penguin, then one should
presume that he flies.

This appeal to non-normal rules solves the initial problem presented by the Tweety
Triangle: when this new, non-normal default is substituted for its normal predeces-
sor in the previous Ay, the resulting theory now has only the single extension
Th(W,q U |—Fr}), which states unambiguously that Tweety does not fly. Only the
defaule rule (Pr: —~Ft/—Ft) can be applied. The new default (Bt : [ Fr A ~Pt]/Ft)
does not come into play, since P* is known.

Unfortunately, in solving the previous problem, the strategy of using non-normal
rules to express preferences among competing defaults from defeasible inheritance
networks now introduces a new difficulty: the new mapping of information from
inheritance networks into default rules is holistic = the translation of a particular
statement can vary depending on the context in which it is embedded. To illustrate,
suppose one was to supplement the Tweety Triangle with the additional information
that another class of birds — say, very young birds - does not fly. Of course, onc
would then have to add to the representation the formula Vax( Tx D Bx), which states
that young birds are birds, as well as the default (1 : —Fr/—Ft), instantiating for
Tweety the statement that young birds tend not to fly. But in addition, since there
is now another possible reason present for overriding the default that birds tend to
fly, the previous representation of that default must also be replaced with the new rule

(Bt:|FeA=PtA-T1|/Ft)

From a computational point of view, this consequence is unattractive because it
makes the process of updating a body of information extremely complicated, invol-
ving, not only the representation of new information, but also the reformulation of
information that was already represented. From a philosophical point of view, the
consequence is unattractive for much the same reason that holism is generally unat-
tractive: the meaning of the statement that birds tend to fly seems not to vary from
context to context, and so it is odd that its translation should vary.

15.4. A Model-Preference Approach: Circumscription

It was noted in the introduction that the monotonicity property reflects both proof
theoretic and model theoretic assumptions of ordinary logic. Default Jogic results
from a modification of the usual proof theoretic assumptions, introducing rules of
inference that depend on the absence as well as the presence of information. This
section now tumns to a theory that results from a modification of the usual semantic
assumptions.

Typically, a formula A is said to be a semantic consequence of a set of formulas
I" = written, I'#+ A - when A is true in every model of I'. For many applications,
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however, one does not really care about all the models of T, but only about certain
preferved modcls, and it then scems reasonable to modify the usual notion of con-
sequence so that A is said to be a consequence of T whenever A is true in all the
preferred models of T. The theory of circumscription, onginally formulated by
McCarthy (1980), results from this general preferential framework when the preferred
models are defined as those in which certain predicates have minimal extensions.

15.4.1. Predicate civcumscription

Taking a model as a pair M= (D, v), with D a domain and » an interpretation of
some fixed background language over that domain, begin by defining more precisely
the preference ordering on models that forms the semantic background for the
theory of circumscription. The general idea is that one model is at least as preferable
as another just in case, while agreeing on everything else, the first assigns to some
particular predicate P an extension at least as small as that assigned by the second.

Definition 15.4 Where M, = (D, »,) and M, =(D,, »,) are models and where P
is a predicate, then M, =, 2 just in casc

(i) D=1
(1) »(Q)=»(Q) for every linguistic symbol Q other than P, and
(iii) »(P) C »(P).

It should be clear that the weak preference relation =<, is a partial ordering, so that
a corresponding strong preference relation is definable in the standard way.

Definition 15.5 Where 2 and 2, are models and where Pis a predicate, then
M, <, M, just in case M, =, M, but M, = M.

And one can then define the minimal elements in a class of models ~ the most
preferred clements — as those models from the class for which the class contains no
model that is more preferred.

Definition 15.6 Let X be a set of models and P a predicate. Then 4f is P-
minimal in X just in casc M € X and there is no M € X such that M <, M

Suppose [I'| is the model class of T', the set of modecls that satisfies ecach member
of I'. Having identified the minimal, or most preferred, models in a class, one can
now define McCarthy’s original notion of preferential, or minimal, consequence by
focusing only on the minimal models of a theory, defining a formula as a con-
sequence of the theory whenever it is true in all those models.

