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1. Introduction

In contemporary A.L, there is much room for variation in the distance between theory and
implementation. Some implementations (e.g., some parsing algorithms), can actually be shown
to compute the relations that are specified by a theory. But sometimes—even though there are
theories, and the theories clearly help in a way to inspire and understand implementations—the
relationship between the two is looser and, on the whole, more problematic. And sometimes there
are no theories at all.

Knowledge representation seems to be a case in which the gap between theory and implemen-
tations is yet to be closed. There are now a number of well developed logic-based theories of
nonmonotonic reasoning,! and numerous frame-based implementations that employ nonmonotonic
reasoning in A.lL applications. But it remains to be shown that one of these theories of nonmono-
tonic reasoning provides a faithful account of a reasonable frame-based system. And even if we

consider mathematical models of inheritance, such as those of [24] and [10}, which dispense with

many of the complexities of actual implementations, there is usually no straightforward way of

applying the logical theories to these models. Thus, it is difficult at present to put these theories
to work, either in criticizing existing technologies or in designing improvements.

We have no simple cure for the gap, because we believe that it is due in part to the intrinsic
difficulty of the research problems. In this paper we propose a diagnosis of the problem; describe
the methodology for attacking it that has emerged in a project at Carnegie Mellon University and
The University of Pittsburgh; we give a generalization of the difficulties involved in relating logic
to nonmonotonic inheritance in semantic nets; and, to illustrate the sort of result that we believe

is required, we present a completeness theorem for a very simple case.

2. The theory-implementation gap in knowledge representation

We suspect that existing logical theories of nonmonotonic reasoning have been too conservative,
too ready to respect details of logical theories that were developed for entirely different purposes.

Familiar logical theories, including intuitionistic, modal, and higher-order logics, were inspired by

}We count a logic as well-developed for this purpose only if it has beeg given a model theoretic interpretation.

the need to constr

tions must be mac«
runs deep in thes
believe, to provid
nonmonotonic “IS

Qur own resesz
relatively abstrac
seek to develop m
[24] serves as a 1
deals with object:
theoretical pursui
it is not the same
important step in

Logical theory
require logics that
plicable logics do
are generated by
may be unfamilia
techniques in the
objects of logical

This approacl
the relation betw
efficiently. (2) T
relation between
of statements fro
than that of the
characterizes the
and complete wit
for the logical lar

As an exercis¢
with respect to
noteworthy conse
classical, two-val
believe, that a n.
lattice of truth w»

In this paper,
logic, and that t
one. This logic i

inheritance in the



ry

Torty

+ Department
t University
A 15213

e between theory and
can actually be shown
even though there are
implementations—~the

. And sometimes there

theory and implemen-
logic-based theories of
employ nonmonotonic
» theories of nonmono-
stem. And even if we
|, which dispense with
traightforward way of
; to put these theories
ents.

n part to the intrinsic
the problem; describe
Mellon University and
olved in relating logic

result that we believe

been too conservative,
Ay different purposes.

gics, were inspired by

eoretic interpretation.

221

the need to construct theories of mathematical reasoning. And in mathematical reasoning, assump-
tions must be made explicit, and theorems must be reusable in proving later results. Monotonicity
runs deep in these theories, and incremental modifications to standard logics are not likely, we
believe, to provide tractable characterizations even of apparently simple applied concepts such as
nonmonotonic “IS-A.”

Our own research strategy can be summarized as a “bottom-up” approach that seeks to link
relatively abstract logical theories to implementations by developing multiple levels of theory. We
seek to develop mathematical accounts of inheritance that are relatively close to implementations;
[24] serves as a model for this work. It is important to realize that inheritance theory, which
deals with objects like graphs and paths rather than with formulas and proofs, is an independent
theoretical pursuit with its own methods, intuitions, and results. In some ways it is like logic. But
it is not the same as logic. The emergence of inheritance theory as a separate area of inquiry is an
important step in relating theories to actual knowledge representation technology.

Logical theory is another necessary part of the picture; but we feel that nonmonotonicity may
require logics that are relatively unfamiliar, and so will not be found in the logical literature. If ap-
plicable logics do not exist, they will have to be invented; thus, we hope to appeal to intuitions that
are generated by our work in inheritance theory in developing suitable logics. Though these logics
may be unfamiliar, of course they will have to be rigorously constructed, using metamathematical
techniques in the logical repertoire; and (hopefully) they should in themselves be interesting as
objects of logical study.

