Homework Agenda

• HW0 – graded
 - http://grades.cs.umd.edu
• Comments from the TA
• HW1 – due today!
 - Observations
• HW2 – assigned Thursday, due next Thursday 9/29
• Questions, comments, concerns?
• Language Models
 - Part-of-speech Tagging

Language Models

• Higher n-gram LM Generators
 - Generated by a unigram LM:
 - because regime more likely where clothing for racial ‘s politicians %, who
 - ‘s <unk> with it, human economic some into unit Clark <unk> for ‘s to - They that
 - securities East % compared <unk> As The to in Ivan its 7.20 at measures 17
 - seven prediction on 43-ball in . the and Lipton Most % precarious in
 - Generated by a bigram LM:
 - But he has eaten .
 - When it first time it is to issue
 - In Direct disaster closed yesterday ‘s $ 2,000 orders in a percentage of fighting
 quality output.
 - Generated by a trigram LM:
 - Imperial troublesome Oakland .) .
 - So what ‘s capital stock market .
 - The company noted that the state can be discussed researchers have run last long
 impasse between 1986 and end of last year .
 - State-of-the-art

Higher n-gram LM Generators

• Generated by a (smoothed) trigram LM:
 - Imperial troublesome Oakland .) .
 - So what ‘s capital stock market .
 - The company noted that the state can be discussed researchers have run last long
 impasse between 1986 and end of last year .
• Generated by an unsmoothed trigram LM:
 - He adds that spending on the <unk> are beginning to produce a staunchly
 conservative younger generation
 - In Japan , which would have to be proved right – he tried to rally support in the junk
 bond market
 - So why smooth?
 - LMs as acceptors

Agenda

• Language Models
• Higher n-gram models
• Smoothing
• Combining estimators
• Backoff
• OOVs
• Evaluating LMs
• Part-of-speech Tagging
Combining Estimators

- Three major combination techniques:
 - Simple Linear Interpolation of MLEs
 - Katz Backoff
 - Kneser-Ney Smoothing

Linear MLE Interpolation

- Mix higher n-gram models with lower n-gram models
- To offset sparsity

\[P(w_k | w_{k-2} w_{k-1}) = \lambda_1 P(w_k | w_{k-2} w_{k-1}) + \lambda_2 P(w_k | w_{k-1}) + \lambda_3 P(w_k) \]
\[0 \leq \lambda_i \leq 1 \sum \lambda_i = 1 \]

Backoff Models

- Consult higher n-gram models first, then if counts are 0, back off to a lower-order model (instead of consulting all models at the same time)
- Continue "backing off" until you reach a model that has non-zero counts
- Need to incorporate discounting as a part of the algorithm
- Because if we back off to a lower-order model without taking something from the higher-order models, we are adding extra mass!

Katz Backoff

Given a trigram “x y z”

Why \(P_{GT} \) instead of \(P_{MLE} \)? To reserve probability for lower-order models.

\[P_{katz}(z | x, y) = \begin{cases} P_{GT}(z | x, y), & \text{if } C(x, y, z) > \zeta \\ \alpha(z | y) P_{katz}(z | y), & \text{otherwise} \end{cases} \]

Why \(\alpha ' s \)? So lower-order models’ mass sums to what we stole by discounting.

Absolute & Kneser-Ney Smoothing

- Observation:
 - Average Good-Turing discount for \(r \geq 3 \) is largely constant over \(r \)
 - So, why not simply subtract a fixed discount \(D \) (\(\leq 1 \)) from non-zero counts?
- Absolute Discounting: discounted bigram model, back off to MLE unigram model
- Kneser-Ney: Interpolate discounted model with a special “continuation” unigram model

Kneser-Ney Smoothing

- Intuition
 - Lower order model important only when higher order model is sparse
 - Should be optimized to perform in such situations
- Example
 - \(C(\text{Los Angeles}) = C(\text{Angeles}) = M; M \) is very large
 - “Angeles” always and only occurs after “Los”
 - Unigram MLE for “Angeles” will be high and a normal backoff algorithm will likely pick it in any context
 - It shouldn’t, because “Angeles” occurs with only a single context in the entire training data
Kneser-Ney Smoothing

- Kneser-Ney: Interpolate discounted model with a special "continuation" unigram model
- Based on appearance of unigrams in different contexts
- Excellent performance, state of the art

\[P_{KN}(w_k|w_{k-1}) = \frac{C(w_{k-1}w_k) - D}{C(w_{k-1})} + \beta(w_k)P_{CONT}(w_k) \]

\[P_{CONT}(w_k) = \frac{N(w_k)}{\sum_{w'} N(w')} \]

\[N(w) = \text{number of different contexts } w \text{ has appeared in} \]

- Why interpolation, not backoff?

