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Abstract

Wahba�s classical representer theorem states that the solutions of cer�
tain risk minimization problems involving an empirical risk term and a
quadratic regularizer can be written as expansions in terms of the training
examples� We generalize the theorem to a larger class of regularizers and
empirical risk terms� and give a self�contained proof utilizing the feature
space associated with a support vector kernel� The result shows that a
wide range of problems have optimal solutions that live in the �nite di�
mensional span of the training examples mapped into feature space� thus
enabling us to carry out kernel algorithms independent of the �potentially
in�nite� dimensionality of the feature space�
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� Introduction

Following the development of support vector �SV� machines ����� positive de��
nite kernels have recently attracted considerable attention in the machine learn�
ing community	 It turns out that a number of results that have now become
popular were already known in the approximation theory community� as wit�
nessed by the work of Wahba ��
�	 The present work brings together tools from
both areas to formulate a generalized version of a classical theorem from the
latter �eld� and to prove it using the geometrical view of kernel function classes
as corresponding to vectors in linear feature spaces	

The article is organized as follows	 In the present �rst section� we review
some basic concepts	 The two subsequent sections contain our main result�
some examples and a short discussion	

��� Positive De�nite Kernels

The question of under which conditions kernels correspond to dot products
in linear spaces has been brought to the attention of the machine learning
community by ��� �� ���	 In functional analysis� the same problem has been
studied under the heading of Hilbert space representations of kernels	 A good
monograph on the functional analytic theory of kernels is �
�	 Most of the
material in the present introductory section is taken from that work	 Readers
familiar with it can skip over the remainder of it	

Suppose we are given empirical data

�x�� y��� � � � � �xm� ym� � X � R� ���

Here� the domain X is some nonempty set that the patterns xi are taken from�
the target values yi live in R	 Note that we have not made any assumptions
concerning the domain X other than it being a set	 In order to study the
problem of learning� we need additional structure	 In kernel methods� this is
provided by a similarity measure

k 
 X � X � R� �x� x�� �� k�x� x��� ���

The function k is called a kernel ���	 The term stems from the �rst use of this
type of function in the study of integral operators� where a function k giving
rise to an operator Tk via

�Tkf��x� �

Z
X

k�x� x��f�x�� dx� �
�

is called the kernel of Tk	
Below� unless stated otherwise� indices i and j will be understood to run over

the training set� i	e	 i� j � �� � � � �m	 Note that we will state most results for the
more general case of complex�valued kernels� they specialize to the real�valued
case in a straightforward manner	
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De�nition � �Gram matrix� Given a kernel k and patterns x�� � � � � xm � X �
the m�m matrix

K 
� �k�xi� xj��ij ���

is called the Gram matrix of k with respect to x�� � � � � xm�

Below� we use the notation �cj to denote the complex conjugate of cj 	

De�nition � �Positive matrix� An m�m matrix K over C satisfyingX
i�j

ci�cjKij � � ���

for all c�� � � � � cm � C is called positive�

De�nition � �Positive de�nite kernel� Let X be a nonempty set� A func�
tion k 
 X � X � C which for all m � N� xi � X gives rise to a positive Gram
matrix is called a positive de�nite �pd� kernel�

One might argue that the term positive de�nite kernel is slightly misleading	
In matrix theory� the term de�nite is sometimes used to denote the case where
equality in ��� only occurs if c� � � � � � cm � �	 Simply using the term positive
kernel� on the other hand� could be confused with a kernel whose values are
positive	

Real�valued kernels are contained in the above de�nition as a special case	
However� it is not su�cient to require that ��� hold for real coe�cients ci	 If
we want to get away with real coe�cients only� we additionally have to require
that the kernel be symmetric	 The complex case is slightly more elegant� in
that case� ��� can be shown to imply symmetry� i	e	 k�xi� xj� � k�xj � xi�	