This approach breaks down into the following detailed tasks. (1) To develop a theory of
the relation between a net I' and a consequence A, showing that this relation can be computed
efficiently. (2) To develop a model theory, which yields a definition of logical consequence as a
relation between a set of formulas T and a formula 4. We can regard a semantic net as a set
of statements from this logic, though the expressive power of the logical language may be richer
than that of the nets, allowing other statements to be formed. (3) Thus, to show that the logic
characterizes the account of inheritance, we wish to prove that the inheritance relation is sound
and complete with respect to logical consequence. (4) We may also wish to devise a proof theory
for the logical language that is sound and complete with respect to logical consequence.

As an exercise in applying this technique, we have carried out all of the above theoretical steps
with respect to a system of monotonic inkeritance; the results are described in (20] and [21]. A
noteworthy consequence of this project is that the logic even of monotonic inheritance is not the
classical, two-valued one. Instead, it corresponds to a well-known four-valued logic. This shows, we
believe, that a nonmonotonic logic that meets our goals must be based either on this four-valued
lattice of truth values or some extension of it.

In this paper, we will show how a version of autoepistemic logic can be based on this four-valued
logic, and that this yields a nonmonotonic logic that in many ways is simpler than the modal
one. This logic in itself, however, does not provide a theory that is applicable to nonmonotonic

inheritance in the direct way we would like; an appropriate theory of nonmonotonic quantification
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needs to be added to it. We will also discuss this problem, and present a result which relates the
logical theory to a simplified version of the “credulous” direct semantics for inheritance that is
discussed in [25].

3. A four-valued nonmonotonic propositional logic

The language of the propositional logic has disjunction, conjunction, negation, an operator A
which in some ways is like the necessity operator of a modal logic, and an operator §7 which in
in some ways is like the possibility operator of a modal logic. Complex formulas are constructed
according to the following rules. (A literal is either an atomic formula or —- A, where A is an atomic
formula.)

1. I A, B are formulas, so are ~A,AV B, and 4 A B.
2. If Ais a formula, so are AA and VA

Models are characterized as follows.

Truth values are subsets of {T,F}. A model M assigns truth values to atomic formulas anyhow,
and truth values to complex formulas in a way that depends on the values of simpler formulas.
M 1 A means that T belongs to the value that M assigns to A; M l=p A means that F belongs
to this value.

The rules of satisfaction are as follows.

Mg A Mg A MEr AAf MEr A
Mbp-Aif M A Mg DA M fer A

METAANB{MErAand MEr B M s A M ip A
MEFANBIf M sp Aor M 5 B MEr VA M f=p A

METAVBifMErAor M=y B
MEr AVBif M ep Aand M ¢ B

So far, there is nothing nonmonotonic about this logic. Nonmonotonicity enters with the
definition of the implication relation I~ between a set T' and a formula A. The trick will be this:
to characterize a normal model of a set [, and to say that I' |~ A iff M =1 4 for every normal
model M of I

Our first characterization of a normal model of T is that it must be informationally minimal.
My £ M, iff for all atomic formulas A, if My =1 A then M, =1 4, and if M, Er A then
M E=r A. M is a normal model of ' iff M is a model of T, and if M’ is a model of T and
M’ < M then M’ = M.

The resulting logic, N 4,7 is nonmonotonic. For instance, we have

2'5[‘he ‘4’ i.n this name of the logic is a reminder that it is four-velued. The ‘N’ is for ‘nonmonotonic’. This name is
provisional; if the space of similar logics proliferates, it may be necessary to choose a more complicated name. Any
resemblance to ‘S4’ is purely accidental.
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It would be misleading to claim that the logic of A could serve as a satisfactory general-
purpose epistemic necessity. The most striking difference between A and any modal O is the
logical equivalence of A[A v B] and A4 v A B; such an equivalence certainly doesn’t hold for
knowledge in general. We can know that A or B without knowing whether 4 or B.

However, it has been argued® that the four-valued logic on which N4 is based characterizes the
logic of what is known by simple information retrieval systems, and in certain restricted applications
(e.g., closed world systems, and many types of semantic nets as well), the equivalence of A[A v B]
and A4 v AB may not be so unreasonable. At any rate, as we will show, N4—which in many
ways is simpler than autoepistemic logic—does seem to provide a promising basis for interpreting
monmonotonicity in semantic nets.

We will not develop the logical metatheory of N4 here; but will leave that task for another

paper.?

4. Quantification and generic statements

The propositional logic N4 provides a foundation for interpreting generic statements (state-
ments corresponding to generic 1S-A links in nets, of the form p — ¢). But it is by no means trivial
to extend the propositional logic in the required way. Although generic 1S-A links resemble true
universal quantifiers in that they are used to make general statements, the analogy does not, as far
as we can see, support a definition of p — g in terms of a universal quantifier. In fact, the view that
nonmonotonic 1S-A links have a logical form that somehow involves universal quantification is (like
the view that monotonic inheritance corresponds to two-valued logic) an idea that is attractive
because of its appeal to the familiar, but that is unsupported by theoretical results.

