Computational Linguistics 1
CMSC/LING 723, LBSC 744

Kristy Hollingshead Seitz
Institute for Advanced Computer Studies
University of Maryland
Lecture 19: 8 & 10 November 2011

Agenda
• Midterms handed back today
 • Discussion
• Questions, comments, concerns?
• Evaluating parser accuracy for HW5
• Finish context-sensitive grammars discussion
 • Combinatory Categorial Grammars (CCG)
• Semantics
 • Meaning
 • Word sense
 • Semantic similarity

Midterm Discussion
• Follow directions!
 • name on every page
• Counting bigrams
 • Don’t count across sentences
 • Include <s> and </s> as tokens
• Function composition
 • FST2 @ FST1 = FST2(FST1(input))
 • epsilon transitions
 • mismatch of output to input (e.g., “BROWN”)
• Viterbi & Forward
 • show your work
 • include <s> transition
 • assumptions for b_{in}
 • Perplexity: N=4

Evaluating Parses
• Unlike in tagging, parsing results in a variable number of tags being annotated
 • Example: systems analyst arbitration chef
 • NP (NP (NNS systems) (NN analyst)) (NN arbitration) (NN chef))
 • How do we score a parse relative to the true parse?
 • Need to penalize a parser that guesses too many constituents, as well as a parser that guesses too few
 • Guessing both label and span of constituent

Precision and Recall
• Each constituent has a label and a span
 • For each constituent in the guessed parse, we can try to match it to a constituent in the true parse with the same label and span
 • Each constituent in the true parse can only match with one in the guessed parse
 • A constituent is counted correct if it matches
 • A parser has high precision if most of the constituents it guessed were correct
 • labeled precision (LP) = Number of constituents correct
 • A parser has high recall if it guesses most of the true constituents correctly
 • labeled recall (LR) = Number of constituents correct

F-score
• Suppose we don’t care about recall...how could we get very high precision (nearly 100%)?
 • Put just a flat S category spanning the whole string
 • Precision would be high; recall low
• Suppose we don’t care about precision...how could we get very high recall (100%)?
 • Guess every category for every span
 • Recall would be high; precision low
• Must measure both for evaluation purposes
• For those who insist on a single score, the F-measure is common:
 \[
 F = \frac{2(LP)(LR)}{LR + LP}
 \]
Agenda

• Midterms handed back today
 • Discussion
• Questions, comments, concerns?
• Evaluating parser accuracy for HW5
• Finish context-sensitive grammars discussion
 • Combinatory Categorial Grammars (CCG)
• Semantics
 • Meaning
 • Word sense
 • Semantic similarity

What’s meaning?
• Let’s start at the word level…
• How do you define the meaning of a word?
• Look it up in the dictionary!

right adj. located nearer the right hand esp. being on the right when facing the same direction as the observer.
left adj. located nearer to this side of the body than the right.
red n. the color of blood or a ruby.
blood n. the red liquid that circulates in the heart, arteries and veins of animals.

Well, that really doesn’t help…

Word Senses
• “Word sense” = distinct meaning of a word
• Same word, different senses
 • Homonyms (homonymy): unrelated senses; identical orthographic form is coincidental
 • Example: “financial institution” vs. “side of river” for bank
 • Polysemes (polysemy): related, but distinct senses
 • Example: “financial institution” vs. “sperm bank”
 • Metonyms (metonymy): “stand in”, technically, a sub-case of polysemy
 • Examples: author for works or author, building for organization, capital city for government
• Different word, same sense
 • Synonyms (synonymy)

Approaches to Meaning
• Truth conditional
• Semantic network

Just to confuse you…
• Homophones: same pronunciation, different orthography, different meaning
 • Examples: would/wood, to/too/two
• Homographs: distinct senses, same orthographic form, different pronunciation
 • Examples: bass (fish) vs. bass (instrument)
Relationship Between Senses

- IS-A relationships
 - From specific to general (up): hypernym (hypernymy)
 - Example: bird is a hypernym of robin
 - From general to specific (down): hyponym (hyponymy)
 - Example: robin is a hyponym of bird
- Part-Whole relationships
 - wheel is a meronym of car (meronymy)
 - car is a holonym of wheel (holonymy)

What is WordNet?

