
http://pub.hal3.name#daume06searn-practice

Searn in Practice

Hal Daumé III, John Langford and Daniel Marcu

me@hal3.name,jl@hunch.net,marcu@isi.edu

1 Introduction

We recently introduced an algorithm, Searn, for solving hard structured prediction problems
[DLM06]. This algorithm enjoys many nice properties: efficiency, wide applicability, theoretical
justification and simplicity. However, under a desire to fit a lot of information into the original
paper [DLM06], it may not be so clear how simple the technique is. This report is designed to
showcase how Searn can be applied to a wide variety of techniques and what really goes on behind
the scenes. We will make use of three example problems, ranging from simple to complex. These
are: (1) sequence labeling, (2) parsing and (3) machine translation. (These were chosen to be as
widely understandable, especially in the NLP community, as possible.) In the end, we will come
back to discuss Searn for general problems.

2 Searn

The motivation behind Searn is that in most NLP problem, one first specifies a model and features,
then learns parameters on those features (usually through maximum likelihood/relative frequencies)
and then attempts to apply this learned model to new data (think MT). One of the key difficulties
is that when applying the model to new data, the search is rarely tractable (or computationally
feasible). Even in parsing, which is “polynomial time,” (typically O(n3) in the length of the sen-
tence) a plethora of pruning and beaming methods are employed in practice. Worse, in synchronous
grammars, the parsing time is O(n11), which, while polynomial, is truly impractical. In problems
like MT, we are no longer in polynomial time world and are immediately in the realm of NP-hard
problems.

Searn is a method of allowing the learning to take into account the fact that we will be running
a search algorithm (among other things). Actually, the result at the end of the day with Searn is
that search is completely removed from the problem (at test time).

The basic idea behind Searn is simple: we view our problem (tagging, parsing, MT, etc.) as
a search problem. We construct the search space as we see fit (this is an important practical issue
discussed later). We then attempt to learn a classifier that will walk us through the search space in
a good way. For instance, in the simple case of POS tagging, we may structure our search space so
that we tag in a left-to-right manner. Then, our classifier will tell us: for a given input string and
for whatever previous tag decisions we’ve made, what’s the best tag to assign to the next word in
the input. As is clear from the tagging example, we could train this classifier based solely on the
training data.

Both in theory and in practice, this is a bad idea and leads to the label-bias problem [LMP01]
and other issues. In fact, it is possible to show that, in the sequence labeling problem, even if our
classifier obtains a small error rate ε, we could potentially do as badly as 0.5εT 2 on the tagging

1



problem, where T is the length of the sentence [Kää06]. The problem is essentially that errors
compound. If we make a mistake on the very first label, this could potentially throw us into a part
of the search space we have never been trained on and the classifier could do (essentially) arbitrarily
badly.

The solution proposed by Searn is the following. Instead of training based on the true path
through the search space, train on the path that our classifier actually takes in practice. This means
that the classifier will be trained based on the data that it will actually expect to see. This solves
the label-bias problem but introduces a chicken-and-egg problem: how do we train such a beast?
The solution—as in most chicken-and-egg problems—is to iterate.

Searn makes use of the notion of a policy. A policy π is just a function π(x, ŷ1, . . . , ŷt−1) that
takes as input the true input x (eg., the sentence to tag in POS tagging) and a partial output
ŷ1, . . . , ŷt−1. It outputs ŷt. This is, as we can see, essentially just a multiclass classifier. When it is
a classifier, we will write it as h(x, ŷ1:t−1).

Searn makes one requirement: an optimal policy for the training data. That is, we need a
function π∗ that gives us the best choice to make no matter what path we’ve followed. In particular,
π∗(x, y1:T , ŷ1:t−1) gives the best choice for ŷt given the input x and the true output y1:T . In sequence
labeling, this will typically be simply yt (the best thing to do next is just to produce the correct
tag), but this will not always be the case. The issue of optimal policies and how hard they are to
construct is discussed later.

Searn operates by maintaining a current policy and attempts to use to this generate new
training data on which to learn a new policy (new classifier). The current policy is initialized to the
optimal policy. When a new classifier is learned, we interpolate it with the old classifier. This gives
us a convergence guarantee; otherwise the algorithm could diverge. There is a trade-off here. Our
goal is to move away from optimal policy completely. To do so, we want to have a large interpolation
constant. However, if we move too quickly, we can diverge. The Searn paper [DLM06] provides an
analytical value for the interpolation parameter that is guaranteed to yield convergence. However,
this is too small in practice, so we use line search on development data.