The following example illustrates the difficulty. Suppose that we extend the logic N4 by adding
a two-place quantifier V, allowing formulas such as Yz(pz, ¢z). This formula is true in a model in
case for every individual d, if p is true of d then so is ¢. (The falsity conditions of the formula are
unimportant for the purposes at hand.) We then define p — ¢ and p - ¢ as follows.

p—q =g Vz(lpz A vgzl,qz)
pAg =g Vz(lpr A g-gzl,~gz)

The theory we have stated yields a relation [p of logical consequence; but this relation does

not correspond to any reasonable inheritance cousequence relation, even in the most simple cases.

3See [1].
4N4 is decidable, and can be axiomatized using a Gentzen Sequenzenkalkdl without the rule of weakening. This
technique for axiomatizing nonmonotonic logics is discussed in [22].
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I

Clearly, ga holds in this net. But—equally clearly—there is a minimal model of T, in which
~ga holds. This model satisfies p — ¢ because it fails to satisfy yga.

Another kind of difficulty has to do with preemption. To see the problem, let T'; be {pa,p —
99— npAr}

Iy

Nothing rules out the model of I'; in which pa, ga, and ra are all true. But this model does not
comply with intuitions about inheritance.’

The solution to these problems involves a revision of the fundamental notion of a normal
model. Simply minimizing information does not suffice to eliminate the abnormality we have
identified above, because the inheritance definition of a semantic net is a kind of compromise
between concluding too much on the one hand (reaching conclusions that are unwarranted), and,
on the other hand, concluding too little (failing to make the best use of general information that
is contained in generic links).

Our revised account of normality is as follows: relative to a set of formulas T’ we associate with
each model M three sets, which together serve as measures of normality:

®See [24], [11], and [10].
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1. A set inf(M) of literals, serving as a measure of the information
content of M;

2. A set inc(M) of atomic formulas, serving as a measure of the
inconsistencies introduced by M;

3. A set anor(M) of pairs of generic formulas and individuals,
serving as a measure of the anomalies introduced by M, relative
to the generalizations asserted in I' :

Given an assignment of normality measures inf(M), ine(M), and anop(M) to M, define a

relation < of relative normality for models, as follows.

M] S M2 iff either:
L. ine(M;) C inc(M),; or
2. ince(M); = ine(M;) and anor(M;) C anor(M,); or

3. ine(M); = ine(M,) and anor(M;) = anor(M;) and
inf(M)1 C inf(M,).

The prioritization implicit in this ordering reflects, we believe, the policies that are incorporated
in inheritance definitions. First, do not allow any inconsistencies that are not absolutely forced by
the hypotheses. Second, maximize use of generalizations in the hypotheses, insofar as this does
not conflict with the first priority. Third, do not reach conclusions except insofar as are forced by
the hypotheses and the first two priorities.

There are simple intrinsic definitions of inf(M) and of ine(M). The former is the set of literals
made true by M, the latter is the set of atomic formulas 4 such that both 4 and —A are made
true by M. The definition of anomaly is not so simple; there seem to be many reasonable ways
of characterizing the anomalies of a model with respect to a set of hypotheses. The simplest of
these says merely that <p — ¢,d> is an anomaly if either Dp—gerq,de D, (where
Dy is the domain of the model M) and M =14 pz A Vgz,or 2)pAgel, de D, and
M Er4pz A gz

3. An exercise in modeling inheritance

5.1. Conflict resolution and networks

Networks that can permit positive and negative reasons for the same conclusion, and that are
capable of credulous reasoning (see [10]), must appeal to some form of conflict resolution—some
way of deciding which reasons to accept in case of conflict. In general, this resolution method

may involve decisions that are arbitrary; this is the source of multiple extensions that are equally

5The subscript ‘d’ on ‘=, of course, is keyed to the free variable z.
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reasonable, in inheritance systems such as that of [24]. We begin by introducing a framework for
discussing conflict resolution.

A network over a set I of individuals and set K of kinds is a pair of subsets of (Ix K)U(K x K).
the set of positive links and the set of negative links. We use upper-case Greek letters for networks,
‘a’, ‘¥, and ‘¢’ for individuals, ‘p’, ¢g’, ‘r’ for kinds, and arrows ‘" and‘/’ for links; thus, we may
say that a » peTanda /A p€ I. In some contexts we use propositional notation, saying that
pa € T or that ~pa e T. Butpaand-rpaa.rethesamethjngsasa—-vpanda%»p.