- A large lexical database developed and maintained at Princeton University
- Includes most English nouns, verbs, adjectives, adverbs
- Electronic format makes it amenable to automatic manipulation: used in many NLP applications
- “WordNets” generically refers to similar resources in other languages

WordNet: History

- Research in artificial intelligence:
 - How do humans store and access knowledge about concept?
 - Hypothesis: concepts are interconnected via meaningful relations
 - Useful for reasoning
- The WordNet project started in 1986
 - Can most (all?) of the words in a language be represented as a semantic network where words are interlinked by meaning?
 - If so, the result would be a large semantic network...

Synonymy in WordNet

- WordNet is organized in terms of “synsets”
 - Unordered set of (roughly) synonymous “words” (or multi-word phrases)
 - Each synset expresses a distinct meaning/concept

WordNet: Example

Noun
- pipe, tobacco pipe (a tube with a small bowl at one end; used for smoking tobacco)
- (pipe, pipage, piping) (a long tube made of metal or plastic that is used to carry water or oil or gas etc.)
- (pipe, tube) (a hollow cylindrical shape)
- (pipe) (a tubular wind instrument)
- (organ pipe, pipe, pipework) (the flues and stops on a pipe organ)

Verb
- shriek, shrill, pipe up, pipe (utter a shrill cry)
- (pipe) (transport by pipeline) “pipe oil, water, and gas into the desert”
- (pipe) (play on a pipe) “pipe a tune”
- (pipe) (trim with piping) “pipe the skirt”
The “Net” Part of WordNet

WordNet: Size

<table>
<thead>
<tr>
<th>Part of speech</th>
<th>Word form</th>
<th>Synsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>117,798</td>
<td>82,115</td>
</tr>
<tr>
<td>Verb</td>
<td>11,529</td>
<td>13,767</td>
</tr>
<tr>
<td>Adjective</td>
<td>21,479</td>
<td>18,156</td>
</tr>
<tr>
<td>Adverb</td>
<td>4,481</td>
<td>3,621</td>
</tr>
<tr>
<td>Total</td>
<td>155,287</td>
<td>117,659</td>
</tr>
</tbody>
</table>

Word Sense Disambiguation

- Task: automatically select the correct sense of a word
 - Lexical sample
 - All-words
- Theoretically useful for many applications:
 - Semantic similarity (remember from last time?)
 - Information retrieval
 - Machine translation
 - ...
- Solution in search of a problem? Why?

How big is the problem?

- Most words in English have only one sense
 - 62% in Longman’s Dictionary of Contemporary English
 - 79% in WordNet
- But the others tend to have several senses
 - Average of 3.83 in LDOCE
 - Average of 2.96 in WordNet
- Ambiguous words are more frequently used
 - In the British National Corpus, 84% of instances have more than one sense
 - Some senses are more frequent than others

Ground Truth

- Which sense inventory do we use?
- Issues there?
- Application specificity?

Corpora

- Lexical sample
 - line-hard-serve corpus (4k sense-tagged examples)
 - interest corpus (2,369 sense-tagged examples)
 - ...
- All-words
 - SemCor (234k words, subset of Brown Corpus)
 - Senseval-3 (2081 tagged content words from 5k total words)
- Observations about the size?
Evaluation

• Intrinsic
 • Measure accuracy of sense selection w.r.t. ground truth
• Extrinsic
 • Integrate WSD as part of a bigger end-to-end system, e.g., machine translation or information retrieval
 • Compare ±WSD

End of lecture, 8 Nov.

Agenda

• HW4 handed back today
 • Grades are reported out of 100, so -20 for true grade
• Questions, comments, concerns?
 • Semantics
 • Meaning
 • Word sense disambiguation
 • Semantic similarity

Word Sense Disambiguation (WSD)

• Take a word in context and resolve which sense of the word is being used
 • Example: He is washing the dishes versus He is cooking three dishes
• In some past competitions, just given verb and object pairs, goal to disambiguate object
 • Selectional restrictions of verbs drive disambiguation
 • (How do we learn selectional restrictions?)

