Discriminative Training
- Statistical model training involves maximizing some objective function
- For an HMM, we use maximum likelihood training
 - Maximize the probability of the training set
 - Reduction in errors is the true objective of learning
 - Another option is to try to directly optimize error rate or some other closely related objective
 - Consider not just truth, but also other candidates

Perceptron
- One approach that has been around since late 60s is the perceptron
- Basic idea:
 - Find the best scoring analysis (e.g. POS tag sequence)
 - Make its score lower, by penalizing its features
 - Make the score of the truth better, by rewarding its features
 - Go onto the next example

Formal Definition of Perceptron Algorithm
Formally, perceptron approach assumes:
- Training examples \((x_i, y_i)\) for \(i = 1 \ldots N\) where \(x_i\) is the input and \(y_i\) is the true output.
 - e.g. \((w_1, \ldots, w_n, t_1, \ldots, t_k)\) where \(t_1 \ldots t_k\) is the true tag sequence
- A function \(\text{GEN}\) which enumerates a set of candidates \(\text{GEN}(x)\) for an input \(x\).
 - e.g., run the tagger over input word sequence \(x\), to output tag-sequence candidates
- A representation \(\Phi\) mapping each \((x, y)\) \(\in X \times Y\) to a \(d\)-dimensional feature vector \(\Phi(x, y) \in \mathbb{R}^d\).
 - e.g., a vector of weights, one for each feature in \(\Phi\)

Perceptron Algorithm
- **Inputs:** Training examples \((x_i, y_i)\)
- **Initialization:** Set \(\alpha = 0\)
- **Algorithm:**
 - For \(t = 1 \ldots T, \ i = 1 \ldots N\)
 - Calculate \(z_i = \text{argmax}_{z \in \text{GEN}(x_i)} \Phi(x_i, z) \cdot \alpha\)
 - If \((z_i \neq y_i)\) then \(\alpha = \alpha + \Phi(x_i, y_i) - \Phi(x_i, z_i)\)
- **Output:** Parameters \(\alpha\)
Perceptron: Notes

- Because this technique is optimizing (sequence) error rate, it does not involve a normalization factor.
- Thus, it will overtrain,
 - i.e. it will do very well on the training set, but not so well on new data, like unsmoothed maximum likelihood.
 - Techniques exist for controlling overtraining, such as regularization, voting, and averaging.
 - Perceptron models outperform maximum likelihood–optimized models on a range of tasks.
 - POS-tagging, NP-chunking.

Conditional Random Fields (CRFs)

- The perceptron algorithm only pays attention to best-scoring (argmax) path.
- What if there were two top analyses, very close in score?
 - Should penalize features on both.
 - How do we allocate the penalty?
- CRFs are a way to do this, by optimizing the conditional log-likelihood of the truth.

CRF objective function

- Choose α to maximize the conditional log-likelihood of the training data:
 $$\text{LL}(\alpha) = \sum_{t=1}^{N} \log p_\theta(y_t|x_t) = \sum_{t=1}^{N} [\Phi(x_t, y_t) \cdot \alpha - \log Z(x_t, \alpha)]$$
- Use a zero-mean Gaussian prior on the parameters resulting in the regularized objective function:
 $$\text{LL}_R(\alpha) = \sum_{t=1}^{N} [\Phi(x_t, y_t) \cdot \alpha - \log Z(x_t, \alpha)] - \frac{||\alpha||^2}{2\sigma^2}$$
- Where the value σ is typically estimated on heldout data.

Formal Definition of CRFs

- Define a conditional distribution over the members of $\text{GEN}(x)$ for a given input x:
 $$p_\theta(y|x) = \frac{1}{Z(x, \alpha)} \exp (\Phi(x, y) \cdot \alpha)$$
- Where
 $$Z(x, \alpha) = \sum_{y \in \text{GEN}(x)} \exp (\Phi(x, y) \cdot \alpha)$$
- (Can be calculated with forward-backward algorithm!)

CRF Optimization

- The objective function is convex and there is a globally optimal solution.
- Can use general numerical optimization techniques to find the global optimum.
 - e.g. for a language modeling project we used a general limited memory variable metric method to optimize LL_R from a publicly available software library.
 - The optimizer needs the function value and the derivative (or gradient).