To keep things simple, we'll confine conflict resolution to specific propositions of the form
a — p and a / p, ignoring generic propositions of the form p — ¢ and p # ¢. So we can think
of a resolution function as a partial function f from I x K to {T,F}. Such functions are partial
because they need only resolve questions that arise; a question will not arise unless there are active,
defeasible pros and cons associated with it. Though the parentheses in the notation ‘f(a,p) are
just delimiters for functional application, it’s useful to think of (a,p) as an object—the question
(a,p) represents an issue as to whether @ — p or a 7+ p holds.

As in [10], a generalized path in T is a sequence of links, positive and negative, belonging to T'.
T is acyclic if it contains no generalized paths that are acylic. The degree degr(o) of apath o in I’
(whereapathinI'is a generalized path which, if it has any negative links, has just one such link,
in final position) is the length of the longest generalized path in T' from the head to the tail of 0.
The degree of a question (a, p) is the degree degp(o) of an arbitrary generalized path ¢ in T from
a to p, if such a path exists; otherwise, degr(a,p) = 0.

5.2. A crude sort of inheritance

By a simultaneous induction on degr(a,p), we define the sets R'Il:'j(a, p) and RE {a,p) of pros
and cons for the question (a,p) (relative to T’ and the resolution function f), and the permission
relation p- between <T', f> and paths in T. The definition assumes that f is adequate forT',in a

sense to be explained later.

Definition 1

1. Ifpael thena—p€ RE (a,p) and <, f>ba—p;
2 If~pacT thenappe Rg'f(a,p) and <, f>Fa /p;

3. IfI}-a-»d—vqandq——»pEPthena—+a—%q—»p€R'Il:‘f(a,p) and
<D, f>ka—o—g—=pin case a 4> p ¢ T and either RE ;(a,p) = 0 or
fla,p) =T;

4 Ifn"a“‘*ﬂf’qandQ%’PEFthcna—*d-*q%rpERlE‘f(a,p) and
<, f>bka—oc—qApin case a = p €T and eitherRE,(a,p):@ or
f(a,p) =F.

We will also use %’ for the relation of support between <TI', f> and propositions. This will
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cause no confusion, since we will write, e.g., ‘<T, f> b a — P’ when %’ represents the permission

relation where paths are involved, and ‘<T, f> b pa’ when ¢’ represents the support relation.
Thus ‘Th- a — p’ means that a — PET; ‘<L, f>b pa’ means that <T', > yields pa as a conclusion,
whether or not it is an immediate conclusion, i.e., whether or not g — peT.

Definition 1 is motivated by ideas from {10): immediate reasons (reasons contained directly in
') are never suspended, and complex reasons are suspended only in case a conflict arises between
pros and cons. Inheritance is bottom-up, so that a conflict must consist of opposed reasons whose
initial subpaths are permitted up to their final links; such a conflict could be said to consist of

a definite conclusion, positive or negative.

A resolution function f for T is adequate for ' if f(a,p) is defined whenever RE Ha,p) # 0, and
Rg,f(a,p) #0,and A - p@Tand 4 7 p&T. (A question (a,p)

meeting these conditions could
be called an active conflict.)

The inheritance that is characterized by Def. 1 is very crude; it is “capricious,”
allow for preemption. This is illustrated by the following networks.

ey
N/
Y

P3 . P4
Let fiy(a,s) = T and fa(b,s) = F. Let fila,r) = T. Then f, is adequate for Ty, and <Dy, fs>
supports sa (and doesn’t support —sa) and also <[y, f,> supports -sb (and doesn’t support sb).
Thus, <T, f5> is capricious in its failure to treat similar cases differently. Also f, is adequate

for 'y, and <Dy, f,> supports ra (and doesn’t support -ra), though its reason for —rq is more
specific.

and does not

The following lemmas bring out some element

ary consequences of the definition. It is supposed
in all of them that f is adequate for I'.

Lemma 1 If <T, f>b pa and <T, f>b —pa then a —pelanda fpel,
Proof. Cases 3 and 4 of Def. 1 can’t apply under the assumptions of the lemma,

Lemma 2 JIf Rf j(a,p) =0, then <L, f>F-pa and <T, f>} pa ifFRE (a.p) # 0. If RE (a,p) =
0 then <T, f>K pa and <L, f>b =pa if RE (a,p) # 0. And ifRE (a,p) # B RE ((a,p) then (@)

tfpa €T then <T,f> b pa; (i1) if “pa € ' then <T, f> b ~pa; (121) otherwise <T, f>bpaif
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Proof. Straightforward, by induction on degr(a, p).

