Efficient Object Search in Clutter via Image Torque

Ching L. Teo*, Austin Myers, Cornelia Fermüller and Yiannis Aloimonos
University of Maryland
ICRA 2013

Sponsors:
Where is the ‘bottle’ in the scene?
Where is the ‘bottle’ in the scene?
Our Contribution

• Propose a top-down mechanism for selecting *fixation points* that corresponds to the target via a *mid-level* contour grouping mechanism.
Grouping contours via Image Torque\cite{1}

- For every edge point q with center p:

\[
\tau_{pq} = \|r_{pq}\| \sin \theta_{pq}
\]

- For a patch P:

\[
\tau_P = \frac{1}{2|P|} \sum_{q \in E(P)} \tau_{pq}
\]

– search over several scales for patch P.

\cite{1} M. Nishigaki et al. The image torque operator: A new tool for mid-level vision. CVPR 2012
Properties of Image Torque

- τ_P has the following properties
 - Largest response for *closed contours* at a particular scale.
 - Ignores textured regions.
 - Maximum torque values occurs at region centroids

- Indicative of potential object locations.

![Image with triangle inputs and corresponding torque outputs](image.png)

Input:
- 40 x 40 triangle

Patch size:
- 2
- 10
- 21
- 30
Making τ_P Object Specific: τ_P^m

• By adjusting weights for each τ_{pq}:

 – Conforms to shape of target object within a predefined window size:

 $$\tau_P^m = \frac{1}{2|P|} \sum_{q \in E(P)} m_O(\tau_{pq})$$

• with

 $$m_O(\tau_{pq}) = \frac{\tau_{pq}}{d_{qs}}$$

• d_{qs} is the Euclidean distance between edge point q to the target shape.
Why does this work for clutter?

- τ_P gets confused by clutter:

 - Left: no clutter – works well $\rightarrow \tau_{P'}=0$
 - Right: clutter – similar torque values with objects $\rightarrow \tau_{P(A)} \approx \tau_{P(B)} \approx \tau_{P(C)} \approx \tau_{P'} \neq 0$
\(\tau_P^m \) is robust to clutter

- E.g. Looking for shape A:

- Using \(\tau_P^m \) – edges that are non-conforming are given less weights \(\Rightarrow \tau_{P(A)}^m \gg \tau_{P(B)}^m \approx \tau_{P(C)}^m \approx \tau_{P'}^m \neq 0 \)
Example Results

Input RGB + Depth

Flashlight

Cap

Tissue Box
Implementation Details

Model Poses

RGB + Depth Input

Pose selection

Scale selection
Experiments

• (a) Cluttered data collected at UMD – 3 sequences, 7 objects
• (b) U Washington Dataset of common objects – 8 sequences, 6 objects

• Evaluate by counting the rank of correct fixations from total fixations returned.
Results

(L) CMC (Cumulative Match Curves) for Clutter sequences,
(R) CMC for U Washington sequences
On-going improvements

• Searching over full shape model is not fast in practice.
 – **Learn** salient contours from annotated examples
 – **Match** partial contour fragments to models
 – **Reweigh** torque based on matching scores

• Learned contours examples (ETHZ-Shapes):
Matching: Torque Shape-Context

Shape-Context Only

Torque Shape-Context

Edge Weights
Example results

Edge Weights

\[\tau^m_P \]

RGB Input

Seq 2

Seq 3
Outlook and Future Work

• Modify the image torque in other ways:
 – Generic set of *shape primitives* common among a set of objects.

• Linking torque to higher-level descriptions: e.g. *attributes*.

• Extend approach with object segmentation for recognition.
Thanks! Questions?

• Contacts:
 – Ching L. Teo
 \texttt{cteo@cs.umd.edu}

• Acknowledgements: