imitation learning

Recruent

Neural Networks
imitation learning

Recurrent Neural Networks

Non-differentiable
Discontinuous
Non-backpropable
Discrete Choices?
Examples of structured joint prediction
Sequence labeling

x = the monster ate the sandwich
y = Dt Nn Vb Dt Nn

x = Yesterday I traveled to Lille
y = - PER - LOC
NLP algorithms use a kitchen sink of features.
Segmentation
Simultaneous (machine) interpretation

- Dozens of defendants
- Judges from four nations (three languages)
- Status quo: speak, then translate
- After Nuremberg, simultaneous translations became the norm
- Long wait → bad conversation

Nuremburg Trials
Why simultaneous interpretation is hard

- Human languages have vastly different word orders
 - About half are OV, the other half are VO
 - This comes with a lot more baggage than just verb-final

Running (German/English) Example:

Ich bin mit dem Zug nach Ulm gefahren
I am with the train to Ulm traveled
I (...... waiting.) traveled by train to Ulm
Model for interpretation decisions

- We have a set of actions (predict / translate)
 - Wait
 - Predict clause-verb
 - Predict next word
 - Commit ("speak")

- In a changing environment (state)
 - The words we've seen so far
 - Our models' internal predictions

- With well-defined notions of:
 - Reward (or loss) at the end
 - Optimal action at training time
Example of interpretation trajectory

Big Challenges:
No supervision about when to “wait”
Complicated loss/reward functions

Ich bin mit dem Zug nach Ulm gefahren
I am with the train to Ulm traveled
I [waiting.....] traveled by train to Ulm
Back to the original problem...

- How to optimize a discrete, joint loss?

- Input: \(x \in X \)

- Truth: \(y \in Y(x) \)

- Outputs: \(Y(x) \)

- Predicted: \(\hat{y} \in Y(x) \)

- Loss: \(\text{loss}(y, \hat{y}) \)

- Data: \((x,y) \sim D \)
Back to the original problem...

- How to optimize a discrete, joint loss?

- Input: \(x \in X \)
- Truth: \(y \in Y(x) \)
- Outputs: \(Y(x) \)
- Predicted: \(\hat{y} \in Y(x) \)
- Loss: \(\text{loss}(y, \hat{y}) \)
- Data: \((x,y) \sim D \)

Goal:

find \(h \in H \)
such that \(h(x) \in Y(x) \)
minimizing

\[
E_{(x,y) \sim D}[\text{loss}(y, h(x))]
\]

based on \(N \) samples

\[
(x_n, y_n) \sim D
\]
Search spaces

- When y decomposes in an ordered manner, a sequential decision making process emerges.
Search spaces

- When y decomposes in an ordered manner, a sequential decision making process emerges.

Encodes an output $\hat{y} = \hat{y}(e)$ from which $\text{loss}(y, \hat{y})$ can be computed (at training time).
Policies

- A policy maps observations to actions

\[\pi(o) = a \]

- input: \(x \)
- timestep: \(t \)
- partial traj: \(\tau \)
- ... anything else

obs.
An analogy from playing Mario

From Mario AI competition 2009

Input:

Output:
- Jump in \{0,1\}
- Right in \{0,1\}
- Left in \{0,1\}
- Speed in \{0,1\}

High level goal:
Watch an expert play and learn to mimic her behavior
Training (expert)

Sample Expert Trajectories
Warm-up: Supervised learning

1. Collect trajectories from expert π^ref
2. Store as dataset $\mathbf{D} = \{ (\mathbf{o}, \pi^\text{ref}(\mathbf{o},y)) \mid \mathbf{o} \sim \pi^\text{ref} \}$
3. Train classifier π on \mathbf{D}

- Let π play the game!
Test-time execution (sup. learning)
What's the (biggest) failure mode?

The expert never gets stuck next to pipes

⇒ Classifier doesn't learn to recover!
Kittens, revisited.

(Held & Hein, 1936)
Warm-up II: Imitation learning

1. Collect trajectories from expert π^{ref}
2. Dataset $D_0 = \{ (o, \pi^{\text{ref}}(o,y)) \mid o \sim \pi^{\text{ref}} \}$
3. Train π_1 on D_0
4. Collect new trajectories from π_1
 ➢ But let the expert steer!
5. Dataset $D_1 = \{ (o, \pi^{\text{ref}}(o,y)) \mid o \sim \pi_1 \}$
6. Train π_2 on $D_0 \cup D_1$

• In general:
 • $D_n = \{ (o, \pi^{\text{ref}}(o,y)) \mid o \sim \pi_n \}$
 • Train π_{n+1} on $\bigcup_{i \leq n} D_i$

If $N = T \log T$,\n$L(\pi_n) < T \varepsilon_N + O(1)$ for some n
Test-time execution (DAGger)
What's the biggest failure mode?

Classifier only sees *right* versus *not-right*

- No notion of *better* or *worse*
- No *partial credit*
- Must have a single *target* answer
Learning to search: LOLS

1. Let learned policy π drive for t timesteps to obs. o

2. For each possible action a:
 - Take action a, and let expert π^{ref} drive the rest
 - Record the overall loss, c_a

3. Update π based on example:
 - $(o, \langle c_1, c_2, \ldots, c_K \rangle)$

4. Goto (1)

Side note: can also be run in “bandit” mode w/ sampling
So..... what's the connection?

This looks a lot like an RNN!
Two quick results

- If you *don't* backprop through time:
 - POS tagging: no change
 - Named entity recognition: marginal improvement
 - Dependency parsing: 1% gain over strong baseline

- If you *do* backprop through time:
 - Synthetic sequence labeling data, Gaussian obs
 - Cannot exactly fit (most) generated datasets
 - Mashup: 10.4% error 1.4% error on training data!

Code at http://hal3.name/tmp/rnnlols.py (thanks to autograd folks for autograd!)
Simultaneous machine interpretation is a super fun problem and you should work on it!

Not being able to backprop something isn't always the end of the world – you're not stuck with RL!

RNN+LOLS mashup appears promising!

Thanks! Questions?

I am on the job market! umiacs.umd.edu/~hhe

Alekh Agarwal
Kai-Wei Chang
Akshay Krishnamurthy
John Langford
He He

ICPR '10 EMNLP'13 ICC'15
CVPR '11 EMNLP'14 Fusion'15
EMNLP'12 NIPS '14 EMNLP'15
NIPS '12 SLT '14 + more