Lemma 3 If Rf (a,p) # @ and p — g € T then Rf (a,q) # 0. If Rf j(a,p) #B andp A g€ T
then RE ;(a,q) # 0.

Proof. Immediate, from Def. 1.

Lemma 4 If <I, f>} pa then (i) ifp— g € T and <T', f>}-qa then <T, f> b —qa; and ~ga € T
or there exists r such thatr 4 q €T and <T, f>pra; end (ii) if p 5 g € T and <T, f> F~qa
then <I', f>}- qa; and gqa € T or there exists r such thatr — g € T and <T, f>pra.

Proof. Suppose <T', f> b~ pa. By Lemma 2, Rg'f(a,p) # @. By Lemma 3,if p — ¢ € T then
Rf,(a,q) # 0. Then by Lemma 2, if <T,f> j-ga then RE ;(a,q) # @ and f(a,q) # T. Since
Rf:’f(a,q) # 0, =ga € T or there exists r such that r /4 ¢ € T and <T, f>}- ra. Since f is adequate
for T, f(a,p) is defined; so f(a,p) = F, and by Lemma 2, <T, f> - ~ga. The other half of the

lemma is proved in the same fashion.

Lemma 4 characterizes a way in which this type of inheritance is credulous; a reason for a

conclusion cannot be overriden without forcing the opposite conclusion.

5.3. A network completeness theorem

We will now show that the model-theoretic notion of consequence that we have defined is
equivalent, on the restricted language of networks, to the inheritance definition we gave at the
outset. That is, we show that for all acyclic networks I" and literals 4, T’ |~ A iff <T, f>} A for
all adequate resolution functions f on I'. The work of the proof is carried out in the following two

lemmas.

Lemma 5 Let I' be acyclic, and f be an adequate resolution function on I'. Let the individual
constants of T' constitute the domain of M, and let M=t pa iff <T', f> b pa, and Ml=f pa iff
<[, f> - pa. Then M is a normal model of T.

Proof. We need to check that M meets the three conditions in the definition of normal models.

1. (Consistency.) Suppose M=t paA—-pa. Then <T, f> b pa and <[, f> }- -pa, so by Lemma
1 we have pa € T' and —pa € T'. So M is minimal as regards consistency.

2. (Anomaly.) Suppose M’ is a model of I' that also minimizes inconsistency but that
anopr(M')C anor(M). Then there are some anomalies <p — ¢,a> or <p # ¢,a> in anop(M)that
are absent from anor(M'.) We will derive an inconsistency from this assumption, thereby estab-
lishing that M is minimal as regards anomaly.

To begin with, we show by induction on degree that M =< M’; ie., that if M7 pa then
M’ [=r pa and that if M= pa then M’ f=f pa. Suppose this holds for questions with degree less
than (pa). We can assume without loss of generality that a — p € T" and a 4 p ¢ I'. Suppose,
then, that <T', f> }- pa because <T', f>} @ — o —+ ¢ — p. By inductive hypothesis, M' =t qa.
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Since ¢ — p € T, we must have M’ f=r pa, for otherwise <a,q — p> would be in anop(M') but
not in enor(M). Now, suppose that <T', f> b~ pa because <I', f>} a — ¢ — ¢ / p. By inductive
hypothesis, again M’ |=r ¢a. Since ¢ 4 p € T, we must have M’ k= —pa, for otherwise <a,q /4 p>
would be in anor(M’) but not in anor(M). This completes the induction.

Assume first that <p — g¢,a> is in anor(M) but not in anor(M’). Then we have Mf=1 pa,
Mt ga, but p— g € T Since M < M, we have M’ |=1 pa. Therefore M’ F1 ¢ga. But by Lemma
4, (because ~ga ¢ T') there exists r such that Mj=1 ra and r 4 ¢ € I. But then <r 4 g,a>
would be in anopr(M') but not in anor(M), which is impossible. The case in which the anomaly
is negative—<p /4 ¢,a> is in anor(M) but not in anop(M')—is just the same. This establishes
that M is minimal as regards anomaly.

3. (Information.) Now suppose M’ is a model of I' that also minimizes inconsistency and
anomaly but that inf(M') C inf(M); i.e., M’ < M. By the argument with which we began Case
2, M=< M.

This completes the proof of Lemma 5.

Lemma 6 Let M be a normal model of T', and construct a resolution function f on T as follows.
We let f(a,p) =T if M |=r pa and f(a,p) =F if M 1 pa and M |=p pe; f(a,p) is undefined
otherwise. Then f is an adequate resolution function for T, and for all literals A, M =1 A iff
<D, f>F A.