Agenda

- Homework
- Supervised Learning – Discriminative Training
 - Perceptron
 - CRFs
 - Features
- Midterm Review
Derivative of LL_R: Refresher

Remember the chain rule:
\[
\frac{df(g(x))}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}
\]
Also remember derivative of (natural) log:
\[
\frac{d \log(x)}{dx} = \frac{1}{x}
\]
And don’t forget the derivative of exp:
\[
\frac{d \exp(ax)}{dx} = a \exp(ax)
\]

Perceptron vs CRFs

- **Training time**
 - More expensive (calculating derivative) for CRFs...
 - ...but can be parallelized

- **Performance**
 - In Sha & Pereira, perceptron performance not statistically significantly different from CRF with same feature set

Features (Φ)

- Good feature sets matter a lot
- These discriminative methods allow for easy use of many features
 - Unlike HMM based methods
- Examples of feature sets

Agenda

- **Homework**
- **Supervised Learning – Discriminative Training**
 - Perceptron
 - CRFs
 - Features
- **Midterm Review**

Features for Shallow Parsing

<table>
<thead>
<tr>
<th>$c_{i-1}(y_i)$</th>
<th>$c(y_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = y_i$</td>
<td>$p + 1$</td>
</tr>
<tr>
<td>$p - 1$</td>
<td>$p - 1$</td>
</tr>
</tbody>
</table>

y_i is the class of w_i
t_i is the POS-tag of w_i
$\gamma_i = c_{i-1}, c_i$
e.g. Ill or Ko, but never Ol
$c(y_i) = c_i$

Sha & Pereira, 2003
Features for Tagging, & OOVs

Ratnaparkhi, 1993

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_i is not rare</td>
<td>$w_i = X$ & $l_i = 1$</td>
</tr>
<tr>
<td>w_i in case</td>
<td>X is prefix of w_i, $</td>
</tr>
<tr>
<td></td>
<td>X is suffix of w_i, $</td>
</tr>
<tr>
<td></td>
<td>w_i contains number & $l_i = 1$</td>
</tr>
<tr>
<td></td>
<td>w_i contains uppercase character & $l_i = 1$</td>
</tr>
<tr>
<td></td>
<td>w_i contains hyphen & $l_i = 1$</td>
</tr>
<tr>
<td>$\forall w_i$</td>
<td>$l_{i-1} = X$ & $l_i = 1$</td>
</tr>
<tr>
<td></td>
<td>$l_{i-1} = XY$ & $l_i = 1$</td>
</tr>
<tr>
<td></td>
<td>$l_{i-1} = X$ & $l_i = 1$</td>
</tr>
<tr>
<td></td>
<td>$l_{i-1} = X$ & $l_i = 1$</td>
</tr>
<tr>
<td></td>
<td>$l_{i-1} = X$ & $l_i = 1$</td>
</tr>
</tbody>
</table>

Table 1: Features on the current history h_i

Instantiated Features

<table>
<thead>
<tr>
<th>Word:</th>
<th>the stories about well-behaved communities and developers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag:</td>
<td>DT NNS IN JJ NN CC NNS</td>
</tr>
<tr>
<td>Position:</td>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

w_{i-1} = short	$l_{i-1} = 10$	
w_{i-2} = stories	$l_{i-2} = 10$	
w_{i-3} = the	$l_{i-3} = 10$	
w_{i-4} = well-behaved	$l_{i-4} = 10$	
w_{i-5} = communities	$l_{i-5} = 10$	
w_{i-6} = IN	$l_{i-6} = 10$	
w_{i-7} = NNS IN	$l_{i-7} = 10$	
prob(w_i	wo)	$l_{i-8} = 10$
prob(w_i	wo)	$l_{i-9} = 10$
prob(w_i	wo)	$l_{i-10} = 10$
w_i contains hyphen	$l_i = 12$	

Table 2: Sample Data

<table>
<thead>
<tr>
<th>Word:</th>
<th>the stories about well-behaved communities and developers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag:</td>
<td>DT NNS IN JJ NN CC NNS</td>
</tr>
<tr>
<td>Position:</td>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

w_{i-1} = short	$l_{i-1} = 10$	
w_{i-2} = stories	$l_{i-2} = 10$	
w_{i-3} = the	$l_{i-3} = 10$	
w_{i-4} = well-behaved	$l_{i-4} = 10$	
w_{i-5} = communities	$l_{i-5} = 10$	
w_{i-6} = IN	$l_{i-6} = 10$	
w_{i-7} = NNS IN	$l_{i-7} = 10$	
prob(w_i	wo)	$l_{i-8} = 10$
prob(w_i	wo)	$l_{i-9} = 10$
prob(w_i	wo)	$l_{i-10} = 10$
w_i contains hyphen	$l_i = 12$	

Table 3: Features Generated From h_i (for tagging short) from Table 2

Agenda

- Homework
- Supervised Learning – Discriminative Training
 - Perceptron
 - CRFs
 - Features
- Midterm Review

Midterm Topics

- Sequences and n-grams
- FSAs, FSTs
 - Construction
 - Composition
- Smoothing
 - Algorithms
 - Interpolation, Backoff
- HMMs
 - Tagging
 - Viterbi
 - Forward-Backward

Midterm Format

- Some short answer questions
- Some basic numerical computation
- Questions from the homeworks
- No programming

Ground rules:
- Work completely independently – no communication of any kind
- No communication with the TA or instructor
- Open book, open note. Not open internet, except for web pages explicitly linked from the class webpage.
- Turn in a hard copy on Tuesday October 25 (or earlier, to Kristy)
Agenda: Summary

- Supervised Learning – Discriminative Training
 - Perceptron
 - CRFs
 - Features
- Midterm Review