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Figure 1. TopoText showing the prominent topics (encoded by color) at different spatial scales on social media around the city of Keene in the state of New
Hampshire, during the Pumpkin Festival riots in 2014. TopoText creates novel text-based visualizations to couple the multi-level textual information in
the same visual display for context preservation. (a): The multi-scale boundary-dominant visualization; (b): The multi-scale boundary-space hybrid
visualization; (c): The multi-scale space-dominant visualization.

ABSTRACT
TopoText is a context-preserving technique for visualizing
text data for multi-scale spatial aggregates to gain insight into
spatial phenomena. Conventional exploration requires users
to navigate across multiple scales but only presents the infor-
mation related to the current scale. This limitation potentially
adds more steps of interaction and cognitive overload to the
users. TopoText renders multi-scale aggregates into a single
visual display combining novel text-based encoding and layout
methods that draw labels along the boundary or filled within
the aggregates. The text itself not only summarizes the se-
mantics at each individual scale, but also indicates the spatial
coverage of the aggregates and their underlying hierarchical
relationships. We validate TopoText with both a user study as
well as several application examples.
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INTRODUCTION
Spatial data aggregated at different scales often yield differ-
ent distribution patterns. For example, the dominant crimi-
nal offense types in an entire city may be theft and robbery.
However, local regions such as a university campus may be
dominated by different crimes, i.e., liquor law violation and
noise. Thus, there are multiple interpretations of the data
depending on scale [36, 52], and acquiring an accurate pic-
ture of the city requires understanding them all. Typical ap-
proaches to support multi-scale navigation either juxtapose
multiple views of each scale for easy comparison [19, 24, 31],
combine the analysis results at different scales into a holistic
display [26, 51, 57], or focus on optimization to improve navi-
gation efficiency [30, 38, 56]. However, all these approaches
either require additional, often significant, interaction to navi-
gate through multiple spatial scales, or yield high visual com-
plexity and clutter. Furthermore, while much spatial data is
now textual in nature, such as geotagged social media, most
existing techniques are designed for scalar or tensor data.

In this paper, we propose TopoText, a technique designed for
the visual analysis of multi-scale textual information associ-
ated with spatial data, such as geo-tagged social media, crime
incident reports, and demographic data. Based on a recent
context-preserving visualization of multi-scale spatial aggre-
gates [57], TopoText maximizes screen space utilization and
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Figure 2. A heat map (left) reflects the spatial data distribution but does
not support exploring the textual information. A tag map (right) depicts
the major keywords at different regions at the current spatial scale, but
does not indicate the variation of the text data across multiple scales.
(The same data are visualized by TopoText and shown in Figure 1.)

minimizes visual complexity by using the shape of each geo-
graphic aggregate (cluster) as the major visualization element.
Specifically, TopoText eschews graphical lines or filled areas
to convey these shapes, and instead renders them using the
textual labels themselves as graphical features. This is done by
either drawing the labels along the boundary or by filling the
interior of the shape while appropriately adjusting perceptual
channels including translucency, color, orientation, etc. In this
way, the text itself indicates both the textual information as
well as the spatial extents it was aggregated from (Figure 1).

We have conducted two user studies, one on semantic contents
and one on the spatial hierarchy, to evaluate the efficacy of
different designs alternatives in TopoText. Each study asked
participants to perform two tasks using a specific variant of
the technique. Results suggest appropriate design choices for
TopoText to enable users to more effectively and efficiently
navigate in a multi-scale space. Not surprisingly, our findings
indicate that there is hardly a one-size-fits-all solution and
the optimal design to choose depends on the problem, task,
and user requirements. We also present practical applications
for TopoText through two examples on social media analysis
to demonstrate the efficacy of the technique in both a static
authoring process and an interactive exploratory environment.

BACKGROUND
Here we review prior work related to visual analysis of mul-
tiple spatial scales, text exploration of spatial data, and text-
based visualization techniques with spatial constraints.

Visual Analysis of Multiple Spatial Scales
Conventional multi-scale exploration requires heavy interac-
tions and can increase cognitive overload [6,30,32,36]. Visual
analytics research has explored juxtaposing the visual results
at different scales for direct and quick comparison [19, 24, 31],
or optimizing navigation operations such as zooming and pan-
ning [30, 38, 56]. Although these methods support intuitive
exploration across scales, they require the users to navigate to
the specific scales of interest, thus easily causing interaction
overload. To this end, several techniques have been proposed
to reduce interactions and maintain the context by combining
multi-scale results in the same visual display. Turkay et al. [51]
utilize a single chart to summarize the multi-scale statistical

results in a static visualization. Goodwin et al. [26] propose a
compact glyph design called Scale Mosaic, which consists a
set of concentric rings to encode statistical correlations from
the global to the local scales. Zhang et al. [57] adopt this idea
for a technique called TopoGroups that visualizes the spatial
clusters at multiple scales by distorting their boundaries. In
large-display visualization, a similar idea is applied that blends
multiple visual representations into the same visual space to
accommodate users of different viewing distances [29].

As an extension of TopoGroups [57], TopoText adopts a simi-
lar idea by creating a visual summarization of multi-scale spa-
tial clusters in a single display. However, unlike TopoGroups,
which visualizes the hierarchical and statistical information re-
lated to individual aggregates, TopoText focuses on the visual
analysis of the textual information, such as terms, phrases, and
topics associated with the spatial data.