Proof. We prove by induction on degr(a,p) that M =1 pa iff there is a path o enabling pa
such that <T, f>}~ o, and M |=r pa iff there is a path o enabling ~pa such that <T, f> b ¢, and
M k=t pa iff f(a,p) = T, and M |=f pa iff f(a,p) = F, unless pa € I".

The basis step is immediate. In the inductive case for a positive formula pa, suppose first that
M [=1 pa. If pa € T then <f,I'> ) a — p. Suppose pa € I'. Then there must be a g such that
M 1 ga and ¢ — p € T. Otherwise by removing ga from M we would obtain a model M’ such
that M’ < M but anop(M')C anor(M) and incp(M')C incr(M). By the inductive hypothesis,
there is a o enabling ga such that <T', f> b 0. We know —pa ¢ I since M 1 pa and pa ¢ T
therefore <I', f>} ¢ — p iff f(a,p) = T. But f(a,p) = T because M k=1 pa. Suppose second that
<P, f>} o for some o enabling pa. If pa € T then M k=1 pa. Otherwise, ¢ = a — 7 — g —p.
By the inductive hypothesis, M =1 ga. Since pa € T', we must also have f(a,p) = T. But then
M [=r pa. The inductive case for a negative formula —pa is similar. This completes the proof.

Theorem 1 T | A iff for all adequate resolution functions f on T, <T, f> b A. (Here, T is any
acyclic set of formulas of the form pa, p — ¢, or p /> g and A is any literal.)

Proof. Immediate, from Lemmas 5 and 6.
5.4. The point of the exercise

We feel that the above result provides an illustration, in a simple case, of the sort of theorem
that is required in order to properly relate logic and inheritance. The interpretation is faithful and
it meets the condition of modularity described below.
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But we do not claim that it will be easy to extend this result to capture systems of inheritance
that are not capricious, or that are based on preemption, or that are skeptical about conflicting
reasons. To construct a model that can account for such things requires further adjustments in the
underlying framework of the model theory. We are experimenting with models that incorporate
reasons for the conclusions they endorse. These reasons will satisfy general constraints may vary
from one model to another; we hope to model different approaches to inheritance with this sort of

variation. Our research along these lines, however, is still very tentative.

6. Obstacles to progress

It is often thought that the semantics of inheritance hierarchies can be provided by translating
these hierarchies into ordinary nonmonotonic logics. This has been suggested by several writers,
including Etherington, Haugh, Lifschitz, and recently Morris.” (There is also ongoing work by
Gelfond and Pryzmusinska; see [8].)

We feel that the problem of providing semantics for inheritance is unexpectedly complex, and
that these attempts have not been fully adequate. We will try to explain this attitude by focusing
on Etherington’s analysis of credulous inheritance, which is the best-known and most systematic

of the developed translations.
6.1. An example: inheritance and default logic

To explain the major source of complexity in Etherington’s project of translating inheritance
networks into default logic, first consider a straightforward, uncomplicated translation procedure.
Where T is a net, first let Ur (the universe of T') be the set of individual constants occurring in

T, then let 7 be the default theory (W, D), where
W={Pa:a—peT}U{-Pa:abpel}

D={(Pa:Qa/Qa):p—->qeF&aébr}u{(Pa:—wQa/#Qa):p%qEF&anp}

This simple translation works well in cases like the net I's pictured below. (I's is the notorious

Nixon diamond.)

¢ p

"
N/

¢ n

qg e ] r

T's
But what does it mean for such a translation to work well in general? There must be a natural

mapping from the network to the logic, that faithfully represents the inferences sanctioned by the

"See [4], [5], [6], (9], (18], [16], [18].
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network. More precisely, given a net T, let T represent all the potential conclusions in T—all the
statements enabled by any path in I'. Then we say that the translation is adequate if

¢ For each default logic extension E of 'R, there exists a net I which is an extension of T
according to inheritance theory, and for which E N [TI1R = [I]R,

e For each extension I of T according to inheritance theory, there is a set E which is an
extension of I'? according to default logic, and for which En [T = [T]R

Evidently, the first of these clauses says that the translation is sound with respect to inheritance
theory; the second says that it is complete. The restriction in each that En [[]R = [T1% gives
us the appropriate idea of correspondence between default extensions and inheritance extensions.
We will discuss the Nixon diamond T's as an example. Here Ur, = {n}, so I'f is the default
theory
{{@n, Rn}, {(Qn: Pn/Pn),(Rn ~Pn/-Pn)}}

According to default logic, this theory has two extensions: Ey = Th(Qn,Rn,Pn) and E, =
Th{Qn, Rn,-Pn). In addition, the net I's itself has two extensions according to inheritance theory,
IFsi={n = ¢n—rn - p}and Iy, = {n = ¢,n = r,n 4 p}. In the case of this net,
Ts={n—qn—rn-— 1 4 p}. So each of the two extensions of the default translation
do correspond appropriately to an extension of the original inheritance net—and vice versa. For
example, E; N [T;18 = [D5,]1R.

