Agenda

- Homework
 - HW1 – graded (posting by email)
 - HW2 – graded by next Tuesday (maybe Thursday)
 - HW3 – due next Thursday 10/13
- Questions, comments, concerns?
 - Re-visit Viterbi & Forward Algorithms
 - Forward-Backward Algorithm

Viterbi Algorithm

- Use an \(N \times T \) trellis \([v_t^j]\)
 - Just like in forward algorithm
- \(v_t^j \) or \(v_t(j) \)
 \[v_t^j \text{ or } v_t(j) = P(\text{in state } j \text{ after seeing } t \text{ observations and passing through the most likely state sequence so far}) \]
 \[= P(q_0, q_1, q_2, \ldots, q_t, o_t) \]
 - Each cell = extension of most likely path from other cells
 \[v_t^j = \max_i v_{t-1}^i \cdot a_{ij} \cdot b_j(o_t) \]

Viterbi Algorithm: Formal Definition

- Initialization
 - \(v_1^j = \pi_i(o_1); 1 \leq i \leq N \)
 - \(B_T^i = 0 \)
- Recursion
 - \(a_j = \max_i [v_{t-1}^i \cdot a_{ij} \cdot b_j(o_t)]; 1 \leq i \leq N, 2 \leq t \leq T \)
 - \(B_T^j = \argmax_i [v_{t-1}^i \cdot a_{ij}] \)
- Termination
 - \(\rho = \max_j v_T^j \)
 - \(\hat{q}_T = \argmax_j v_T^j \)

HMM Tagger – Initialization (v2)

- word sequence: \(W = w_1 \ldots w_n \), for time \(1 \leq t \leq n \)
- total corpus size: \(N \)
- input (word) vocabulary: \(v_i \in V \) for \(1 \leq i \leq k \)
- output (tag) vocabulary: \(\tau_j \in T \) for \(1 \leq j \leq m \)
- Let \(b_j(v) = P(v_i | \tau_j) = c(t,v) \cdot c(t) \cdot c(t+m) \)
- Let \(a_j(t) = P(\tau_j | \tau_i) = c(t,j+1) \cdot c(t) \cdot c(t+m) \)
- Let \(\alpha_0(0) = 1 \) and \(\alpha_t(o) = \max_i [\alpha_{t-1}^i \cdot a_i] \cdot b(o) \)
- \(\xi(t) = \max_{t-1} [\alpha_{t-1}^i \cdot a_i] \)

Viterbi Algorithm (version 2)

- word sequence: \(W = w_1 \ldots w_n \), size of tagset \(|T| = m \)
- for \(t = 1 \) to \(n \)
 - for \(j = 1 \) to \(m \)
 - \(\xi(t) \leftarrow \argmax_{t-1} [\alpha(t-1) \cdot a_j] \)
 - \(a(t) \leftarrow \max_i [\alpha(t-1) \cdot a_i] \cdot b(o) \)
 - \(\xi(n+1) \leftarrow \argmax_{t-1} [\alpha(n)] \)
 - \(\rho(n+1) \leftarrow 0 \)
- for \(t = n \) to \(1 \)
 - \(\rho(t) \leftarrow \xi(t+1) \cdot (t+1) \)
 - \(\tau(t) \leftarrow \xi(t+1) \cdot (t+1) \)
Viterbi Algorithm (version 3)
• pseudocode for the Viterbi algorithm is also given in the textbook
 • Just be sure to initialize as defined on slide 41 of lecture 9

Forward Algorithm
• Use an $N \times T$ trellis or chart $[a_{ij}]$
• Forward probabilities: $a_j(t)$
 • $= P(\text{being in state } j \text{ after seeing } t \text{ observations})$
 • $= P(q_t = j | o_1, o_2, ..., o_t)$
• Each cell $= \sum$ extensions of all paths from other cells
 $$a_j(t) = \sum_{i} a_i(t-1) a_{ij} b_j(o_t)$$
 • $a_i(t-1)$: forward path probability until $(t-1)$
 • a_{ij}: transition probability of going from state i to j
 • $b_j(o_t)$: probability of emitting symbol o_t in state j
 • $P(O|\lambda) = \sum_i a_i(T)$

Forward-Backward (Baum-Welsch) Algorithm
• What if, instead of wanting to know:
 • $P(\text{being in state } j \text{ after seeing } t \text{ observations})$
 (Forward Algorithm)
 • $P(\text{in state } j \text{ after seeing } t \text{ observations and passing through the most likely state sequence so far})$
 (Viterbi Algorithm)
• We want to know:
 • $P(\text{being in state } j \text{ at time } t \text{ given the entire observation sequence})$
 • $P(\text{being in state } j \text{ at time } t \text{ and being in state } k \text{ at time } t+1 \text{ given the entire observation sequence})$
• Our forward probability $a_j(t)$ is insufficient to calculate these conditional probabilities
 • Also need a backward probability