Evaluation of WSD

• Different words have a different degree of difficulty
 • As far as I know, aardvark has one sense
 • The word goal has many senses
• Some differences in senses are relatively subtle
 • e.g. financial bank versus blood bank versus river bank
• How to provide partial credit for ‘close’ answers
• Senseval is a competition that has addressed many of these questions

Baseline + Upper Bound

• Baseline: most frequent sense
 • Equivalent to “take first sense” in WordNet
 • Does surprisingly well!
 • Upper bound:
 • Fine-grained WordNet sense: 75-80% human agreement
 • Coarser-grained inventories: 90% human agreement possible
 • What does this mean?
WSD Approaches

- Depending on use of manually created knowledge sources
 - Knowledge-lean
 - Knowledge-rich
- Depending on use of labeled data
 - Supervised
 - Semi- or minimally supervised
 - Unsupervised

Lesk’s Algorithm

- Intuition: note word overlap between context and dictionary entries
 - Unsupervised, but knowledge rich

The bank can guarantee students will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities.

WordNet

Lesk’s Algorithm

- Simplest implementation:
 - Count overlapping content words between glosses and context
- Lots of variants:
 - Include the examples in dictionary definitions
 - Include hypernyms and hyponyms
 - Give more weight to larger overlaps (e.g., bigrams)
 - Give extra weight to infrequent words (e.g., idf weighting)
 - …
 - Works reasonably well!

Supervised WSD

- WSD as a supervised classification task
 - Train a separate classifier for each word
- Three components of a machine learning problem:
 - Training data (corpora)
 - Representations (features)
 - Learning method (algorithm, model)

Features

- Possible features
 - POS and surface form of the word itself
 - Surrounding words and POS tag
 - Positional information of surrounding words and POS tags
 - Same as above, but with n-grams
 - Grammatical information
 - …
 - Richness of the features?
 - Richer features = ML algorithm does less of the work
 - More impoverished features = ML algorithm does more of the work

Classifiers

- Once we cast the WSD problem as supervised classification, many learning techniques are possible:
 - Naïve Bayes (the thing to try first)
 - Decision lists
 - Decision trees
 - MaxEnt
 - Support vector machines
 - Nearest neighbor methods
 - …
Classifiers Tradeoffs

- Which classifier should I use?
- It depends:
 - Number of features
 - Types of features
 - Number of possible values for a feature
 - Noise
 - …
- General advice:
 - Start with Naïve Bayes
 - Use decision trees/lists if you want to understand what the classifier is doing
 - SVMs often give state of the art performance
 - MaxEnt methods also work well

Naïve Bayes

- Extract features Φ, predict word based on features
- Common features: POS-tag and word collocations, word co-occurrence
- …
- Simplest approach (common baseline):
 - Given a set of senses $s \in S$, pick the sense that is most probable given the context (context represented by feature vector) $P(s|\Phi)$
 - Problem: data sparsity!

The “Naïve” Part

- Feature vectors are too sparse to estimate directly
- So, assume features are conditionally independent given the word sense
- This is naïve because?
- Putting everything together:
 $$\hat{s} \approx \arg\max_{s \in S} \prod_{\phi \in \Phi} P(\phi|s) P(s)$$

Naïve Bayes: Training

- How do we estimate the probability distributions?
 $$\hat{s} = \arg\max_{s \in S} \prod_{\phi \in \Phi} P(\phi|s)$$
 - Maximum-Likelihood Estimates (MLE):
 - $\text{count}(s,w) / \text{count}(w)$
 - $\text{count}(f,s) / \text{count}(s)$
- What else do we need to do?
 - Well, how well does it work? (later…)

Decision Lists

- Used for binary classification problems, e.g. bass¹ (fish) versus bass² (guitar)
- A list like a case statement in programming:
 - test condition 1; if true, set sense and break
 - otherwise, test condition 2, …
- Learn by generating and ordering tests
 - Order by, e.g., log likelihood ratio

Decision List: Example

- Example decision list, discriminating between bass¹ (fish) and bass² (music):
 - Context | Sense
 - fish in z\# words | FISH
 - striped bass | FISH
 - guitar in z\# words | MUSIC
 - bass pla\^ er | MUSIC
 - piano in z\# words | MUSIC
 - sea bass | FISH
 - play bass | MUSIC
 - river in z\# words | FISH
 - on bass | MUSIC
 - bass are | FISH
Decision List: Example