Text Exploration of Spatial Data
Typical approaches to visualizing textual information extracted
from spatial data visualize them in a view that is physically sep-
arate from, but linked to, the geographical space [20, 23, 56].
However, they usually require the users to switch between
multiple views and perform additional interactions in order to
correlate the spatial and textual dimensions, potentially adding
to the cognitive load of the user. Research has explored com-
bining text within the geographical space in order to reduce the
overload. One common technique is Tag Maps [5,7,12,49,54],
a variant of tag clouds that appropriately positions the words
on a map to indicate their geographical distribution and promi-
nence. Other work also utilizes the spatial dimension for
visualization, where the position of the textual features do not
necessarily represent their geographic locations. For example,
Nguyen et al. [46, 47] sort words based on the user-defined
order and position the text on the map along the vertical skele-
ton of the geographical boundary. Brath and Banissi [9, 10]
extend common set visualization techniques [3] to coupling
textual attributes.

Unlike existing research that only focus on a single scale in
one display, TopoText adopts the geographic space to show
the multi-scale textual information in the same visual space,
aiming to reduce the interaction and cognitive overload that
exists in the previous work (Figure 2).

Text Visualization with Spatial Constraints
Text-based design space involves a rich set of the visual at-
tributes. Among them, position is probably the most critical
aspect to consider as it potentially indicates the latent rela-
tionships among different text entities and can reflect other
information dimensions when properly encoded. When po-
sitioning text, Spatial constraints commonly exist in various
text-based visualizations. The most well-known technique,
tag clouds [43], and its descendants [13, 17, 18, 33, 37, 39, 54],
typically generate a compact and occlusion-free word layout
in which the feasible position of the individual words are con-
strained by the existing words in the visual space. Other spatial
constraints are defined based on the additional information di-
mensions associated with text, such as the geometric elements
in either 2D or 3D space, where text labels provide supporting



Figure 3. The occlusion-free and context-preserving visualization gener-
ated in the TopoGroups technique [57]. Left: The multi-scale aggregate
hierarchy; Right: The corresponding geospatial representation.

information. Wong et al. [53] combine text and visual ele-
ments (e.g., nodes and edges) in a graph in order to recycle
the space resource and avoid visual clutter among multiple
elements. Maharik et al. [41] propose digital micrograms that
creates calligrams (text arranged to form a shape that illus-
trates its semantic meaning, which has been crafted by artists
and poets even before the emergence of computer graphics) by
calculating the vector fields for the graphical elements in the
image in order to guide the text layout. Xu and Kaplan [55]
introduce Calligraphic Packing, a technique that divides an im-
age into segments and warps and fills letters into each segment.
Afzal et al. [1] automate typographic maps [42], in which
the text layout is constrained by the underlying geographical
elements. Similarly, Godwin et al. [25] apply the typographic
map to visualizing semantic topics extracted from social me-
dia [25]. Moreover, the spatial constraints commonly exist in
various map design applications, where the label placement
is carefully executed in order to indicate the feature locations
and avoid potential ambiguity or contradiction [11, 28, 40, 50].

The spatial constraint in TopoText is the boundaries generated
from the multi-scale clusters. Inspired by the typographic map
technique [1], TopoText explores different design alternatives
that embed text within the individual shapes to fully utilize
the visual resources and maintain the semantic context across
scales, and further evaluates the effectiveness of these design
choices depending on the problems and tasks.

TOPOTEXT: MULTI-SCALE TEXT DATA EXPLORATION
The TopoText technique is designed to support effective visu-
alization and interactive exploration of textual data aggregated
at multiple scales. In this section, we first motivate our work
from the TopoGroups technique [57]. Then we formulate the
design goals for multi-scale text visualization, followed by the
detailed approach of the TopoText technique.

Motivation
As Figure 3 shows, TopoGroups [57] is a technique for pre-
serving context across multi-scale spatial aggregation. To-
poGroups performs hierarchical clustering on the spatial data
points [22], combines multi-scale clusters in the same visual
display and distorts their boundaries to avoid visual clutter.
This occlusion-free representation guarantees proper visual
space between the adjacent boundaries to potentially encode
different information dimensions. TopoGroups consists of vi-
sual encoding methods to indicate the statistical or categorical
information associated with individual aggregates, enabling
the users to compare and correlate them within a multi-scale

space. Nevertheless, exploring textual information aggregated
at multiple scales in TopoGroups and other visual analytics
techniques (e.g., tagmap in Figure 2) is inefficient because the
displayed text changes at different spatial scales, requiring the
users to switch between scales and mentally remember the
multi-scale results.

TopoText extends TopoGroups to tackle the challenges of vi-
sualizing text at multiple scales. Inspired by the typographic
maps [1,42], TopoText utilizes the occlusion-free property and
employs textual labels as its primary visualization entity to
reduce visual complexity. Although the design space of the
text-based visualization is broad and consists of multiple per-
ceptual channels (color, size, density, position, shading, etc.),
employing too many attributes may easily increase visual com-
plexity and overload readers. Thus, we tailored a hierarchical
aggregation and visualization model [22] to develop design
goals for a multi-scale text exploration technique. Then we
identified a subset of perceptual channels for text rendering
that meet the design goals (consideration space), proposed
appropriate design choices and rejected bad ones at the design
time (proposal space). Finally, we evaluated the efficacy of the
design candidates in a user study setup (selected solution) [44].

Design Goals
Our primary design principle is consistent with the concept
of the geographical mashup [54] by regarding textual infor-
mation as a secondary information dimension overlaid on the
primary geographical dimension. Doing so visually indicates
the correlation between these two dimensions and provides
contextual information of the spatial patterns. This can also
reduce the overload caused by switching to separate views
with textual information. Below, we detail our design goals re-
garding text data exploration of multi-scale spatial data. They
are mainly extended from a hierarchical aggregation model
for information visualization [22].

Entity Budget (G1): The entity budget for the text data is pro-
portional to the budget for the aggregate since the text labels
are visually associated with the geographic location of the cor-
responding aggregate. Hence, an aggregate with larger/smaller
spatial coverage (not necessarily a larger/smaller number of
data points) has a correspondingly larger/smaller visualiza-
tion budget for the text. Aggregates that are too tiny (e.g.,
occupy less than 5∗5 pixels in the screen space) or outside the
viewport are not visualized.

Visual Summary (G2): The accuracy of the textual infor-
mation presented at a single scale should be compromised
or at least not prioritized. Hence, for each scale we should
show a coarse-grained summary instead of details. One should
not expect that a visualization design shows the entire multi-
scale hierarchy while being able to depict the fine-grained
information at each individual scale (e.g., tag map).

Visual Simplicity (G3): The amount of the textual infor-
mation presented at a single scale should be limited. In
order words, the representation should be simple and clean
in order to avoid generating visual complexity. G2 and G3
constraint the textual information at a single scale in order to
express the textual information at multiple scales succinctly
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Figure 4. Design alternatives for visualizing the text data on a single aggregate. (a): The text labels are placed along the boundary; (b): The text labels
are filled within the area of the aggregate; (c): The space-filling visualization is enhanced by applying a transparency gradient on the text labels; (d):
The text labels that are close to the boundary are placed inside the aggregate.

and avoid overloading the users. These two principles are
especially critical within the domain of the text-based visu-
alization since the design space of text is complicated and
can easily involve design choices that confuse or overload
readers. Hence, a reasonable design should identify a small
and optimal set of orthogonal visual channels and establish a
reasonable mapping between them and the data dimensions
that need to be conveyed.

Discriminability (G4): This refers to the capability of vi-
sually distinguishing between the aggregate and data items.
The data items (e.g., the geospatial data points) are usually
represented as simple dots or more complex glyphs on the ge-
ographical map. Therefore, the visual entity of the aggregate—
the text label—is easily distinguishable from the data item
and does not require additional decoration as suggested in the
model [22] to facilitate visual discrimination.

Fidelity (G5): The fidelity issue is often involved in visual-
izing aggregates. Since only a summary of the entire textual
features is visualized (G2), the readers may have a biased
interpretation on the textual information associated with the
aggregate. Furthermore, this issue also exists in text visual-
ization due to inappropriate encoding choices. For example,
when the font size is fixed, a longer length keyword typically
occupies more screen space, which can visually mislead its
importance value and introduce perceptual bias [2]. Hence,
text encodings should be carefully executed in order to pre-
vent visual confusion. In essence, a trade-off between these
potentially contradictory principles needs to be considered.

Interpretability (G6): Inappropriate text visualization meth-
ods may also hamper its interpretability. For example, a ra-
dial layout of a set of text should make necessary adjustment
to avoid rendering the text upside-down [16, 56]; Render-
ing a word sequence along a curve with sharp angles may
result in distorted letters and inconsistent spacing between
them [1, 41, 53]. A reasonable design should avoid such flaws
related to the low-level visual attributes.

Visualizing the Text Data: A Single Aggregate
An aggregate is the basic element in the multi-scale aggrega-
tion hierarchy, which can be visually represented as a node in
the dendrogram representation (Figure 3). TopoText creates
four primary design alternatives for showing text of a single
aggregate as described below (Figure 4). These approaches
solely rely on appropriate text encoding and layout to indicate

both the textual information and the geographic characteristic
of the aggregate.

S-bd Single-scale boundary-based visualization: The text labels
are placed along the boundary (Figure 4(a)). Particularly,
TopoText identifies sharp angles along the boundary and
divides it into segments accordingly. This ensures that the
segments have low curvature without any sharp change in
direction. The text labels are then placed within the segment
with potential distortion avoided [41] (G6).

S-sp Single-scale space-filling visualization: The text labels are
filled within the area of the aggregate based on the sweep
line approach in order to fully utilize the inner space (Fig-
ure 4(b)). The text labels are clipped based on the boundary
to visually indicate the shape of the aggregate. The direc-
tion of the text layout is determined by the direction of the
diameter (the longest axis) of the polygon instead of a fixed
direction (e.g., a horizontal layout) to avoid generating short
and fragmented text lines that are hard to interpret [41] (G6).
The vertical and horizontal spacing between adjacent text
labels within one aggregate is set as a constant value in
order to provide a simple and clean visual effect.

S-tsp Single-scale translucent space-filling visualization: When
the aggregate occupies a relatively large space on the screen,
directly applying the space-filling method (S-sp) can result
in a large number of the text labels visible, potentially over-
loading the users. To this end, we apply a transparency
gradient to the visualization such that the labels close to
the boundary have a higher opacity value while those close
to the aggregate’s center have a lower opacity value (Fig-
ure 4(c)). A cubic function is used in the transparency
gradient to enhance the visual perception of the boundary.

S-bh Single-scale boundary-space hybrid visualization: The text
layout strategy in this design is similar to the space-filling
visualization (S-sp), except that only the text labels that
are close to the boundary are visualized to visually indicate
the boundary shape (Figure 4(d)). The distance measure is
based on the Euclidean distance between the center point of
the text labels and the edge of the polygon that is the closest
to the center point.

We note that in the four proposed design choices the position
of the text is determined based on the available space resource
of the aggregate and does not reflect the spatial distribution



of the keywords within the aggregate (G2 and G3). Further-
more, the text labels in an aggregate have a fixed font size.
The rationale behind these designs is that we aim to provide
a visual semantic summary that doesn’t cause potential infor-
mation overload by employing too many visual channels (G2).
The color of the text can be used to encode information such
as topics, sentiment, etc., and TopoText allows the users to
change the setting interactively.

Visualizing the Text Data: Multi-Scale Aggregates
As the multi-scale aggregates introduce more complexity to the
visualization space, an effective visual representation should
be free of visual occlusion and constrain the number of the
visual elements presented to the user. We enumerates a set of
potential design candidates by extending the single-scale de-
sign choices (Section 3.3) to the multi-scale aggregates. Then
we identify the potential limitations in each design, perform
appropriate refinement and propose the satisfying solutions
that are listed below [44]. The visualization results of these
solutions are shown in Figure 1.

M-bd Multi-scale boundary-dominant visualization: The
boundary-based technique (S-bd) is applied to the multi-
scale aggregates that are not at the lowest aggregation level
(Figure 1(a)). Since the lowest-level aggregates do not have
children in their inner space, the space-filling visualization
(S-sp) is applied to them in order to improve the space
resource utilization (Figure 5(a)). This approach generates
an occlusion-free visual result by taking advantage of the
proper spacing between the boundaries [57].

M-bh Multi-scale boundary-space hybrid visualization: The hy-
brid visualization (S-bh) is applied to the multi-scale ag-
gregates that are not at the lowest aggregation level (Fig-
ure 1(b)). To avoid visual clutter generated by the overlap-
ping aggregates (typically the aggregates that have a parent-
children relationship), the child aggregate is visualized on
top of the parent aggregate such that the parent’s area that
is covered by the child is invisible to the user. Because the
direction of text is dependent on the diameter of the aggre-
gate, this variation in the direction makes it easier for users
to distinguish the adjacent aggregates [1]. Furthermore, the
text labels at a higher (abstract) level are more transparent
and sparse while those at a lower (detail) level are more
opaque and dense [45]. Similar to M-bd, the space-filling
technique is applied to the lowest-level aggregates.

M-sp Multi-scale space-dominant visualization: The translucent
space-filling visualization (S-tsp) is applied to the multi-
scale aggregates that are not at the lowest aggregation level
(Figure 1(c)). Simply applying the space-filling technique
(S-sp) may produce significant information overload (Fig-
ure 5(b)). Similar to M-bh, the opacity and density of the
text increases from the higher-level aggregates to the lower-
level ones. Similarly, the space-filling technique is applied
to the lowest-level aggregates.

We have conducted a user study to evaluate the efficacy of
the aforementioned design choices in conveying the textual
information of the multi-scale aggregates while retaining the

a b

Figure 5. (a): Applying the boundary-based visualization (S-bd) to the
multi-scale aggregates. The space utilization of this design can be im-
proved by filling the text labels in the lowest-level aggregates (shown in
the black rectangles). (b): Applying the space-filling visualization (S-sp)
to the multi-scale aggregates. Since the number of the text labels in the
visualization can potentially be large, this design may add significant vi-
sual overload to the user.

geographical and hierarchical relationships of these aggregates.
The results are reported in the evaluation section.

We also note that additional visual attributes besides the tex-
tual features can be integrated to encode different informa-
tion dimensions. For example, the background color of an
aggregate can be used to encode the data density or the ag-
gregation level [57] (Figure 7). A blue-red scheme is applied
in TopoText by default. But more color schemes are sup-
ported to account for personal preferences and accommodate
color blindness. When the aggregate’s background is rendered,
TopoText chooses a color scheme that has high contrast with
the text color for the purpose of better readability. TopoText
also applies the halo effect on the boundary of the aggregate in
order to produce a visual effect that the child aggregates stack
on top of their parents, thus enhancing the perception of the
aggregates’ hierarchy [57] (Figure 7 and Figure 8). The users
can toggle the halo on or off in the interface of TopoText.

INTERACTION AND INTERFACE IN TopoText
The interface of TopoText mainly consists of a geographic
map view that visualizes the multi-scale text data (Figure 7(b))
and a tree view that overviews the multi-scale hierarchy (Fig-
ure 7(a)). The map view visualizes the aggregates that intersect
with the current viewport and occupy a reasonable amount of
screen space, e.g., more than 100 pixels (G1). As the user
navigates to different regions and scales on the map, the nodes
(aggregates) that are visible in the viewport are highlighted
in the tree view accordingly. When a node of interest in the
tree view is selected, the map smoothly zooms and pans to
center the corresponding aggregate in the viewport. The two
coordinated views enable the users to navigate to different
scales and details on the map while being able to maintain the
context of the entire analysis space.

When the text-based techniques are applied to the aggregates
that have a limited visual budget (e.g., the aggregate occupies
a relatively small region), the text labels may be partially visi-
ble to the users and thus hamper information fidelity (G5) or
interpretability (G6). In these cases, TopoText utilizes a set
of boundary-based encoding strategies from TopoGroups [57]
that typically visualize a sequence of colored segments or
colored dashes on the boundary to summarize relevant infor-



mation, such as the volume of the messages corresponding to
the different topics (the aggregate B in Figure 7(b)).

Given a limited spatial visualization budget for an aggregate,
TopoText provides common methods to determine the top
K representative keywords to visualize, which includes term
and inverse document frequency (TF-IDF), latent Dirichlet
allocation (LDA), and lexicon-based matching, and supports
the users to toggle between different options and adjust the
value of K. Furthermore, as the user hovers over a specific
textual feature in the aggregate or searches for a keyword in
the control panel, the aggregates that contain the same feature
highlight accordingly (Figure 7(e)).

As TopoText visualizes a summary of the textual information,
a detail-on-demand interaction design is supported to enable
quick access to detailed information that is not presented in
the current visualization. When the user specifies an aggregate,
the child aggregates inside it fade out and the space-filling tech-
nique (S-sp) is applied to the aggregate for the purpose of fully
utilizing the inner space to present textual features. Moreover,
when the user performs a scrolling operation on the aggregate,
the textual labels dynamically move up or down depending on
the scrolling direction, thus presenting the previously invisible
text to the user [47].

IMPLEMENTATION DETAILS
TopoText is implemented based on a two-layered SVG can-
vas using the D3 toolkit [8]. A map layer (OpenStreetMap)
provides a gray-scale geographic context at the bottom of the
canvas. The visualization layer stays on top of the map and
renders text labels, aggregate boundaries and halos.

To position text labels along the boundary (Figure 4(a)), Topo-
Text divides aggregate boundaries into segments of low cur-
vature and renders the text using the <textPath> element.
When the labels are visualized on the path iteratively, the
<startOffset> attribute is used to define the position of
the label and updated accordingly that guides the layout of the
label to be rendered next. To fill the text inside an aggregate
(Figure 4(b)), TopoText identifies the diameter of the polygon
and calculates the bounding box in parallel with the diameter.
TopoText then positions the text labels inside the bounding
box using the <transform> attribute such that the orienta-
tion of text is in parallel with the diameter. An <clipPath>
element is initialized based on the aggregate boundary and
forces the rendering to be masked against the boundary.

TopoText implements the transparency gradient (Figure 4(c))
using the <linearGradient> element. The gradient
vector is calculated based on the relative position of the
text labels and the center of the polygon and is spec-
ified using the <x> and <y> attributes associated with
the <linearGradient>. The <stop> element and its
<offset> attribute are used to define the ramp of the opac-
ity value to use on a gradient. As only a linear gradient is
supported in the SVG, we sample multiple points along the
gradient vector to approximate a higher-order gradient such as
a quadratic or cubic function. We found 5 points to produce
a visually appealing effect given the fact that the text labels
have relatively short lengths.

EVALUATION
To evaluate TopoText, we focus on the two major aspects that
are typically involved in the multi-scale analysis and text anal-
ysis tasks. (1) How effective does the technique express the
textual information related to the multi-scale aggregates? (2)
How effective does the technique reveal the geographic char-
acteristics of the multi-scale aggregates and their relationships
in the hierarchy?

Participants, Apparatus and Procedure
16 participants (4 female, 12 male, age range of 24 to 30)
were recruited in the first study, and 14 participants (7 female,
7 male, age range of 22 to 64) were recruited in the second
study. Most of the participants were students and staff from
an engineering college and had some basic understanding of
geographic applications, data clustering and data visualization.
The entire study lasted around 30 minutes and each participant
was paid $5 for participation in one study. We used a Dell
monitor with a 1920×1080 resolution to present the system
interface and the task description. The major visualization
occupies an area of 1024×1024 within the screen space.

The procedures for the two studies were similar but were
conducted independently. The investigator introduced the par-
ticipant to the research background as well as the visualization
techniques that were being tested. Then a training session
was conducted to allow the participants to get familiar with
the designs and the tasks. Special characters or symbols that
appeared in the text-based visualization were also explained
at this stage to avoid causing potential confusion to the partici-
pants (e.g., the hash (“#") or the AT (“@") symbol in a tweet).
For the study that tests the textual information, the investigator
also presented the participants a list of keywords that would
be shown in the tasks, which familiarized the participants with
the text content. The participants were asked to raise any ques-
tions during the training session. The main study included a
set of multiple-choice questions which were answered after-
wards. The accuracy and the completion time were recorded
for each trial. The participants ended the study by finishing all
the trials and filling in a post-experiment survey.

Techniques and Task Design
The techniques being evaluated in the two studies included the
three multi-scale techniques: the boundary-dominant visualiza-
tion (M-bd), the boundary-space hybrid visualization (M-bh),
and the space-dominant visualization (M-sp). In order to focus
on typography-based design choices (i.e., involving only text
in the visualization and varying the visual attributes associated
with text labels to generate design alternatives) and reduce
the complexity of the evaluation process, the user studies did
not involve additional visual channels such as the background
color of the aggregate or the halo effect along the boundary.
For the same reason, we did not design and involve a base-
line technique (i.e., the TopoGroups [57] technique combined
with a word cloud visualization to show semantic content) for
comparison. We note that these are potential limitations of the
evaluation and we leave them as future work.

Inspired by previous research on representative analytical tasks
regarding geospatial exploratory analysis [4, 35, 48], we in-



Table 1. The analytical task design in the user studies.
User
Study

Highlighted entity
in the visualization

Analytical task Task
taxonomy

Study 1:
Semantics

Multiple aggregates
{A,B,C}

Identify the one in {A,B,C} that
contains a target keyword

Locate,
search

One aggregate A and
multiple aggregates
{X ,Y,Z}

Identify the one in {X ,Y,Z} that
has one or more keywords in
common with A

Compare,
correlate

Study 2:
Hierarchy

Multiple aggregates
{A,B,C}

Identify the one in {A,B,C} that
is at a higher (lower) aggrega-
tion level

Rank,
compare

One aggregate A and
multiple aggregates
{X ,Y,Z}

Identify the one in {X ,Y,Z} that
is a child of A

Locate,
compare

(text)

volved four types of tasks in the two studies (Table 1). The first
two tasks evaluated the capability of the technique to convey
textual information (Study 1). The last two investigated the
effectiveness of the technique to convey geographic and hierar-
chical relationships among the aggregates (Study 2). For each
trial, a static image was shown to the participant, in which
one of the techniques being tested was applied to visualize the
textual information of the multi-scale aggregates (similar to
Figure 1). As Table 1 shows, specific aggregates related to the
task were highlighted in the image using a black arrow and an
upper case letter, such as X, Y, Z. The participants were asked
to read the image, perform the corresponding task, and choose
an answer from a list of options. For example, in the first
task, three aggregates labeled as A, B and C are highlighted
to the participant, and they are asked to find the aggregate
that contains a target keyword W in the image. As a control
variable, the color of the text labels in the image remains a
constant value. We use synthetic data in the two studies.