Definition 15.7 Where T is a set of formulas, P a predicate, and A a formula,
A is said to be a P-minimal consequence of I' — written T i, A — just in case ME A
for every model f that is P-minimal in the set |I').
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And it is casy to sec that this notion of minimal consequence is nonmonotonic. As
an example, take I'y = { Pa, a# &). Then I') ¥, —Pb, since the P-minimal models of T’
are those in which P holds only of the single clement a, but of course one does not
have I', U | Pb} &, < Pb.

In addition to defining the notion of minimal consequence, McCarthy provides a
sound second-order syntactic charactenization of the idea through the axiom of
circumscription, for which some preliminary notation is needed. Where Pand Q are
n-ary predicates, take P= Q as an abbreviation of the formula

Vay - x(Pxy ..., 0 0x%...x,)
Likewise, P < Q abbreviates
P=QA~(Q=DP)
and P= Q abbreviates
P=QAQ=P

Where I is a finite theory, I stands for the conjunction of the members of T, and "2
stands for the result of substituting the predicate P for the predicate Q throughout I

Using this notation, the cireumscription formula for the predicate Pin the theory
I" - abbreviated CirdI; P] ~ can be expressed quite simply through the second-
order sentence

FA-3P[T7" A P < P

Any model af that satisfies the first conjunct of this formula, of course, is a model of
I". Bur whart doces the second conjunct say? Well, if there were another model Af also
satisfying T” and such that & <, 3 one could then use the value assigned by M to
the predicate P to show that af satisfies the formula 37’ [T7F A P' < P]. The force
of the second conjunct, then, is simply that there is no such model af, and so
together, what the two conjuncts say is that Cir[; P] is satisfied by exactly the P
minimal models of T".

Theorem 15.2 Let I be a finite set of sentences, P a predicate, and M a model.
Then ME Cire[; P] just in case M is P-minimal in ||

From this result, the soundness of circumscription with respect to minimal con-
sequence follows at once.

Theorem 15.3 Let I' be a finite set of sentences, P a predicate, and A4 a
formula. Then I' #, A whenever Cire[T7;, P]HA.

The argument is again straightforward. To say that '#, A is to say that every P
minimal model of I" satisfies A, so let a¢ be such a model. From the preceding result,
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it is known that M & Cire[I; P). Since Cire[I'; P]F A, the soundness of second-
order logic says that Cire[["; P]# A, and so one can conclude that Mk A.

Of course, circumscription is not complete with respect to minimal consequence;
not every minimal consequence of a theory can be derived from the circumscription
formula. But this failure is no surprise, following from the incompleteness of second-
order logic itself. It was also noticed early on that the result of circumscribing certain
predicates even in consistent theories might lead to inconsistency; a simple example,
due to Etherington et al. (1985), results when one considers the theory Ty, containing
the sentences

x| Nx A Vy(Ny D x# 5(y))]
Wx(Nx D Ns(x))
Vxy(s(x)=s(y) D x=Yy)

Any model & of I', must assign to N an extension containing a series isomorphic
to the natural numbers (with s interpreted as successor); and one can then define
another model & of I', simply by deleting from the extension of N the initial
clement of this scries. Evidently, then, M <, a1, and so the model class of I'; has no
N-minimal clements. Since, as has been seen, Cire[I';; N is satisfied by all and only
the N-minimal elements of this model class, it follows that the result of circumscrib-
ing the predicate N in the theory T, is not satisfiable.

To illustrate the use of the circumscription formula, consider how circumscribing
the predicate Pin the earlier example of T, allows one to derive —~Pb. To begin with,
it is most convenient to express the circumscription formula Cire[I'); P, not exactly
in the fashion displayed above, but instead in the logically equivalent form

P AVP (TP AP s P)D P =P

The second conjunct of this formula can then be instantiated by identifying P’ with
the predicate Ax(x=a), in which case it is casy to see from the ordinary logic of
identity that both the formulas I']”* and P’ = P are derivable from T,. The second
conjunct therefore allows us to derive the formula P’ = P~ that is, Vx(Ax(x= a)x = Px)
~ and from this onc can conclude at once that —Pb, since I'; contains the informa-

tion that a# &.

15.4.2. Variable circumscription

The inference relation defined by the theory of predicate circumscription allows
one, for example, to formalize the kind of closed-world reasoning illustrated in
section 5.2.3 by circumscribing the extension of the predicate Comnmects; one could
then conclude that there is no direct flight connecting Washington and Barcelona. It
turns out, however, that this theory is of severely limited applicability for the simple
reason that it never allows new positive conclusions to be drawn by default.
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This failure can be illustrated by returning again the initial example. Given the
information that Tweety is a bird and that birds fly, how could one use the theory
of circumscription to reach the conclusion thar Tweety flies? It was suggested by
McCarthy that defaults might naturally be represented in the theory through an
appeal to explicit abnormality predicates. Where the predicate AB stands for abnor-
mality with respect to flying, for example, the statement that birds fly might be
represented through the formula Vx(( By A ~ABx) D Fx) - saying that all birds that
are not abnormal in this respect fly. Suppose T’y contains this statement as well as Bt
then it might seem that one should be able to reach the conclusion Fr simply by
circumscribing the predicate AB, ensuring that there are no more abnormal birds
than necessary.

In fact, this is a reasonable idea, but it fails for technical reasons, as can be seen by
considering the model A= (D, v), with D= (¢}, »(B) = |¢}, (AB) = {1}, and »(F) = O.
Of course, M does not support the statement Fr, bur it turns out that it is an
AB-minimal model of T';. The only way of decreasing the extension of the predicate
AB, while still modeling I';, would result in increasing the extension of the predicate
F - but this violates clause (ii) of definition 15.4, which tells us that models involved
in a preference ordering with respect to a particular predicate must agree in their
treatment of all other predicates.

Because of this problem, McCarthy (1986) claborated the basic theory of predi-
catc circumscription into a more flexible theory of variable circumscription, which
orders models with respect to a pair of predicates, P and Z. The idea is that those
models are preferred that minimize the extension of P while agreeing on everything
clse, with the possible exception of the predicate Z, whose extension is allowed to

vary.

Definition 15.8 Where o, = (D, »,) and &, = (D,, »,) arc models and where P
and Z are distinct predicates, then M, =, A6 just in case

(') DI = 'I)Zv
(ii) »{(Q)=w(Q) for every linguistic symbol Q other than P and Z, and
(iii) »(P)C »(P)

This weak preference ordering is reflexive and transitive, but it is not anti-symmetric,
since it is possible for distinct models, agrecing in their interpretation of every
predicate but Z, to bear the =, relation to one another. Still, one can define a
corresponding strong preference ordering between models by requiring the weak
ordering to hold in only one direction.

Definition 15.9 Where M, and M, are models and where P and Z are distinct
predicates, then M, <., 3, just in case M, =,, M and it is not the case that
My = py M.

And then the pattern set out above can be followed in defining the PZ-minimal
models in a class, and the corresponding notion of consequence.
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Definition 15.10 Let X be a set of models and P and Z distinct predicates.
Then Mis PoZ-minimal in X just in case M € X and there is no M” € K such that
M <p, M

Definition 15.11 Where I is a set of formulas and A a formula and Pand Z are
distinct predicates, A is a P.Z-minimal consequence of I — written I'# ., A — just
in case ME A for every & that is P,Z-minimal in the set ||

These ideas can be illustrated by returning once again to the initial example. As
already seen, the formula Fr is not an AB-minimal consequence of Iy, since the
model 2 defined above is AB-minimal in the model class of I'y but does not support
this statement. One can now, however, define the model M = (2, »"), like M except
that »"(AB) = and v'(F) = {¢]. It is then casy to sce that M <, - M, so that Af is
not AB;Fminimal, that & is itself AB,Fminimal, and that every AB;F-minimal
model of T'; supports the statement Ft, so that now I, Fr.