The full Searn algorithm is below:

1. Initialize the current policy to the optimal policy

2. Repeat:

(a) Use the current policy to generate paths over all training examples

(b) For each example, for each step in the path traversed by the current policy:

i. Generate a multiclass example whose classes are possible decisions and whose losses
are based on the loss of the current policy (see below)

(c) Learn a new multiclass classifier on the basis of the examples

(d) Find an interpolation constant β on development data that improves performance

(e) Set the current policy to β times the new policy plus 1− β times the old policy

3. Return the current policy without the optimal policy

This algorithm does the following. On the first loop through the training data, step (2a) gen-
erates paths based on the optimal policy (since the current policy is initialized to be optimal). In
sequence labeling, this simply results in the observed training examples. In step (2b), it uses each
position in search (each labeled word) to generate a multiclass classification example (2bi). The
classes of these examples are the labels themselves. Each class also has an associated loss (discussed

2



below); for now, think of this loss as being 0 for the correct label and 1 for all incorrect labels: a
standard multiclass problem. After we have generated all multiclass examples in (2b), we run any
classification algorithm over them (eg., a maximum entropy classifier). This gives us a new classifier
(2c).

In step (2d), we attempt to find a value for β (between 0 and 1) so that, after executing (2e), the
current policy improves. In the very first iteration, it is best to use a conservative value of β: using
β = 1/T 3 is guaranteed to work, though often 1/T or even just 0.1 works just as well. However,
on all non-first iterations of the inner loop, we use a line search method to find a good value of β.
In particular, for a given β, we evaluate how well the current policy (without the optimal policy)
behaves on a held-out development corpus. We find a value for β that maximizes this. In practice,
β is usually quite high.

Once a value of β has been selected (either through the conservative choice, through line search,
or through a deterministic choice), we perform the interpolation. Of course, it makes no sense to
interpolate a deterministic function (the optimal policy) with a classifier (the new policy). What
we mean by interpolation is that we keep around all options and then use a Monte-Carlo estimate of
the choice. That is, in the second iteration, we will have a policy that looks like β times a classifier
plus 1 − β times the optimal policy. When we ask this policy to make a decision, it flips a coin
with bias β. If the coin turns up heads, it uses the classifier; if the coin turns up tails, it uses the
optimal policy.

Before concluding, we need to return to the issue of selecting the losses associated with the
classes when generating the multiclass examples. Formally, we want the loss associated with the
choice yt to be the expected regret of the current policy given that we chose yt. (That is, it is the
difference in loss based on choosing yt as selected and choosing yt optimally.) One simple way to
compute this is to “pretend” we had made the decision yt and to run the current policy as if we
had made that choice. At the end of this run, we will have a complete output. We can compute
the loss of this complete output with respect to the true output. This loss gives us the loss for the
class yt.

In practice, consistently running the current policy through the end of the example may be
prohibitively expensive. An alternative choice is the optimal approximation. That is, instead of
running the current policy through the end, we run the optimal policy through the end and then
compute the loss. In many cases, we needn’t actually run the policy: we will be able to compute the
optimal loss in closed form. This makes the algorithm significantly faster, but potentially introduces
a bias into the underlying classifier.

3 Example: Sequence Labeling

The first problem we consider is the sequence labeling problem. We will focus initially on a part-
of-speech tagging problem and then discuss an NP chunking problem.

3.1 Tagging

In tagging, one observes an input sequence x of length T and produces a label sequence of length
T where each element in the label sequence corresponds to an element in the input. The standard
loss function for this problem is Hamming loss, which measures the number of places that the
hypothesized output ŷ differs from the true output y:

3



lHamming(y, ŷ) =

T
∑

t=1

1(yt 6= ŷt) (1)

There are many ways to structure the search space for this problem. The most obvious is a
left-to-right greedy search. That is, we begin with an empty output and at step t we add the
next label ŷt. Given this, the classifier we learn will have access to the input sentence x and all
previous decisions ŷ1, . . . , ŷt−1 when making a decision about yt (note that Searn does not have
to make Markov assumptions). This search structure has two advantages: (1) it is easy to compute
the optimal policy under this decomposition; (2) it is linguistically plausible that there is some
dependence of yt on the previous tags.

Given this choice of search space, we need to derive an optimal policy. For this case, it is trivial:
π∗(x, y1:T , ŷ1:t−1) = yt; we simply produce the next best tag. It is straightforward to observe that
following this policy will always minimize our Hamming loss.

Given this decomposition, building Searn is quite simple. In the first iteration, we simply train
a classifier to produce each label yt for each example on the basis of the true choices for y1:t−1.
We then choose some interpolation constant and repeat the process using the interpolated policy.
Here, instead of using the true labels for y1:t−1, we use a mixture of the true labels and the labels
predicted by the classifier we learned in the first iteration (where β is the mixture parameter).

It is also worth observing that using the optimal approximation for computing the losses is
trivial in this example. Since the optimal policy always chooses the training label, and since the
Hamming loss decomposes completely over the individual choices, the optimal approximation for
the regret for ŷt will be zero if ŷt = yt and will be one otherwise.

3.2 Chunking

The chunking problem differs from the tagging problem in that it is a joint segmentation and
labeling problem. Instead of mapping an input of length T to a T -many labels, we first segment the
input into chunks and then label each chunk. A canonical example is named entity identification:
we want to find all text spans where names appear (which are often longer than a single word) and
label them with “Person,” “Organization,” “Location,” etc.

The standard loss function used for chunking is the F1 measure. Given a true chunking y, we
first compute n(y): the number of names in y. We then take the hypothesized chunking ŷ and
compute n(ŷ): the number of names in ŷ. Finally, we “intersect” y with ŷ and compute n(y ∩ ŷ):
the number of names in the intersection. The intersection is defined to be the set of names in both
y and ŷ that have identical spans (cover exactly the same words) and identical labels. Essentially,
its the number of correctly identified entities.

We first compute the precision to be n(y ∩ ŷ)/n(ŷ) (as the ratio of hypothesized names that
were correct) and the recall to be n(y ∩ ŷ)/n(y) (as the ration of true names that were found).
The F1 measure is the geometric mean of precision and recall: F1 = 2(p−1 + r−1)−1. This favors
hypotheses with roughly equal precisions and recalls. The F1 measure is favored over standard
accuracy because if there are very few names in the text, simply never guessing a name will yield
high accuracy, but very low F1 measure.

There are at least two reasonably ways to structure search for the chunking problem: word-at-
a-time or chunk-at-a-time. In word-at-a-time, search proceeds by one word per step. A decision
corresponds to one of the following options: begin a new name, continue the current name (assuming
that we are currently inside a name) or mark as not a name. In chunk-at-a-time, we take steps by
producing an entire chunk at once. That is, in a single step, we choose either that the next word is

4



not a name, or we choose that the next word is a name and also choose how many words long this
name is.

Word-at-a-time and chunk-at-a-time behave very similarly with respect to the loss function and
optimal policy. We will discuss word-at-a-time for notational convenience. The basic question is
how to compute the optimal policy. We analyze three cases:

π∗(x, y1:T , ŷ1:t−1) =







begin X yt = begin X
in X yt = in X and ŷt−1 ∈ {begin X, in X}
out otherwise

(2)

It is fairly straightforward to show that this policy is optimal. There is, actually, another optimal
policy. For instance, if yt is “in X” but ŷt−1 is “in Y ” (for X 6= Y ), then it is equally optimal to
select ŷt to be “out” or “in Y ”. In theory, when the optimal policy doesn’t care about a particular
decision, it is typically useful to randomize over the selection. That is, flip an unbiased coin and
randomly choose between these options when asked to make an optimal step in this circumstance.

Like the Hamming case, we can explicitly compute the the optimal approximation loss. This is
a bit more tricky, but still straightforward. We need three values: the size of the intersection ni,
the size of the truth nt and the size of the hypothesis nh. The size of the truth is constant, so we
only care about the intersection and hypothesis. These are:

ni =

{

n(ŷ1:t−1 ∩ y) + 1 + n(yt:T ) yt = in X and we got the begin right
n(ŷ1:t−1 ∩ y) + n(yt:T ) otherwise

(3)

nh =

{

n(ŷ1:t−1) + n(yt:T ) yt ∈ {begin X, out}
n(ŷ1:t−1) + n(yt:T ) + 1 otherwise

(4)

In the first equation, by “we got the begin right” it means that the most recent begin in y
(before t) matches the most recent begin in ŷ (before t). In otherwords, with respect to the current
phrase, we are correct. Given these values, the optimal precision is ni/nh and the optimal recall is
ni/nt yielding an easy computation for the optimal F1.

4 Example: Parsing

In this section, we consider the problem of dependency parsing in a shift-reduce framework [SL05].
This is primarily for convenience. The extension to the constituency case is a bit more involved, but
still possible. The extension to a non-shift reduce framework (i.e., to something like CKY parsing
or hypergraph parsing) is at the moment a bit more unclear. I believe it possible, but it might take
some more work.

The correct (unlabeled) dependency parse for the sentence “the man ate a big sandwich .”
is shown in Figure 1. The standard assumption for dependency parsing is that of projectivity:
essentially, none of the arcs cross. This assumption is true in most languages, but untrue, for
instance, in Czech. In the shift-reduce framework, a dependency tree is built through a sequence
of steps. The parser maintains an active stack onto which words are pushed using the shift action.
The top two elements on the stack (the most recent two) can be combined using a reduce action.
There are two reduce actions: one for each possible direction the arrow could point. The complete
derivation of the tree is shown in the right of Figure 1.

It is clear from this analysis that the decision of shift/reduce-left/reduce-right could be accom-
plished using Searn. The standard loss function for this problem is Hamming loss over dependencies
(sometimes directed, sometimes undirected). We will consider the undirected case for simplicity.