For Study 1, we controlled the difficulty level D of each trial
based on the complexity of the textual information, which
can be quantified based on the number of distinct keywords
for each aggregate shown in the visualization (we use 2, 4
and 8 in the study). The three techniques were presented in a
counter-balanced order to prevent potential bias. The entire
study consists of 3 (technique) × 2 (task type) × 3 (difficulty
level) × 2 (repetition) = 36 trials. For Study 2, we controlled
the difficulty level D of each trial based on the complexity
of the hierarchy, which is quantified based on the number of
scales in the hierarchy, or the depth of the hierarchy (we use
2, 4 and 6 in the study) Similarly, the three techniques were
presented in a counter-balanced order to prevent potential bias.
The entire study consists of 3 (technique) × 2 (task type) × 3
(difficulty level) × 2 (repetition) = 36 trials.

Study 1: Results and Observations
The accuracy across the three techniques ranges from 90.6%
to 94.1% (92.5% on average). This is because the visualization
provides the necessary information—the keywords to search
among aggregates—for the participants to identify the correct
answer and there was no time limit for the tasks.

The participants spent the most time on the boundary-
dominant technique (M-bd) (24.38 seconds), followed by
the hybrid technique (M-bh) (16.83 seconds) and the space-
dominant technique (M-sp) (14.72 seconds) (Figure 6(a)).
Visualization technique V had a significant main effect on
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Figure 6. Completion time for the two studies. Left: The space-
dominant technique (M-sp) was the most effective for understanding the
textual information visually. Right: The participants spent the least time
identifying the aggregates’ hierarchy based on the boundary-dominant
technique (M-bd).

completion time (F(2, 26) = 17.14, p < .0001). Pairwise
comparison between visualization techniques using a Tukey
HSD showed that the pairs (M-bd, M-sp) and (M-bd, M-bh)
have statistical significance (p < .0001). Difficulty level D
also had a significant main effect on completion time as well
(F(2, 26) =10.59, p < .0001). These results indicate that the
boundary-dominant technique (M-bd) was inefficient in con-
veying the textual information. This can be explained by the
fact that placing text on the boundary may potentially distort
the letters and hamper readability. In order to read text along
the boundary, the participants had to visually cover a larger
distance in the screen space, thus requiring a longer time. In
contrast, the space-dominant technique (M-sp) and the hybrid
technique (M-bh) rendered text in a fixed direction without
distortion, enabling an easier visual perception. Moreover, as
the space-dominant technique filled text entirely, the amount
of information presented within the unit of screen space was
maximal. This enabled the users to focus on a smaller region
to search or match keywords, thus reducing the overhead to
switch visual focus across distant areas on the screen.

The subjective feedback was consistent with the analysis on
the completion time. 9 participants (64%) agreed that the
space-dominant technique (M-sp) was the most efficient. One
participant noted that filling text compactly helped the finding
of keywords in the cluster. The transparency distinguishes the
boundary of clusters. Most participants (86%) disliked the
boundary-dominant technique (M-bd). One participant men-
tioned that I have to keep “relocating" my eye focus in order to
read the text. Another participant noted that words are written
in different orientation, so I had to twist my head to read words.
3 participants (21%) preferred the hybrid technique (M-bh)
over the space-dominant technique (M-sp). They seemed to
have been distracted by the transparency effect: I had to squint
a lot to read the fading out effect.

Study 2: Results and Observations
The accuracy across the three techniques ranges from 90.9%
to 95.2% (93.2% on average). Similarly, the participants were
able to successfully understand the hierarchical relationships
within the visualization presented and the time spent on each
trial was not constrained.



In terms of the completion time, the participants spent the
most time on the hybrid technique (M-bh) (14.44 seconds),
followed by the space-dominant technique (M-sp) (13.57 sec-
onds), followed by the boundary-dominant technique (M-bd)
(11.66 seconds) (Figure 6(b)). Visualization technique V had
a significant main effect on completion time (F(2, 30) = 5.37,
p < .005). Pairwise comparison between visualization tech-
niques using a Tukey HSD showed that the pairs (M-bd, M-sp)
and (M-bd, M-bh) have statistical significance (p < .05). Dif-
ficulty level D had a significant main effect on completion
time as well (F(2, 30) =22.97, p < .0001). The results indicate
that the boundary-dominant technique (M-bd) was the most
effective design for visualizing the hierarchical structure of
the multi-scale aggregates. In the perspective of visual percep-
tion, this technique utilized the minimum space resource that
was required to convey the aggregate hierarchy, thus reducing
the cognitive overload to the readers. The space-filling-based
approaches (M-bh and M-sp) were less effective, especially
when a parent had too many children and the children were lo-
cated near the boundary of the parent. In these cases, the visual
space between the adjacent boundaries were filled with text
labels and made it challenging for the readers to understand
the shape of the aggregates. In the experiment, the participants
spent less time on average on the space-dominant technique
(M-sp) than on the hybrid technique (M-bh). One explanation
may be the fact that the visual perception of the boundary
was enhanced by the higher-order transparency gradient. In
contrast, the hybrid technique had labels of varying sizes near
the aggregate’s boundary, adding potential visual confusion to
the readers. However, we note that we did not find statistical
significance between the two techniques.

In the post-experiment survey, all of the participants agreed
that the boundary-dominant technique (M-bd) was the most
effective in terms of conveying the hierarchical relationships
among aggregates. One participant noted that the boundaries
of the clusters were clear and distinct and helped me iden-
tify the children easily. I had to put more efforts in the other
designs. Another participant noted that it’s clear even for a
deeply nested structure. A majority of the participants (75%)
disliked the hybrid technique (M-bh). The major limitation
commented by them was its inefficiency at distinguishing be-
tween the parent and children visually. One participant who
disliked the hybrid design said that the words along the bound-
ary had different lengths and looked messy. One participant
mentioned that the transparency change helped to better rec-
ognize the boundary shape compared to the one without it.

Takeaways: The two user studies show that visualizing the
text on the boundary (M-bd) more effectively depicts the ag-
gregates’ hierarchy while filling text inside the space (M-sp,
M-bh) more effectively convey the textual information. These
results essentially reflect the fact that when the visualization
budget is limited, a trade-off exists between retaining an effec-
tive overview of the multi-scale hierarchy and providing de-
tailed information related to individual aggregates. In the typ-
ical multi-scale exploration process, the boundary-dominant
approach might be suitable for the initial or pilot stage that
requires the analysts to obtain a coarse-grained understand-
ing of the analysis space and identify potential exploration

directions. With the analysis narrowed down to small-scale
subspaces, the space-dominant approach can present more
detailed information and support a fine-grained investigation.
However, designing an optimal solution is challenging, and
requires taking into account different perspectives such as the
problem, task and user requirement.

PRACTICAL APPLICATIONS
We present two use cases to demonstrate the capability of
TopoText for visualizing the textual information and maintain-
ing the semantic context in the multi-scale aggregate space.

Keene Pumpkin Festival Riot
We analyzed the location-based social media (Twitter, 1507
tweets) generated during the 2014 riots in the city of Keene
in the state of New Hampshire during its annual pumpkin
festival. We started the exploration by extracting the trending
topics during the event using LDA topic modeling. The top
five topics related to jobs ("hiring", "job", "career", "retail"),
festival ("#pumpfest", "pumpkin", "#pfest"), entertainment
("drinking", "beer", "music"), riot ("riot", "crazy", "injured")
and police ("cop", "helicopter", "police"). We filtered out the
job-related topic since most of the relevant posts were online
advertisements, and visualized the textual information related
to the other three topics in TopoText as shown in Figure 7(b).
The festival-related topics were prominent at the abstract level
in this region, as the majority of the keywords associated
with the outward aggregate were rendered in yellow. Some
keywords related to the riot and law enforcement (e.g., swat,
riot, crazy) also appeared in the outward aggregate, indicating
that quite a few social media users discussed about the riot.
We also noticed that at the lower levels, a large aggregate
was generated around the Keene State College that mainly
contained riot-related (e.g., crazy, insane) and police-related
(e.g., helicopter) keywords (aggregate A). This reflects the fact
that the riot mainly originated from the college. In contrast, the
northern (aggregate B) and eastern (aggregate C) regions had
more tweets related to the festival and entertainment. Since the
aggregate B occupied a relatively small screen space, instead
of the text-based visualization, the yellow dashed lines [57]
were rendered on the boundary of the aggregate to indicate the
major topics were festival-related.

We zoomed further into the college region to explore the event
in details (Figure 7(d)). Two large aggregates (bottom left) on
the campus were identified that contained keywords including
"#injured", "#flipped", "#dumpster", "pepper", "spray", etc.,
which indicated that the celebration spun out of control and
the law enforcement had to use pepper spray to subdue the
rioters. We hovered on a keyword (e.g, "#injured"), with the
interface automatically highlighting similar keywords in other
aggregates (Figure 7(e)). We then navigated and zoomed into
the northern region in the city (Figure 7(c)) and identified that
this region was the downtown of the city (Central Square)
where there were a lot of bars and clubs. Since the riot did not
spread to this region, the riot-related keywords rarely appeared.

The topic summaries provided by TopoText allow the users to
not only capture what has happened (e.g., the chaos), but also
understand to what spatial extent the event has spread (e.g.,
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Figure 7. The interface of TopoText consists of a geographic map view (b) for visualizing the multi-scale aggregates and their textual information and a
tree view that provides an overview of the multi-scale hierarchy (a). TopoText utilizes a blue-red color scheme to render the inner space of the aggregates
based on their aggregation levels. TopoText also allows for text-oriented interactions: e.g., hovering on a specific keyword highlights similar keywords
in other aggregates (e).

the campus area) and identify locally concentrated actionable
information (e.g., "flipped", "dumpsters") that were overshad-
owed by more general discussions (e.g., "crazy", "insane").
By utilizing the visual outcome from TopoText, an emergency
manager is able to further evaluate the scale and impact of
the event and perform effective resource allocation (e.g., city
police or college police); A journalist who hear a series of
reports from the witnesses at the incident is able to corroborate
the first-hand accounts to determine whether each story fits
with the overall trends of what was happening at the time.

Republican National Convention
We investigated the social media posts (8839 tweets) collected
during the 2016 Republican National Convention (RNC) in the
region around the city of Cleveland, OH. Similarly, we filtered
out job-related posts and identified four major topics: RNC-
related ("gop", "#rnc", "convention"), traffic-related ("vehicle",
"blocked", "accident"), protest-related ("#protest", "police",
"#rally") and drinking-related ("drinking", "wine").

As Figure 8 shows, the region was dominated by the RNC-
related topic since the outward aggregate mainly contained
keywords such as "#rncincle", "trump" and "convention". As
we continued to examine the lower levels, the multi-scale text-
based visualization clearly revealed different topical patterns
at the city level. A large aggregate around the city of Cleve-
land (highlighted in the figure) showed a high frequency of
RNC-related and protest-related topics, potentially enhancing
situational awareness for public safety personnel. In contrast,
the nearby cities surrounding Cleveland contained more posts
relevant to drinking and traffic. By further investigating the
details associated with the individual aggregates, we found

that the delegates and attendees were accommodated in the
hotels in the nearby cities and suburbs and there were traffic
restrictions near the convention center, causing some conges-
tion and accidents. Therefore, the visual outcome generated
by TopoText effectively preserves the semantic context and
highlights the variance of spatial patterns at multiple scales.