So the simple translation described above indeed works well for the Nixon Diamond. It also
works (of course), for any net containing no conflicts at all, and (interestingly) for nets containing
only diamond-like conflicts, no matter how deeply nested. It fails, however, for nets in which
preemption comes into play.

Consider I'g = {a—»p,p—»q,py‘-).s,q-—-»r,r——»s}.

Ts

Here I'f is

{{Pa},{(Pa: Qa/Qa),(Pa:~Sa/~Sa), (Qa: Ra/Ra),(Ra: Sa/Sa)}}.
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This default theory has two extensions. But the net ['s itself has only one. One of the two default
extensions does not correspond (as above) to the inheritance extensions. So the translation is not
sound with respect to inheritance theory. This is the problem that Etherington’s more complex
solution is designed to solve.

In both inheritance theory and default logic, under the standard translation defined above,
we can derive the statements Pa and Ra. At this point, however, we have a choice in default
logic, which we does not arise in inheritance theory. We can either use Pa together with the
rule (Pa : ~Sa/~Sa) to get ~Sa, or we can use Ra together with the rule (Ra : Sa/Sa) to get
Sa. Intuitively, we want to choose the first option, and inheritance theory forces this choice in its
treatment of preemption. What forces us, in inheritance theory, to chain off P rather than Q is
the interaction of two features of the definition. (1) In inheritance theory, we are able to derive
links representing new defaults, as in this case, we can derive the link p — r. (2) Given a conflict
between the results of applying two equally applicable original defaults—in this case the P-default
and the R-default—inheritance theory uses the derived defaults to decide between them.

Now, none of this can be done in default logic, because the logic does not allow us to derive
new defaults. Therefore, Etherington has to find some other way of forcing the selection of the
P-rule over the R-rule. His solution is to explicitly alter the R-rule so that it cannot apply in cases
in which the P-rule can also apply. The new rule is

(Ra: [Sa A ~Pal/Sa),

and of course, when the original translation of the R-rule is replaced by the new one, the resulting
theory does have only one extension, which does correspond faithfully to the extension of the
network. (The new theory will be semi-normal, no longer normal; but Etherington’s results about
ordered default theories guarantee that it will have an extension.)

However, this solution is not ideal, for at least the following reasons.

(1) The mapping of nets into semi-normal default theories has only been presented by examples;
we have not yet seen a general translation scheme. We need a procedure for translating any net I’
into a semi-normal theory T'E. And for each net, the translation must be adequate, in the sense
we have described.

A major obstacle in working out such a mapping is that subsumption is not ectension invariant.

Whether one statement represents more specific information than another in a given extension,

depends on what additional statements are present in that extension. A statement can represent-

more specific information than another in one extension, but not in every extension.
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In inheritance theory, the different specificity relations among statements in different extensions

. can be computed along with the extensions themselves, varying from one extension to another.

Thus, inheritance theory naturally gives us three extensions in this net. (See [24] for details.)

However, if one tries to map a network into a seminormal default theory, the different specificity
relations among statements in different extensions have to be encoded into the statement of the
default rules from the start. Ask youself: “Is the P-rule in I'; more specific than the Q-rule or
not?” That is, should the Q-rule be translated simply as

(Qa: Ra/Ra),
which would put P on a par with Q, or should it be translated as
(Qa: [Ra A-Pal/Ra)

which would give P priority? The answer is that neither translation is correct! According to the
view of preemption adopted in inheritance theory, P turns out to be more specific than Q just in
case one choses a — p — ¢ — u over the competing a — P — 8 7 u. In order to translate this net
adequately into default logic, therefore, we would have to map the Q-rule (¢ — r) into something
like

(Qa: [RaA(Ua D -Pa)l/Ra),

which gives the P-rule priority in exactly those cases in which Ua holds—which is what is desired
in this particular net. Notice how, even in this simple case, it becomes complicated to encode the
different priority relations among different rules in different extensions into the initial statement of
those rules. Moreover, it is virtually impossible to derive the encoding without knowing what the
relevant set of extensions is going to be. And of course, if one already needs to precalculate the
set of extensions associated with a network in order to code it properly into its a default theory,
then there is only a very weak sense in which the resulting default theory can be said to “give the
meaning” of the network.
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{2) The translation is not modular. We want a uniform translation for each link, a translation
that is independent of the context in which the link occurs. Otherwise, updating a knowledge
base will become a very complicated operation. If the translation of any particular link cannot
be determined independently of the context in which it occurs, then when one updates a net by
adding a new link, it may be incorrect to update the translation by simply adding the translation
of this new link. The new link will alter the context in which the original links occur; and so the
translations of these links may have to be adjusted to reflect the change in context.