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>fish within window</td>
<td>base1</td>
</tr>
<tr>
<td>striped bass</td>
<td>base1</td>
</tr>
<tr>
<td>guitar within window</td>
<td>base2</td>
</tr>
<tr>
<td>bass player</td>
<td>base3</td>
</tr>
<tr>
<td>piano within window</td>
<td>base3</td>
</tr>
<tr>
<td>tenor within window</td>
<td>base3</td>
</tr>
<tr>
<td>sea bass</td>
<td>base1</td>
</tr>
<tr>
<td>piper/V basses</td>
<td>base1</td>
</tr>
<tr>
<td>river within window</td>
<td>base2</td>
</tr>
<tr>
<td>violin within window</td>
<td>base2</td>
</tr>
<tr>
<td>salmon within window</td>
<td>base1</td>
</tr>
<tr>
<td>on bass</td>
<td>base1</td>
</tr>
<tr>
<td>bass are</td>
<td>base1</td>
</tr>
</tbody>
</table>

Building Decision Lists

- Simple algorithm:
 - Compute how discriminative each feature is:
 \[\log \left(\frac{P(S | f)}{P(S)} \right) \]
 - Create ordered list of tests from these values
 - Limitation?
 - How do you build n-way classifiers from binary classifiers?
 - One vs. rest (sequential vs. parallel)
 - Another learning problem

Well, how well does it work? (later…)

Decision Trees

- Instead of a list, imagine a tree…

<table>
<thead>
<tr>
<th>Context</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>fish in zk words</td>
<td>FISH</td>
</tr>
<tr>
<td>striped bass</td>
<td>FISH</td>
</tr>
<tr>
<td>guitar in zk words</td>
<td>MUSIC</td>
</tr>
<tr>
<td>bass player</td>
<td>MUSIC</td>
</tr>
<tr>
<td>piano in zk words</td>
<td>FISH</td>
</tr>
<tr>
<td>sea bass</td>
<td>FISH</td>
</tr>
<tr>
<td>play bass</td>
<td>MUSIC</td>
</tr>
<tr>
<td>river in zk words</td>
<td>FISH</td>
</tr>
<tr>
<td>on bass</td>
<td>MUSIC</td>
</tr>
<tr>
<td>bass are</td>
<td>FISH</td>
</tr>
</tbody>
</table>

Using Decision Trees

- Given an instance (= list of feature values)
 - Start at the root
 - At each interior node, check feature value
 - Follow corresponding branch based on the test
 - When a leaf node is reached, return its category

Building Decision Trees

- Basic idea: build tree top down, recursively partitioning the training data at each step
 - At each node, try to split the training data on a feature (could be binary or otherwise)

- What features should we split on?
 - Small decision tree desired
 - Pick the feature that gives the most information about the category

- Example: 20 questions
 - I’m thinking of a number from 1 to 1,000
 - You can ask any yes no question
 - What question would you ask?

Evaluating Splits via Entropy

- Entropy of a set of events \(E \):
 \[H(E) = - \sum_c P(c) \log_2 P(c) \]
 - Where \(P(c) \) is the probability that an event in \(E \) has category \(c \)
- How much information does a feature give us about the category (sense)?
 - \(H(E|f) \) = entropy of event set \(E \) once we know the value of feature \(f \)
 - Information Gain: \(G(E, f) = H(E) - H(E|f) \) = amount of new information provided by feature \(f \)
 - Split on feature that maximizes information gain

Well, how well does it work? (later…)
WSD Accuracy

- Generally:
 - Naive Bayes provides a reasonable baseline: ~70%
 - Decision lists and decision trees slightly lower
 - State of the art is slightly higher
- However:
 - Accuracy depends on actual word, sense inventory, amount of training data, number of features, etc.
 - Remember caveat about baseline and upper bound