As before, a sound second-order syntactic characterization of the notion of
P.Z-minimal consequence can be provided through the following circumscription
formula, abbreviated Cire[I'; P Z] and expressing the result of circumscribing the
predicate P in the theory I' while allowing Z to vary:

T A—3P, Z[[77P 77 5 P’ < P)

And again, the vanable circumscription formula Cire[T; P, Z] can be seen to hold in
exactly the PAZ-minimal models of the theory I', from which it follows immediately
that variable circumscription is sound with respect to PZ-minimal consequence.

Theorem 15.4 Let I' be a finite set of sentences, P and Z distinct pre-
dicates, and A a2 model. Then ME Cire[T; P, Z] just in case M is P.Z-minimal
in |['|.

Theorem 15.5 Let I' be a finite sct of sentences, P and Z distinct predicates,
and A a formula, Then I'# 5, A whenever Cire[I; Py Z]+ A.

The application of this new variable circumscription formula can be illustrated
through the initial example, deriving Fr from I’y by circumscribing AB while allow-
ing F to vary. As before, begin by rewriting CirdI'y; AB; F) as

P, AVPZ[(TT7AZ7 o p' < AB)D P’ = AB)

Then, the second conjunct of this formula can be instantiated by identifving P’ with
the empty predicate Ax({x# x) and identifying Z’ with Ax(x=¢). It is a straightfor-
ward matter, using the information from T, to verify both I']7*#/F and P’ < AB,
and so one can conclude that P = AB - i.c., that Vx(Ax(x# x)x = ABx). From this
it follows at once, of course, that —ABt, which allows one to conclude, again using
the information from T, that Fr.
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15.4.3. Parallel and prioritized circumscription

The theory of circumscription set out here has been generalized in a number of
ways. Two are sketched ~ parallel circumscription, which allows several predicares to
be circumscribed at once, while several others vary; and prioritized circumscription,
which allows some predicates to be circumscribed with higher priority than others.

In fact, the theory of parallel circumscription is best seen simply as a notational
claboration of the previous theory. Suppose that, while allowing X C Y to carry its
usual meaning when X and Y are sets, this notation is generalised so that, when
X=X,...,X,and Y=Y,,..., Y, arc n-tuples of sets, X C Y means that X, C Y,
for cach ¢ between 1 and ». Suppose also that, where P=P,, ..., P, is a wple of
predicates, o P) represents the tuple o P,), . . ., W P,) of extensions assigned to these
predicates by the interpretation ». And finally, suppose that, where P=P, ... P,
and Q=0Q,, ..., Q, arc n-tuples of predicates, with cach P, taking the same number
of arguments as the corresponding Q,, let P=Q mean P, = Q, A--- AP, =0Q,,
and take P< Q and P= Q to be defined as before.

Once these notational enhancements are in place, the theory of parallel circum-
scription can be presented just as before - in definition 15.8 through theorem 1.5.5
~ with the sole exception that now P and Z must be disjoint tuples of predicates
instead of distinct individual predicates: rather than looking at models in which the
individual predicate P is circumscribed, look at models in which the various predi-
cates belonging to the tuple P are circumscribed in parallel.