As an example, consider the translation given above of I's (the Nixon Diamond). Suppose we
update this net by adding to it the link ¢ — r. (Of course, it destroys the plausibility of the
original interpretation to suppose that Quakers are Republicans, but ignore that for now.) The
resulting net no longer has two extensions. But how should we update the default theory that
results from translating this net? It is not enough simply to add to the set of default rules the
natural translation of this new link—(Qn : Rn/Rn). If we did only that, the resulting default
theory would still have two extensions; so it would no longer be sound with respect to inheritance
theory. Instead, we have to realize that, in the new context, the original translation of r — pis no
longer adequate; because of the addition of the new link, the translation of this original link must
now be changed to (Rn : [-Pn A ~Qn]/~Pn).

As you can see, the update operation defined on the net was quite simple; it was just a matter
of adding a new link. However, because the translation is non-modular, the corresponding update
operation in the default theory is more complicated; in addition to adding the translation of the
new link, it is necessary to adjust the translation of links already present to fit the new context.
And, of course, in general the adjustments can become much more complex.

Here, we have given space only to Etherington’s approach, and have summarized the difficulties.
The points we make here are treated in much more detail, with more examples, and are generalized

to a variety of translation proposals, in [12].
6.2. Where we stand

What we've said so far applies only to the attempts to translate credulous inheritance theories.
And this is the easiest translation task, because of the credulous bias of most current nonmonotonic
logics (and of default logic in particular). Here, as noted, the logic works well in the case of
diamond-like conflicts—serious difficulties do not arise until one tries to incorporate preemption.
In the case of skeptical inheritance theories, the logics do not even agree in the case of diamond-like
conflicts; the only case in which there is a coincidence is with networks that are entirely conflict
free.

The problems we have found in Etherington’s program were meant to illustrate general difficul-
ties facing a number of different analyses of inheritance in terms of standard nonmonotonic logics.
For example, the analysis in [18] (which also uses default logic) is also non-modular—although
here, the problem does not arise in the (nonnormal) default rules that Morris uses, but in the
additional axioms he has to add in order to make his default rules have the right effect. Proposals
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relying on prioritized circumscription also run into similar problems: priorities among predicates
have to be fixed in advance; so there is no way of allowing the priorities to vary from minimal
mode] to minimal model.?

In any event, we expect the next few years of research to produce formally adequate solutions
to the translation problem. Qur attempt in the present paper to build more flexible models based
on the four-valued interpretations that characterize nonmonotonic inheritance is an idea that in
some ways is like Lifshitz’ proposal, and that certainly is motivated by similar considerations. And
a number of new formalisms are emerging for nonmonotonic reasoning which attempt to mix the
expressive power of full default logic with the implicit preference for more specific arguments found
in inheritance theory. Among these are the systems of Delgrande, Geffner and Pearl, Horty, Loui,
and Poole.®

Horty has recently proved that there is an adequate and modular translation of certain inhers-
tance theories into the logic he describes; and also, that this logic is, in a certain sense, sound with
respect to default logic. As far as we know, no exact correspondence has yet been found between
inheritance theory and the systems of Delgrande, Geffner and Pearl, Loui, and Poole. But things
are moving very quickly in this area of research, and we should soon Be in a position to debate the
merits of several formally correct solutions.

But the problems we have raised here are real, and can only be overcome by modifications in
the logics that run deep. In general, the trend seems to be one that was foreseen long ago by
Jon Doyle;'° to replace the descriptive, truth-oriented bias of familiar logical theories with more
normative, value-oriented conceptions, such as the idea of priorities on reasons for conclusions.

Speaking now as logicians, we welcome this development. Of course, logic has its own internal
research momentum, but like any other living field of inquiry it can always use new ideas. Since
the theories that are emerging from the theoretical AL community are rigorously formulated and

computationally significant, they may well prove to be valuable and interesting additions to the
world of logic.
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®In [16] there is a new formulation of prioritized circumscription, which allows one to reason about priorities within
the theory. This is the kind of apparatus that is needed to solve the translation problem; we are not yet familiar
enough with the details of Lifshits’ Proposal to see if in fact it allows a solution to the problem.

*See (2], [7], [13], (17), [19).
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