WSD with Parallel Text

- But annotations are expensive!
- What’s the “proper” sense inventory?
 - How fine or coarse grained?
 - Application specific?
- Observation: multiple senses translate to different words in other languages!
 - A “bill” in English may be a “pico” (bird jaw) in or a “cuenta” (invoice) in Spanish
 - Use the foreign language as the sense inventory!
 - Added bonus: annotations for free! (Byproduct of word-alignment process in machine translation)

Beyond Lexical Semantics

Syntax-Semantics Pipeline

- Interaction between lexical semantic and syntax

Semantic Attachments

- Basic idea:
 - Associate λ-expressions with lexical items
 - At branching node, apply semantics of one child to another (based on syntactic rule)
 - Refresher in λ-calculus…

Augmenting Syntactic Rules

<table>
<thead>
<tr>
<th>Grammar Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>S —> NP VP</td>
</tr>
<tr>
<td>NP —> Det Nominal</td>
</tr>
<tr>
<td>NP —> ProperNoun</td>
</tr>
<tr>
<td>Nominal —> Noun</td>
</tr>
<tr>
<td>VP —> Verb</td>
</tr>
<tr>
<td>VP —> Verb NP</td>
</tr>
<tr>
<td>Det —> every</td>
</tr>
<tr>
<td>Det —> a</td>
</tr>
<tr>
<td>Noun —> restaurant</td>
</tr>
<tr>
<td>ProperNoun —> Matthew</td>
</tr>
<tr>
<td>ProperNoun —> Franco</td>
</tr>
<tr>
<td>Verb —> closed</td>
</tr>
<tr>
<td>Verb —> opened</td>
</tr>
</tbody>
</table>
Semantic Analysis: Example

$$\forall x \exists y \text{ Restaurant}(x) \Rightarrow Q(x) \quad \lambda x \exists y \text{ Closed}(e) \wedge \text{ClosedThing}(e, x)$$

$\exists P \forall x \text{ Restaurant}(x) \Rightarrow Q(x)$

Complexities

- Oh, there are many...
- Classic problem: quantifier scoping
- Every restaurant has a menu
- Issues with this style of semantic analysis?

Semantics in NLP Today

- Can be characterized as "shallow semantics"
- Verbs denote events
 - Represent as "frames"
- Nouns (in general) participate in events
 - Types of event participants = "slots" or "roles"
 - Depending on the linguistic theory, roles may have special names: agent, theme, etc.
- Semantic analysis: semantic role labeling
 - Automatically identify the event type (i.e., frame)
 - Automatically identify event participants and the role that each plays (i.e., label the semantic role)

Semantic Role Labeling: Thematic Roles

- Syntactically, verbs call for arguments
- The arguments play semantic roles, dictated by the verb
- For example, the dog bit the postman
- the dog is the bit er
- the postman is the bit ee
- Range of complicated roles that arise

Common Thematic Roles

<table>
<thead>
<tr>
<th>Thematic Role</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT</td>
<td>The volitional cause of an event</td>
</tr>
<tr>
<td>EXPERIENCER</td>
<td>The experiencer of an event</td>
</tr>
<tr>
<td>FORCE</td>
<td>The non-volitional cause of an event</td>
</tr>
<tr>
<td>THEMES</td>
<td>The participant most directly affected by an event</td>
</tr>
<tr>
<td>RESULT</td>
<td>The end product of an event</td>
</tr>
<tr>
<td>CONCEPT</td>
<td>The proposition or content of a propositional event</td>
</tr>
<tr>
<td>INSTRUMENT</td>
<td>An instrument used in an event</td>
</tr>
<tr>
<td>BENEFICIARY</td>
<td>The beneficiary of an event</td>
</tr>
<tr>
<td>SOURCE</td>
<td>The origin of the object of a transfer event</td>
</tr>
<tr>
<td>GOAL</td>
<td>The destination of an object of a transfer event</td>
</tr>
</tbody>
</table>