To illustrate this theory, return to the Nixon Diamond from figure 15.2, here rep-
resented through the theory Iy, containing the statements Qn and Ra, saying that
Nixon is a Quaker and a Republican, as well as the statements

Va((Qx A —AB,x) D Px)
and
Va({Rx A ~AB,x) D —Px)

saying that Quakers that are normal in one respect are pacifists, and thar Republicans
normal in an another respect are not. To decide whether to conclude thar Nixon is
a pacifist, it seems reasonable to minimize both sorts of abnormality in parallel, while
allowing the predicate P to vary - focusing, that is, on the AB,, AB,;P-minimal
models. The reader can then verify that I', has one AB,, AB,;P-minimal model that
assigns an empty extension to AB, and supports the conclusion Pn, as well as
another that assigns an empty extension to AB, and supports the conclusion —Pr.
Since neither Pr nor <P is supported by all AB,, AB,;P-minimal models of I,
one can conclude that neither formula is an AB,, AB,;P-minimal consequence of
this theory. And by the soundness of circumscription with respect to minimal con-
sequence, one can conclude also that neither P nor —Pr can be derived from the
parallel circumscription formula Cird'y; AB,, AB,; P).

In the case of the Nixon Diamond, it does scem reasonable to minimize the
abnormalities associated with Quakers and Republicans in parallel; but in other
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cases, when defaults have different degrees of strength, it is more natural to assign a
higher priority to the minimization of some abnormalitics than others. An example
is provided by the Tweety Triangle, from figurc 15.1, which can be represented
through the theory I';, containing the statements Pr and Vx(Px D Bx), saying that
Tweety is a penguin and that all penguins are birds, as well as the statements

Vx((Bx A -AB,x) DO Fx)
and
Vx((Px A = AB,x) D —Fx)

saying that birds normally fly but that penguins normally do not. Here, if one
minimizes the two abnormalities in paraliel, again, as in the Nixon Diamond, there
are some minimal models supporting the formula Fr supported and others support-
ing —Ft, so that one is unable to draw any conclusions. It scems more natural,
however, to minimize the abnormality associated with penguins with a higher pri-
ority than that associated with birds, so that all minimal models then support the
desired conclusion —Ft.

To develop the theory of prioritized circumscription leading to this result, first
define the relation

(le xl) : (Ylv Yl)
to mean that

(i) X, CY,and
(ii) if X| - Y| thcn X} g Y;.

Although this new relation can actually be raken — using the enhanced notation just
introduced in connection with parallel circumscription - as holding between pairs of
tuples of sets, things can be kept simple by reading it as a relation between pairs of
sets, and use it to define the following preference ordering on models.

Definition 15.12 Where &, = (2, »,) and M, = (2, »,) are models and where
P, Q and Z are distinct predicates, then 8, =, , M, just in case

(i) D=2
(i1) »(R)=r(R) for every linguistic symbol R other than P, Q, or Z and
(i) (»(P), »(Q)) C (n(P), »(Q)).

The idea behind this weak prioritized ordering is that those models are preferred
that minimize the extensions assigned to both the predicates Pand Q while allowing
Z 1o vary, but that minimizing P is assigned a higher priority than minimizing Q.
Once this weak prioritized preference ordering has been defined, the development
of the theory follows the pattern set out earlier. A corresponding strong ordering
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can be introduced as in definition 15.9, with M) <,., , M taken to mean that
M, = p.p.2 M; and it is not the casc that A, =<,., , M,. The minimal clements of a
class of models can then be defined as in definition 15.10, with 2f taken as P> Q;
Z-minimal in the class X whenever & belongs to X and there is no A from X such
that M <., M. And the appropriate notion of consequence can be defined as in
definition 15.11, with A taken to be a P> Q; Zminimal consequence of T -
written, ['#5. o 2 A - whenever MF A for cach P> Q; Z-minimal model 2( from
[T|. With these definitions in hand, the reader can then verify that [y # 5 4 5 —Ft
- i.e., that the statement —Ft follows as a consequence of I'; when the predicate AB,
is minimized with a higher priority than AB,, allowing F to vary.