5



the man ate a sandwich .big

shift(the)
shift(man)
reduce(the ← man)
shift(ate)
reduce([the man] ← ate)
shift(a)
shift(big)
shift(sandwich)
reduce(big ← sandwich)
reduce(a ← [big sandwich])
reduce([. . . ate] → [a. . . ])
shift(.)
reduce([the. . . sandwich] → .)

Figure 1: (Left) The dependency tree for the sentence “the man ate a big sandwich .” (Right) The
sequence of shift-reduce steps that leads to this parse structure.

Again, the key questions are defining the optimal policy and (perhaps) the optimal approximation
loss. It is surprisingly easy to define the optimal policy for this problem. Note that a partial
hypothesis (state in the search space) for this problem is represented by the stack, which we will
denote s1, . . . , sI .

π∗(x, y, s1:i−1) =















shift i ≤ 2
reduce there are no words left to shift
reduce there is an arc between si−2 and si−1

shift otherwise

(5)

The reason this is optimal is as follows. If there should be a reduction between the two most
recent words, we have to do it now because we will never have a chance again. Otherwise, any
mistakes we have made so far are hopeless: we cannot recover. We might as well just shift until we
have nothing left to shift and then start reducing. There are a few degrees of freedom: we should
alternatively reduce until we cannot reduce any more and then start shifting. In practice, one might
want to randomize these choices.

The computation of the optimal approximation loss is even easier. Any incorrectly specified
arcs encountered thus far cannot be fixed, so we must accumulate error for them. Any arcs not
encountered thus far can always be satisfied. So the optimal approximation Hamming loss is simply
the Hamming loss up until the current step.

5 Example: Machine Translation

This is, to some people, the Holy Grail of NLP. I’m going to discuss an incredibly simple model for
MT, but the extension to more complex models is really what is interesting. Specifically, we’re going
to sit ourselves in the world of left-to-right translation. This covers most models of word-based and
phrase-based translation, though not necessarily all recent models of syntactic translation. The
optimal policy question becomes the following: given a set of reference translations R, an English
translation prefix e1, . . . , ei−1, what word (or phrase) should be produced next (or are we done?).
This will be driven by some loss function l (such as one minus Bleu or one minus NIST or ...). It
may be possible to analyze one of these losses in particular to come up with a closed form optimal
policy (though I tend to doubt this would be the case for Bleu). So, to maintain generality and to

6



demonstrate the Searn is applicable even when the optimal policy is not available in closed form,
we will take an alternative tact: search.

This is a very natural search problem. We have a search space over prefixes of translations.
Actions include adding a word (or phrase) to the end of an existing translation. Our reward
function is Bleu or NIST or... We want to find the best full output starting at some given prefix.
Once we have the best full output, we simply inspect the first decision of that output. In order to
make this search process more tractable, it is useful to restrict the search space. In fact, it is easy to
verify that, for the purpose of computing the optimal policy, we only ever need to consider adding
words that actually occur in a reference summary (and are not already covered). Moreover, for
both Bleu and NIST, we can easily compute an admissable heuristic based on uncovered unigram
counts: we can simply assume that we will get all of them correct but no corresponding bigrams
or trigrams. It is likely possible to come up with better heuristics, but this one seems (intuitively)
sufficient.

6 Conclusions

The efficacy of Searn hinges on the ability to compute an optimal (or near-optimal) policy. For
many problems including sequence labeling and segmentation (Section 3) and parsing (Section 4),
the optimal policy is available in closed form. For other problems, such as the summarization
problem described in the Searn paper and machine translation (Section 5), the optimal policy
may not be available. In such cases, the suggested approximation is to perform explicit search. One
question is: can such search always be accomplished effectively. Though it is not a theorem, I believe
this is always possible. The reason is that when we train Searn based on a search-computed policy,
we are essentially training Searn to mimic whatever search algorithm we have implemented. The
requirement that this search algorithm perform well seems reasonable. This is because we construct
this search knowing the true output. If, knowing the true output, we cannot find a good solution,
then it is hard to imagine that we will ever be able to find a good solution not knowing the true
output, as is the case at test time: i.e., learning must fail.

References

[DLM06] Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured prediction.
Unpublished; available at http://pub.hal3.name#daume06searn, 2006.

[Kää06] Matti Kääriäinen. Lower bounds for reductions. Talk at the Atomic Learning Workshop
(TTI-C), March 2006.

[LMP01] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of the
International Conference on Machine Learning (ICML), 2001.

[SL05] Kenji Sagae and Alon Lavie. A classifier-based parser with linear run-time complexity. In
Proceedings of the Ninth International Workshop on Parsing Technologies (IWPT 2005),
Vancouver, Canada, 2005.

7