Themetic Roles: Examples

<table>
<thead>
<tr>
<th>Thematic Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT</td>
<td>The waiter spilled the soup.</td>
</tr>
<tr>
<td>EXPERIENCER</td>
<td>John has a headache.</td>
</tr>
<tr>
<td>FORCE</td>
<td>The wind blows debris from the mall into our yards.</td>
</tr>
<tr>
<td>THEME</td>
<td>Only after Benjamin Franklin broke the ice...</td>
</tr>
<tr>
<td>RESULT</td>
<td>The French government has built a regulation-size baseball diamond...</td>
</tr>
<tr>
<td>CONTENT</td>
<td>Mona asked “You met Mary Ann at a supermarket”?</td>
</tr>
<tr>
<td>INSTRUMENT</td>
<td>He turned to poaching catfish, stunning them with a shocking device...</td>
</tr>
<tr>
<td>BENEFICIARY</td>
<td>Whenever Ann Callahan makes hotel reservations for her boss...</td>
</tr>
<tr>
<td>SOURCE</td>
<td>I flew in from Boston.</td>
</tr>
<tr>
<td>GOAL</td>
<td>I drove to Portland.</td>
</tr>
</tbody>
</table>
Constraints on Thematic Roles

1. Verbs impose constraints on what fills their roles
 - Refresh: selectional restrictions
2. Example: agent of *imagine* must be animate
3. These constraints can aid interpretation
 - John would like to eat downtown tonight
 - John would like to eat sushi tonight
4. In the case of violated constraints, features can be coerced, such as animacy
 - The thumbtack took revenge on the unruly poster

PropBank: Two Examples

1. agree.01
 - Arg0: Agreer
 - Arg1: Proposition
 - Arg2: Other entity agreeing
 - Example: \[\text{agree.01} \text{John} \text{agrees} \text{with Mary} \text{on everything}\]
2. fall.01
 - Arg1: Logical subject, patient, thing falling
 - Arg2: Extent, amount fallen
 - Arg3: Start point
 - Arg4: End point
 - Example: \[\text{fall.01} \text{Sales} \text{fell} \text{to $251.2 million} \text{from $278.7 million}\]

How do we do it?

1. Short answer: supervised machine learning
2. One approach: classification of each tree constituent
 - Features can be words, phrase type, linear position, tree position, etc.
 - Apply standard machine learning algorithms

Agenda

1. HW4 handed back today
 - Grades are reported out of 100, so -20 for true grade
2. Questions, comments, concerns?
3. Semantics
 - Meaning
 - Word sense disambiguation
 - Semantic similarity

Intuition of Semantic Similarity

Semantically close
- bank–money
- apple–fruit
- tree–forest
- bank–river
- pen–paper
- run–walk
- mistake–error
- car–wheel

Semantically distant
- doctor–beer
- painting–January
- money–river
- apple–penguin
- nurse–bottle
- pen–river
- clown–tramway
- car–algebra
Why?

- Meaning
 - The two concepts are close in terms of their meaning
- World knowledge
 - The two concepts have similar properties, often occur together, or occur in similar contexts
- Psychology
 - We often think of the two concepts together

Two Types of Relations

- Synonymy: two words are (roughly) interchangeable
- Semantic similarity (distance): somehow “related”
 - Sometimes, explicit lexical semantic relationship, often, not

Validity of Semantic Similarity

- Is semantic distance a valid linguistic phenomenon?
- Experiment (Rubenstein and Goodenough, 1965)
 - Compiled a list of word pairs
 - Subjects asked to judge semantic distance (from 0 to 4) for each of the word pairs
 - Results:
 - Rank correlation between subjects is ~0.9
 - People are consistent!

Compute Semantic Similarity?

- Task: automatically compute semantic similarity between words
- Theoretically useful for many applications:
 - Detecting paraphrases (i.e., automatic essay grading, plagiarism detection)
 - Information retrieval
 - Machine translation
 - …
- Solution in search of a problem?

Agenda: Summary

- Midterms handed back today
 - Discussion
- Questions, comments, concerns?
- Evaluating parser accuracy for HW5
- Finish context-sensitive grammars discussion
 - Combinatory Categorial Grammars (CCG)
- Semantics
 - Meaning
 - Word sense
 - Semantic similarity

Agenda

- HW4 handed back today
 - Grades are reported out of 100, so -20 for true grade
- Questions, comments, concerns?
- Semantics
 - Meaning
 - Word sense disambiguation
 - Semantic similarity
- HW5 due on Tuesday!