Positive de�nite kernels can be regarded as generalized dot products	 In�
deed� any dot product is a pd kernel� however� linearity does not carry over
from dot products to general pd kernels	 Another property of dot products� the
Cauchy�Schwarz inequality� does have a natural generalization
 if k is a positive
de�nite kernel� and x�� x� � X � then

jk�x�� x��j
� � k�x�� x�� � k�x�� x��� ���

��� ��� and Associated Feature Spaces

We de�ne a map from X into the space of functions mapping X into C � denoted
as C X � via �
�

� 
 X � C
X � x �� k��� x�� ���

Here� ��x� � k��� x� denotes the function that assigns the value k�x�� x� to
x� � X 	 Applying � to x amounts to representing it by its similarity to all
other points in the input domain X 	 This seems a very rich representation� but
it will turn out that the kernel allows the computation of a dot product in that
representation	

We shall now construct a dot product space containing the images of the
input patterns under �	 To this end� we �rst need to endow it with the linear
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structure of a vector space	 This is done by forming linear combinations of the
form

f��� �

mX
i��

�ik��� xi�� g��� �

m�X
j��

�jk��� x
�

j�� ���

Here� m�m� � N� �i� �j � C and xi� x
�

j � X are arbitrary	 A dot product
between f and g can be constructed as

hf� gi 
�
mX
i��

m�X
j��

��i�jk�xi� x
�

j�� ���

To see that this is well�de�ned� although it explicitly contains the expansion
coe�cients �which need not be unique�� note that

hf� gi �

m�X
j��

�jf�x
�

j�� ����

using k�x�j � xi� � k�xi� x�j�	 The latter� however� does not depend on the partic�
ular expansion of f 	 Similarly� for g� note that

hf� gi �
X
i

��ig�xi�� ����

This also shows that h�� �i is antilinear in the �rst argument and linear in the
second one	 It is symmetric� since hf� gi � hg� fi	 Moreover� given functions
f�� � � � � fn� and coe�cients ��� � � � � �n � C � we have

nX
i�j��

��i�jhfi� fji �

�
nX
i��

�ifi�

nX
j��

�jfj

�
� �� ����

hence h�� �i is actually a pd kernel on our function space	
For the last step in proving that it even is a dot product� we will use the

following interesting property of �� which follows directly from the de�nition

for all functions ���� we have

hk��� x�� fi � f�x�� ��
�

i	e	� k is the representer of evaluation	 In particular�

hk��� x�� k��� x��i � k�x� x��� ����

hence �cf	 ���� k�x� x�� � h��x�� ��x��i	 By virtue of these properties� pd kernels
k are also called reproducing kernels ��� 
� �
�	 By ��
� and ���� we have

jf�x�j� � jhk��� x�� fij� � k�x� x� � hf� fi� ����

Therefore� hf� fi � � implies f � �� which is the last property that was left to
prove in order to establish that h�� �i is a dot product	

One can complete the space of functions ��� in the norm corresponding to
the dot product� i	e	 add the limit points of sequences that are convergent in
that norm� and thus gets a Hilbert space Hk� usually called a reproducing kernel
Hilbert space �RKHS�	 The case of real�valued kernels is included in the above�
in that case� Hk can be chosen as a real Hilbert space	
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� The Representer Theorem

We now state our main result� showing that a large class of optimization prob�
lems with RKHS regularizers have solutions that can be expressed as kernel
expansions in terms of the training data	

Theorem � �Nonparametric Representer Theorem� Suppose we are given
a nonempty set X � a positive de�nite real�valued kernel k on X �X � a training
set �x�� y��� � � � � �xm� ym� � X�R� a strictly monotonically increasing real�valued
function g on ������ an arbitrary cost function c 
 �X �R� �m � R � f�g� and
a class of functions

F �
n
f � R

X

���f��� �X�

i��
�ik��� zi�� �i � R� zi � X � kfk ��

o
� ����

Here� k�k is the norm in the RKHS Hk associated with k� i�e� for any zi �
X � �i � R �i � N��

���X�

i��
�ik��� zi�

���� �X�

i�j��
�i�jk�zi� zj�� ����

Then any f � F minimizing the regularized risk functional

c ��x�� y�� f�x���� � � � � �xm� ym� f�xm��� � g �kfk� ����

admits a representation of the form

f��� �
Xm

i��
�ik��� xi�� ����

Let us give a few remarks before the proof	 In its original form� with mean
squared loss

c��x�� y�� f�x���� � � � � �xm� ym� f�xm��� �
�

m

Xm

i��
�yi 	 f�xi��

�� ����

or hard constraints on the outputs� and g�kfk� � �kfk� �� � ��� the theorem
is due to ���	 Note that in our formulation� hard constraints on the solution
are included by the possibility of c taking the value �	 A generalization to
non�quadratic cost functions was stated by ���� cf	 the discussion in ����	 The
present generalization to g�kfk� is� to our knowledge� new	� For a machine
learning point of view on the representer theorem� and a variational proof� cf	
���	

The signi�cance of the theorem is that it shows that a whole range of learn�
ing algorithms have optimal solutions that can be expressed as expansions in
terms of the training examples	

Note that monotonicity of g is necessary to ensure that the theorem holds	 It
does not ensure that the regularized risk functional ���� does not have multiple
local minima	 For this� we would need to require convexity of g and of the cost
function c	

�thanks to Grace Wahba for her knowledgeable comments
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If we discarded the strictness of the monotonicity of g� it would no longer
follow that each minimizer �there might be multiple ones� of the regularized
risk admits an expansion ����� however� it would still follow that there is always
another solution minimizing ���� that does admit the expansion	

In the SV community� ���� is called the SV expansion	 For suitable choices
of cost functions� it has empirically been found that often many of the �i equal
�	
Proof� As we have assumed that k maps into R� we will use �cf	 ����

� 
 X � R
X � x �� k��� x�� ����

Since k is a reproducing kernel� evaluation of the function ��x� on the point x�

yields
��x��x�� � k�x�� x� � h��x��� ��x�i ����

for all x� x� � X 	 Here� h�� �i denotes the dot product of Hk	
Given x�� � � � � xm� any f � F can be decomposed into a part that lives in

the span of the ��xi� and a part which is orthogonal to it� i	e	

f �
X
i

�i��xi� � v ��
�

for some � � Rm and v � F satisfying� for all j�

hv� ��xj�i � �� ����

Using the latter and ����� application of f to an arbitrary training point xj
yields

f�xj� �

�X
i

�i��xi� � v� ��xj�

�

�
X
i

�ih��xi�� ��xj�i� ����

independent of v	 Consequently� the �rst term of ���� is independent of v	
As for the second term� since v is orthogonal to

P
i �i��xi�� and g is strictly

monotonic� we get

g�kfk� � g

������
X
i

�i��xi� � v

�����
�

� g

�
B�
vuut�����
X
i

�i��xi�

�����
�

� kvk�

�
CA � g

������
X
i

�i��xi�

�����
�
� ����

with equality occuring if and only if v � �	
Setting v � � thus does not a�ect the �rst term of ����� while strictly reduc�

ing the second term � hence� any minimizer must have v � �	 Consequently�
any solution takes the form f �

P
i �i��xi�� i	e	� using �����

f��� �
X
i

�ik��� xi�� ����
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The extension to the case where we also include a parametric part is straight�
forward� cf	 ���	 We thus state the corresponding result without proof


Theorem � �Semiparametric Representer Theorem� Suppose that in ad�
dition to the assumptions of the previous theorem we are given a set of M
real�valued functions f	pg

