Homophily & Network Formation

CMSC 498J: Social Media Computing

Department of Computer Science
University of Maryland
Spring 2015

Hadi Amiri
hadi@umd.edu
Lecture Topics

- Homophily
 - Selection
 - Social Influence
- Affiliation Networks
- Network Formation
Homophily

- The principle that we tend to be similar to our friends!
 - your friends are generally similar to you in terms of your characteristics!

- Immutable
 - race, ethnicity, country of birth, etc (determined at birth).

- Mutable
 - location, occupations, affluence, interests, beliefs, opinions, etc (change through time).

- Factors that exist outside the nodes and edges of a network (surrounding contexts)
Homophily- Cnt.

• Links in social networks tend to connect people who are similar to one another
 ▫ Formation of links in networks!
Homophily- Cnt.

• Formation of a new link (friendship):
 ▫ **Case 1: Triadic Closure**
 • Two people will connect through a common friend!
 • Link is added for reasons that are **intrinsic** to the network itself.
 • We don’t need to look beyond the network to understand where the links came from.
Homophily- Cnt.

• Formation of a new link (friendship):
 ▫ Case 2: Homophily
 • Two people attend the same school / work for same company!
 • The link is added for **contextual** reasons that are beyond the network.
Homophily- Cnt.

- Social net among students in a middle and high school.
Homophily- Cnt.

- Social net among students in a middle and high school.

Color the nodes based on race.

Two context features:
- Race
- School

The network exhibits homophily with respect to Race and School!
Homophily- Cnt.

• Which factors are more dominant for link formation?
 ▫ Difficult to attribute link formation to a single factor!
 ▫ Most links arise from a combination of several factors
 • network intrinsic effects, and
 • contextual effects.
Homophily vs. Triadic Closure

• Both operate concurrently

• Triadic closure
 ▫ intrinsic factor:
 • A and B have a common friend C
 • A and B have increased opportunities to meet

• Homophily
 ▫ contextual factor:
 • A and B are likely to be similar in a number of beyond network dimensions

• Most links form due to a combination of several factors
 ▫ Difficult to attribute any individual link to a single factor
Measuring Homophily

• Given a particular factor (like race, or age), how can we test if a network exhibits homophily according to this factor?
Measuring Homophily- Cnt.

- Test if this network exhibits homophily according to gender?

- Extreme sense:
 - Edges btw boys
 - Edges btw girls
 - But no cross-gender edges

Network of 3 girls and 6 boys!
Boys tend to be friends with boys, Girls tend to be friends with girls
Measuring Homophily- Cnt.

• What would it mean for a network not to exhibit homophily by gender?
 ▫ The number of cross-gender edges is not very different from when we randomly assign each node a gender
 • according to the gender balance in the network
Measuring Homophily - Cnt.

- p: probability of males (2/3)
- $q = 1 - p$: probability of females (1/3)
- For a given edge:
 - if we independently assign each node M with prob p and F with prob q, then
 - Prob(m and m) = p^2
 - Prob(f and f) = q^2
 - Prob(m and f) = $2pq$

Network of 3 girls and 6 boys!

If the fraction of cross-gender edges is significantly less than $2pq = 4/9$, then there is evidence for homophily!

The probability of cross-gender edge when each node is randomly assigned a gender (according to the gender balance in the original network)
Measuring Homophily- Cnt.

• Does this network exhibit homophily wrt to gender?

Figure 2.7: A network in which the nodes are students in a large American high school, and an edge joins two who had a romantic relationship at some point during the 18-month period in which the study was conducted [49].
Mechanisms Underlying Homophily

- Homophily has two mechanisms for link formation:
 - **Selection**
 - Selecting friends with similar characteristics
 - Individual characteristics drive the formation of links
 - Immutable characteristics
 - **Social Influence (socialization)**
 - Modify behaviors to make them close to behaviors of friends
 - Existing links influence the individual characteristics of the nodes
 - Mutable characteristics
Mechanisms Underlying Homophily- Cnt.

- Most of the times, both Selection and Social Influence apply and interact with each other
 - **Teenager behavior:**
 - teenagers seek out social circles composed of people like them, and peer pressure causes them to conform to behavioral patterns within their social circles.
 - **Drug use:**
 - If drug use displays homophily across a network, people showing a greater likelihood to use drugs when their friends do, we can study the effects of a program that targets certain people and influences them to stop using drugs.

Mechanisms Underlying Homophily - Cnt.

• When Homophily is observed, Selection or Social Influence is more strongly at work?
 ▫ Have people adapted their behaviors to become more like their friends, or have they selected people who were already like them?

• Conduct Longitudinal Studies
 ▫ Tracked the network for a period of time and monitor the effect of each mechanism.

• More on this later!
Summary

- Homophily links nodes with similar characteristics
- Measuring Homophily
 - compare with random network (generated according to the node characteristics in the original network)
- Selection and social influence determine the formation of links
- Characteristics represent surrounding contexts of networks
 - Exist outside the network
 - Caveat: Most of such forces go largely unrecorded in everyday life!
Affiliation Networks

• Putting surrounding contexts into networks
• Network that contains both original nodes & contexts
• Represent the set of activities a person takes part in
 ▫ Being part of a particular company / neighborhood, frequenting a particular place, hobby or interest, etc.
• Refer to activities as **foci: focal points** of social interaction
Affiliation Networks - Cnt.

- Bipartite Graph
Social-Affiliation Network

- Both Social and Affiliation networks evolve over time
 - new links are formed in social nets
 - people become associated with new foci in affiliation nets
- Co-evolution reflects interplay between selection and social influence
 - If 2 people participate in a shared focus, they are provided with an opportunity to become friends (Selection)
 - If 2 people are friends, they can share their foci (Social Influence)
Social-Affiliation Network- Cnt.

- Social-affiliation network contains:
 - a social network of people, and
 - an affiliation network btw people and foci
Social-Affiliation Network- Cnt.

- Different mechanisms for link formation as types of closure processes!

- **Triadic Closure:** A, B, and C represent people
Social-Affiliation Network - Cnt.

- Different mechanisms for link formation as types of closure processes!

- **Focal Closure**: B and C people, A focus

- **Selection**: B links to similar C (common focus)
Social-Affiliation Network - Cnt.

- Different mechanisms for link formation as types of closure processes!

- **Membership Closure**: A and B people, C focus

- **Social influence**: B links to C influenced by A
Social-Affiliation Network - Cnt.

Diagram:
- Claire
- Bob
- Anna
- Literacy Volunteers
- Karate Club
- Daniel

Connections:
- Triadic
- Membership
- Focal
Tracking Link Formation

• Caveat: Most of forces responsible for link formation go largely unrecorded in everyday life!
 ▫ it is a challenge to select a large group of people (and social foci), and accurately quantify the relative contributions that these different mechanisms make to the formation of real network links.
Tracking Link Formation- Cnt.

• Three mechanisms that lead to link formation
 ▫ triadic closure
 ▫ focal closure
 ▫ membership closure

• Tracking link formation in large scale datasets based on the above mechanisms
But how to conduct such experiments?
- Compute probability of a link to form btw 2 nodes, if they already have a neighbor in common!
 - What if the nodes have k neighbors in common?
Tracking Triadic Closure

- The probability that 2 people form a link as a function of the number of neighbors they have in common.

(a) Triadic closure
Tracking Triadic Closure - Cnt.

Algorithm

1) Take 2 snapshots of network at different times: $S(1), S(2)$.

2) For each k, find all pairs of nodes in $S(1)$ that are not directly connected but have k common friends.

3) Compute $T(k)$ as the fraction of these pairs connected in $S(2)$.

 estimate for the probability that a link will form btw 2 people with k common friends.

4) Plot $T(k)$ as a function of k T(0) is the rate of link formation when it does not close a triangle.
Tracking Triadic Closure- Cnt.

- E-mail communication among students
 - who-talks-to-whom network
- 22,000 students
- One-year period
- Observations in each snapshot were one day apart (averaged over multiple snapshots)
 - Shows the average probability that 2 people form a link per day, as a function of the number of common friends they have

Tracking Triadic Closure- Cnt.

• Baseline
 ▪ Assume that each common friend that 2 people have, gives them an independent probability \(p \) of forming a link
 • 2 people have \(k \) friends in common => the probability they fail to form a link is:
 • \((1 - p)^k\)
 • probability that they form a link is
 • \(T_{\text{baseline}}(k) = 1 - (1 - p)^k \)

Having 2 common friends produces significantly more than twice the effect on link formation compared to having a single common friend!
Tracking Focal Closure

- The probability that 2 people form a link as a function of the number of foci they have in common.

(b) *Focal closure*
Tracking Focal Closure- Cnt.

- Supplement university e-mail dataset with information about the class schedules!
 - each class is a focus, and
 - students shared a focus if they had taken a class together.

Tracking Focal Closure - Cnt.

Nature of the focal nodes: limited number classes as compared to number of students

Students register a class but don’t show up: Less opportunity for them to be connected with their classmates.

A common focal node is a less strong reason for students to connect as compared to a common friend.

\[P(k=2) < 2 \times P(k=1) \]

Tracking Membership Closure

• The probability that a person becomes involved with a particular focus as a function of the number of friends who are already involved in it?
Tracking Membership Closure - Cnt.

- Blogging site LiveJournal
 - social network (friendship links)
 - foci correspond to membership in user-defined communities

The marginal effect diminishes as the number of friends increases.

Tracking Membership Closure - Cnt.

- Wikipedia Editors
 - social network (link → writing on user talk page)
 - foci correspond to Wikipedia pages
 - Link → editing a page!

The marginal effect diminishes as the number of friends increases

Selection and Social Influence

• Interplay btw Selection and Social Influence in producing homophily
 ▫ how do similarities in behavior btw 2 Wikipedia editors relate to their pattern of social interaction over time?
 ▫ Similarity

\[
\frac{\text{number of articles edited by both } A \text{ and } B}{\text{number of articles edited by at least one of } A \text{ or } B'}
\]

Selection and Social Influence- Cnt.

• Does **homophily** (**similarity**) arise because
 ▫ editors are forming connections with those who have edited the same articles (**selection**), or
 ▫ is it because editors are led to edit articles by those they talk to (**social influence**)?

Selection and Social Influence - Cnt.

Average similarity relative to the time of first interaction, over all pairs of editors who have ever talked.

Record similarity over time for each pair of editors A and B who have ever talked.

Plot the average similarity over all pairs.

Similarity of non-interacting pair of editors

Homophily is clearly present: pairs of editors who have talked are significantly more similar than those who never talked.

Questions?
Reading

• Ch.04 Networks in Their Surrounding Context [NCM]