Turning to the proof theory for prioritized circumscription, begin by defining (P,
Py) =(Q,, Q,) as an abbreviation of the statement

P=QnA(P=Q,0P=Q,)
and then taking (P, P;) <(Q,, Q,) to mecan that

(Plv Pz)s (le Q.J.)A-'((le QJ)< <Ph P)))

The circumscription formula for minimizing P with higher priority than Q in the
theory T while allowing Z to vary, abbreviated as Cire[T; P> Q; Z], can now be
expressed through the second-order statement

r/\ﬂal", Q'v z’[rr/PWQZIZA(PI\ Pz) < (le QJ)]

Analogues to theorems 15.4 and 15.5 can be established, saying that CirdI'; P> Q;
Z] holds in exactly the P> Q;Z-minimal models of T, and therefore, that prioritized
circumscription is sound with respect to the appropriate prioritized notion of min-
imal consequence. And the interested reader can verify that —Fr is indeed derivable
from the formula Cire[y; AB, > AB,; F].

It should be clear that the theories presented here of parallel and prioritized
circumscription can be combined and generalized, so that groups of predicates can
be minimized in parallel, but all with higher priority than other groups of predicates.
One could, for example, speak of the Py, P, > P; > P, P;; Z,, Z,-minimal models as
those obtained by minimizing the predicates P, and P, in parallel with higher
priority than P, which is itself minimized with higher priority than P, and P, all
the while allowing Z, and Z, to vary. Note, however, that — just as with default logic
— it is still necessary to specify the preferences among various competing defaults by
hand, in this case by explicitly tailoring the prionities involved in the minimization
ordering, rather than coding these preferences into non-normal default rules.

Suggested further reading

Many of the original papers on nonmonotonic logic are reprinted in Ginsberg (1987). A
more recent collection is Gabbay et al. (1994), which contains several valuable survey articles
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on different approaches. There have been a number of variations on the general themes
introduced in Reiter’s default logic; the most readable and comprehensive presentation of
these s Delgrande et al. (1994). Another fixed-point theory of nonmonotonic reasoning,
closely related to default logic, is the modal approach of McDermott and Doyle (1987
[1980]). This modal approach was refined in Moore (1985); relations to default logic are
established in Konolige (1988 [1987]). The best general survey of the theory of circumscrip-
tion is Lifschitz (1994). Different model-preference approaches, based on different preference
ordenings can be found in Kaurz (1986) and Shoham (1988). A general study of nonmonotonic
consequence relations, with a special emphasis on model preference logics, was initiated by
Makinson (1989) and Kraus ct al. (1990).

Notes

1 Just as ordinary inference rules allow multiple premises, default rules allow multiple pre-
requisites and also multiple justifications; we limit our attention to default rules in which
prerequisites and justification are unique for case of exposition.

2 The use of the credulons/ skeptical rerminology to characterize these two broad reasoning
strategics was first introduced in Touretzky et al. (1987), but the distinction is older than
this; it was noted already by Reiter, and was described in McDermott (1982) as the
distinction between drave and camtions reasoning.

3 Reiter provides a proof procedure, sound and complete under certain conditions, for
determining whether a formula is believable in this sense on the basis of a default theory.
A different interpretation of this second credulous option is provided in Horty (1994),
which interprets default logic as a deontic logic allowing for moral conflicts.

4  Unfortunarely, although the treatment of the frame problem suggested here does scem
to work for the simple example set out in section 15.2.1, it was shown in Hanks and
McDermott (1987) thar this straightforward kind of nonmonotonic approach delivers
anomalous results in situations that are only slightly more complicated. Since then, a num-
ber of more sophisticated encodings of actions and their effects in various nonmonotonic
logics have been explored, such as those of Lifschitz (1994) and Morgenstern and Stein
(1988), as well as renewed attempts to resolve the frame problem in ordinary monotonic
logics, such as that of Reiter (1991). The field is now an arca of active research; a recent
survey can be found in Shanahan (1997).
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