M
p�� on X � with the property that the m �M matrix

�	p�xi��ip has rank M � Then any �f 
� f � h� with f � F and h � spanf	pg�
minimizing the regularized risk

c
	
�x�� y�� �f�x���� � � � � �xm� ym� �f�xm��



� g �kfk� ����

admits a representation of the form

�f��� �

mX
i��

�ik�xi� �� �

MX
p��

�p	p���� ����

with �p � R for all p � �� � � � �M �

Remark 	 �Biased regularization� A straightforward extension of the rep�
resenter theorems can be obtained by including a term 	hf�� fi into ���� or
����� respectively� where f� � Hk� In this case� if a solution to the minimiza�
tion problem exists� it admits an expansion which di	ers from the above ones
in that it additionally contains a multiple of f�� To see this� decompose the
vector v used in the proof of Theorem 
 into a part orthogonal to f� and the
remainder�

In the case where g�kfk� � �

�
kfk�� this can be seen to correspond to an

e	ective overall regularizer of the form �

�
kf 	 f�k

��

Some explicit applications of theorems � and � are given below	

Example 
 �SV Regression� For SV regression with the 
�insensitive loss
���
 we have

c
	
�xi� yi� f �xi��i�������m



�

�

�

X
i

max ��� jf �xi�	 yij 	 
� �
��

and g �kfk� � kfk�� where � � � and 
 � � are �xed parameters which deter�
mine the trade�o	 between regularization and �t to the training set� In addition�
a single �M � �� constant function 	��x� � b �b � R� is used as an o	set that
is not regularized by the algorithm ��

�

In ���
� a semiparametric extension was proposed which shows how to deal
with the case M � � algorithmically� Theorem � applies in that case� too�

Example � �SV Classi�cation� Here� the targets satisfy yi � f
�g� and we
use

c
	
�xi� yi� f �xi��i�������m



�

�

�

X
i

max ��� � 	 yif �xi�� � �
��
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the regularizer g �kfk� � kfk�� and 	��x� � b� For � � �� we recover the
hard margin SVM� i�e� the minimizer must correctly classify each training point
�xi� yi�� Note that after training� the actual classi�er will be sgn �f��� � b��

Example � �Bayesian MAP Estimates� The correspondence to Bayesian
methods is established by identifying ���� with the negative log posterior ���
�
� In this case� exp�	c��xi� yi� f�xi��i�������m�� is the likelihood of the data�
while exp�	g�kfk�� is the prior over the set of functions� The well�known
Gaussian process prior �e�g� ���� ��
�� with covariance function k� is obtained
by using g�kfk� � �kfk� �here� � � �� and� as above� k�k is the norm of
the RKHS associated with k�� A Laplacian prior would be obtained by using
g�kfk� � �kfk� In all cases� the minimizer of ���� corresponds to a function
with maximal a posteriori probability �MAP��

Example �
 �Kernel PCA� PCA in a kernel feature space can be shown to
correspond to the case of

c��xi� yi� f�xi��i�������m� �

�
� if �

m

P
i

	
f�xi�	

�

m

P
j f�xj�



�

� �

� otherwise
�
��

with g an arbitrary strictly monotonically increasing function ���
� The con�
straint ensures that we are only considering linear feature extraction function�
als that produce outputs of unit empirical variance� Note that in this case of
unsupervised learning� there are no labels yi to consider�

� Conclusion

We have shown that for a large class of algorithms minimizing a sum of an
empirical risk term and a regularization term in a reproducing kernel Hilbert
space� the optimal solutions can be written as kernel expansions in terms of
training examples	 This has been known for speci�c algorithms� e	g	 for the SV
algorithm� where it is a direct consequence of the structure of the optimization
problem	 The representer theorem puts these individual �ndings into a wider
perspective ����� and it is our hope that the reader will �nd our present gen�
eralization useful by either gaining some insight� or by taking it as a practical
guideline for designing innovative kernel algorithms
 as long as the objective
function can be cast into the form considered in the generalized representer
theorem� one can recklessly carry out algorithms in in�nite dimensional spaces�
since the solution will always live in a speci�c subspace whose dimensionality
equals at most the number of training examples	
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