DISCUSSION
TopoText implements a hierarchical aggregation and visualiza-
tion model [22] by effectively allocating screen space to the
multi-scale aggregates and visualizing the semantic summary
accordingly. Unlike the original model [22] that “treats” the
aggregates at different levels equally, TopoText visually high-
lights the ones at the lowest level in the current viewport. This
is achieved by showing the lowest-level aggregates (focus)
on top of other levels (context) and increasing their opacity
value [14]. The rationale behind this design is that in various
analytical tasks within a hierarchical space, the users are re-
quired to navigate from the top level (abstract) to the bottom
level (detail). Since the visual representation typically consists
of a sub-space of the hierarchy, highlighting the lowest-level
aggregates in the current sub-space can visually indicate the
entry to the deeper levels and effectively guide the users to
navigate within the multi-scale hierarchy.

The text labels rendered within the aggregate or on its bound-
ary may potentially be truncated to visually indicate the shape
of the aggregate. We note that this truncation issue is an inher-
ent visual output in TopoText. Essentially, this is an NP-hard
packing problem [15] that aims to arrange bins of different
sizes into a container in order to minimize the empty space
within the container. While applying advanced layout algo-
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Figure 8. Applying the TopoText technique to visualizing the social me-
dia data around the city of Cleveland, OH, during the 2016 Republi-
can National Convention (RNC). The halo effect is enabled to highlight
the aggregates’ hierarchy. While the region shows a high frequency of
RNC-related topics, the area of Cleveland also contains topics related
protest. In contrast, suburban areas have more posts relevant to traffic
and drinking.

rithms may reduce the truncation issue, it is beyond the scope
of this work. TopoText summarizes the semantic content of
multi-scale aggregates by rendering the top K (i.e. less than
10) representative words for each one (G2 and G3). Although
the number of words associated with an aggregate could po-
tentially be large, visualizing too many distinct words within
the multi-scale context can easily overwhelm the user. When
the user is interested in a specific aggregate and narrows down
(i.e., perform the zooming operation) to that region, the visual
space for that aggregate is enlarged accordingly to accommo-
date more distinct keywords.

TopoText utilizes the boundary or the inner space of the ag-
gregate for the visual budget to present the relevant textual
information. Intuitively, the amount of visual budget is propor-
tional to the area occupied by the aggregate in the geographic
space. Considering that the complexity of the semantic for
an aggregate is usually proportional to the volume of the data
within it, instead of the occupied area, this approach may in-
troduce a potential inefficiency of the visual space utilization.
For example, the tweets posted around the college stadium
during a major football game may be more complex than those
posted on a common day across the campus, although the
aggregate around the stadium occupies a much smaller area
than the entire campus. Overcoming this inconsistency be-
tween the semantic dimension and the geographic dimension
requires additional distortion or transformation to the visual
representation. A potential solution for this might be to de-
sign a cartogram [21] that distorts the shape of the aggregates
such that the area is proportional to the complexity of the
semantics. However, since the aggregates are associated with
a geographic context, this distortion can easily cause fidelity
issues (G5) and add visual confusion to the users. In general,
a trade-off exists between the semantic expressiveness and the
geographic accuracy. Which factor to focus on depends on the
problems and user requirements.

TopoText generates high-quality and resolution-independent
SVG imaging that supports efficient interaction handling as the
SVG elements are organized as nodes in the browser DOM.
However, the rendering performance may degrade when a
large number of graphical elements are added in the DOM.
While the current interface supports nearly interactive response
(the latency is usually less than 2 seconds), the rendering
performance can further be improved by precomputing the
visual results at different spatial scales and organizing them as
hierarchical map tiles in order to improve the interactivity and
alleviate the rendering overload in the browser side.

TopoText uses a density-based clustering algorithm (DB-
SCAN) to establish a static multi-scale hierarchy. The clus-
tering process is performed in the back-end server for per-
formance efficiency. Future work includes extending Topo-
Text to analyzing streaming datasets in real-time scenarios.
This can be achieved by managing a moving time window
and visualizing the dynamic aggregate hierarchy within the
window. Additional perceptual support, such as animated tran-
sitions [56], can provide a smooth transition between real-time
visual changes in adjacent frames.

The multi-scale hierarchy established in TopoText represents
the spatial proximity of data points at different scales. The
application of TopoText is not limited to geographic datasets
and includes various types of spatial datasets. It can also be
applied to non-spatial datasets that can be spatialized into the
2D space such that the pair-wise distance of the 2D points
represents the proximity of certain data dimensions. Typical
examples include low-dimensional representations generated
from high-dimensional data based on dimension reduction
(e.g., SOM, MDS, t-SNE) [27, 34]. As the projection often
preserves the pairwise distance of data points, summarizing
the multi-scale aggregation hierarchy at the low dimension
can potentially provide the insight into the characteristics of
the data patterns in the original high-dimensional space.

CONCLUSION
We have presented a text-based visualization technique called
TopoText for maintaining the semantic context in the multi-
scale aggregation space. Our primary contribution includes
a set of visual encoding and layout strategies that spatialize
visual text labels on the boundary or in the inner space of the
aggregates. We have explored and evaluated several design
choices that utilize different visual attributes of text labels
including color, opacity, density and orientation for multi-
scale text exploration tasks.

Our future work includes optimizing the rendering perfor-
mance of TopoText by precomputing the visualizations and
organizing them as map tiles. We also plan on extending Topo-
Text to supporting other types of spatial data, or non-spatial
data that can be spatialized in a meaningful way. Finally,
we plan on extending TopoText to exploring the multi-scale
aggregation dynamics in real-time applications.
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