Modeling OOVs

- Take vocabulary list, truncate at some reasonable number of words
- Or frequency of words: i.e., remove words that occur fewer than 5 times

- During training:
 - Consider any words that don’t occur in this list as unknown or out of vocabulary (OOV) words
 - Replace all OOVs with the special word <UNK>
 - Treat <UNK> as any other word to count and estimate probabilities

- During testing:
 - Replace unknown words with <UNK> and use LM
 - Test set characterized by OOV rate (percentage of OOVs)

Better Modeling of OOVs?

- Orthography
 - -ing words vs -ion words
 - Stemming

- Surrounding context
 - Previous word, previous two words
 - Next word, next two words
 - Sentence position

Agenda

- Language Models
 - Smoothing
 - Combining estimators
 - Backoff
 - OOVs
 - Evaluating LMs: Perplexity
 - Part-of-speech Tagging

Evaluating LMs

- Why evaluate LMs?
 - For profit!
 - Intrinsic vs extrinsic evaluation

- Extrinsic
 - If I use LM, in my MT pipeline, do I do better than if I use LM_i?
 - Intrinsic: Perplexity
 - Evaluate against a test sentence
 - "How surprised are you on average by what comes next in the sentence?"
 - Lower is better. (Less surprised/better predictor.)

Computing Perplexity

- Given testset W with words \(w_1, ..., w_N \)
- Treat entire test set as one word sequence
- Perplexity is defined as the probability of the entire test set normalized by the number of words

\[PP(T) = P(w_1, ..., w_N)^{-1/N} \]

- Using the probability chain rule and (say) a bigram LM, we can write this as

\[PP(T) = \frac{1}{\prod_{i=1}^{N} P(w_i|w_{i-1})} \]

- A lot easier to do with log probs!
Practical Evaluation

- Typical range of perplexities on English text is 50-1000
- Closed vocabulary testing yields much lower perplexities
- Testing across genres yields higher perplexities
- Can only compare perplexities if the LMs use the same vocabulary

<table>
<thead>
<tr>
<th>Order</th>
<th>Unigram</th>
<th>Bigram</th>
<th>Trigram</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>962</td>
<td>170</td>
<td>109</td>
</tr>
</tbody>
</table>

Training: N=38 million, V~20000, open vocabulary, Katz backoff where applicable
Test: 1.5 million words, same genre as training

Typical “State of the Art” LMs

- Training
 - N = 10 billion words, V = 300k words
 - 4-gram model with Kneser-Ney smoothing
- Testing
 - 25 million words, OOV rate 3.8%
 - Perplexity ~50
- For MT systems at UMD
 - 5-gram model with Kneser-Ney smoothing
 - Computationally, required more memory than we had!

Agenda: LM Summary

- Language Models
 - Assign probabilities to sequences of tokens
 - N-gram language models
 - Consider only limited histories
 - Data sparsity
 - Smoothing to the rescue!
 - Variations on a theme: different techniques for redistributing probability mass
 - Important: make sure you still have a valid probability distribution!
 - Evaluating LMs

Agenda

- Language Models
 - Smoothing
 - Combining estimators
 - Backoff
 - OOVs
 - Evaluating LMs: Perplexity
- Part-of-speech Tagging

Part-of-speech (POS) Tagging

- "Classes" of words
- 8 parts of speech: noun, verb, pronoun, preposition, adverb, conjunction, participle, article
 - Verbs are actions
 - Adjectives are properties
 - Nouns are things
 - Mad Libs??

Source: Calvin and Hobbes
Better Modeling of OOVs?

- Orthography
 - *-ing words vs *-ion words
 - stemming
- Surrounding context
 - Previous word, previous two words
 - Next word, next two words
 - Sentence position
- What happens if we add POS-tag information?

How do we define POS?

- (Next time!!)