Forward and Backward Probabilities

<table>
<thead>
<tr>
<th>w_t</th>
<th>w_{t+1}</th>
<th>w_{t+2}</th>
<th>w_{n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_j(t)$</td>
<td>a_{ij}</td>
<td>a_{ij}</td>
<td>a_{ij}</td>
</tr>
<tr>
<td>$\beta_j(t)$</td>
<td>$\sum_{i=1}^{m} a_i(t-1) a_{ij} b_j(o_t)$</td>
<td>$\sum_{i=1}^{m} a_i(t-1) a_{ij} b_j(o_{t+1})$</td>
<td>$\sum_{i=1}^{m} a_i(t-1) a_{ij} b_j(o_{n})$</td>
</tr>
<tr>
<td>$P(w_1 \ldots w_n) = \sum_{i=1}^{m} a_i(t-1) a_{ij} b_j(o_{n})$</td>
<td>$\sum_{i=1}^{m} a_i(t-1) a_{ij} b_j(o_{n})$</td>
<td>$\sum_{i=1}^{m} a_i(t-1) a_{ij} b_j(o_{n})$</td>
<td>$\sum_{i=1}^{m} a_i(t-1) a_{ij} b_j(o_{n})$</td>
</tr>
</tbody>
</table>

New Parameters for Forward-Backward

Probability of having tag i at time t given $w_1 \ldots w_n$

$$\gamma_i(t) = \frac{a_i(t) \beta_i(t)}{\sum_{j=1}^{m} \alpha_j(t) \beta_j(t)}$$

Probability of having tag i at time t and tag j at time $t+1$, given $w_1 \ldots w_n$

$$\xi_{ij}(t) = \frac{\gamma_i(t) a_{ij} b_j(w_{t+1}) \beta_j(t+1)}{\beta_i(t)}$$
Forward-Backward Algorithm

word sequence: \(W = w_1, \ldots, w_T \), size of tagset \(T = m \) \(\alpha_0(t) = 1 \)

for \(j = 1 \) to \(m \)

\(\alpha_j(t) \leftarrow \sum_{a_{j+1}} \alpha_{j+1}(t)a_j h_j(n) \)

for \(i = 1 \) to \(m \)

\(\beta_i(t) \leftarrow \gamma_i(t) \sum_{a_{j+1}} \beta_{j+1}(t)a_j h_j(n) \)

for \(t = 1 \) to \(T \)

\(\gamma_i(t) \leftarrow \frac{\alpha_i(t) \beta_i(t)n}{\sum_{a_{j+1}} \alpha_j(t)a_j h_j(n)} \)

for \(j = 1 \) to \(m \)

\(\lambda\text{stock} \)

\(\pi_1 = 0.5 \)

\(\pi_2 = 0.2 \)

\(\pi_3 = 0.3 \)

\[\sum \alpha_{i+1}(Bull) \times a_{BullBull} \times b_{Bull} \times \gamma(t) \]

\[\sum \beta_{i+1}(Bull) \times a_{BullBull} \times b_{Bull} \times \gamma(t) \]

\[\sum \gamma_i(t) \]

\[\sum \alpha_{i+1}(Bear) \times a_{BearBear} \times b_{Bear} \times \gamma(t) \]

\[\sum \beta_{i+1}(Bear) \times a_{BearBear} \times b_{Bear} \times \gamma(t) \]

\[\sum \gamma_i(t) \]

\[\sum \alpha_{i+1}(Static) \times a_{StaticStatic} \times b_{Static} \times \gamma(t) \]

\[\sum \beta_{i+1}(Static) \times a_{StaticStatic} \times b_{Static} \times \gamma(t) \]

\[\sum \gamma_i(t) \]
Forward-Backward Algorithm, E-step

word sequence: $W = w_1, \ldots, w_n$, size of tagset $|T| = m$, $a_0(0) = 1$

for $i = 1$ to m
 for $j = 1$ to m
 $a(i) = \sum_{k=1}^{m} \alpha(i-1) a(k) b(j)(k)$

for $i = 1$ to m
 $B(i) = \sum_{j=1}^{m} \alpha(i-1) a(j) b(j)(i)$

for $i = 1$ to m
 $\gamma(i) = \frac{\alpha(i) B(i)}{\sum_{m} \alpha(i) B(i)}$

for $i = n$ to 1
 for $j = 1$ to m
 $\hat{\beta}(i) = \frac{\alpha(i) b(j)(i) \gamma(i)}{\sum_{m} \alpha(i) b(j)(i) \gamma(i)}$

for $i = 1$ to m
 $\hat{\gamma}(i) = \frac{\alpha(i) \hat{\beta}(i)}{\sum_{m} \alpha(i) \hat{\beta}(i)}$

Agenda: Summary

- Review Viterbi, Forward Algorithms
- Forward-Backward (Baum-Welsh) Algorithm
- Midterm

Forward-Backward, M-step

corpus of N sentences, $W = w_1^1, \ldots, w_n^N$, size of tagset $|T| = m$

initialize a_{ij}, a_{j0}, a_{0j}, and $b_j(v_k)$ to 0 for all i, j, k

for $i = 1$ to m
 $e_{ij} = \sum_{k=1}^{N} w_{i+1}(i, j)$
 $a_{0i} = \frac{1}{N} \sum_{k=1}^{N} \gamma_{ji}^k(1)$
 $a_{00} = \frac{1}{N} \sum_{k=1}^{N} \gamma_{ji}^k([W_0])$

for $j = 1$ to m
 $a_{ij} = \frac{1}{N} \sum_{k=1}^{N} \gamma_{ji}^k([W_i])$

for $k = 1$ to $|V|$
 $b_k(v_k) = \frac{1}{N} \sum_{j=1}^{N} \gamma_{ji}^k(\delta_{jk}(i))$