Problem

Function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\left|f(x)+f^{\prime \prime}(x)\right| \leq 1$ for all x. Given that $f(0)=f^{\prime}(0)=0$, show that $|f(x)| \leq x$ for all $x \geq 0$.

Solution: Let
$g(x)=\sqrt{f}(x)^{2}$
Then, whenever $\sqrt{f(x)^{2}+f^{\prime}(x)^{2}} \neq 0$,

$$
\begin{aligned}
g^{\prime}(x) & =\frac{\frac{d}{d x}\left(f(x)^{2}+f^{\prime}(x)^{2}\right)}{2 \sqrt{f(x)^{2}+f^{\prime}(x)^{2}}} \\
& =\frac{2 f(x) f^{\prime}(x)+2 f^{\prime}(x) f^{\prime \prime}(x)}{2 \sqrt{f(x)^{2}+f^{\prime}(x)^{2}}} \\
& =\left(f(x)+f^{\prime \prime}(x)\right)\left(\frac{f^{\prime}(x)}{\sqrt{f(x)^{2}+f^{\prime}(x)^{2}}}\right) .
\end{aligned}
$$

By assumption, $\left(f(x)+f^{\prime \prime}(x)\right)$ lies between -1 and 1. Additionally, the quotient $f^{\prime}(x) / \sqrt{f(x)^{2}+f^{\prime}(x)^{2}}$ must lie between -1 and 1 . (For any real numbers a and $b,|b| \leq \sqrt{a^{2}+b^{2}}$.) Therefore, $-1 \leq g^{\prime}(x) \leq 1$ whenever $g(x) \neq 0$.

We would like to show that $|f(x)| \leq x$ for all $x>0$. Since

$$
|f(x)| \leq \sqrt{f(x)^{2}+f^{\prime}(x)^{2}}=g(x)
$$

it suffices to prove that $g(x) \leq x$ for all $x>0$.
Note that $g(0)=\sqrt{f(0)^{2}+f^{\prime}(0)^{2}}=0$. Suppose that there exists some positive value x_{0} which makes $g\left(x_{0}\right)$ greater than x_{0}. The inequality $g^{\prime}(x) \leq 1$ implies that the graph of $g(x)$ must lie above the line segment

$$
y=x+\left(g\left(x_{0}\right)-x_{0}\right), \quad 0 \leq x \leq x_{0} .
$$

In particular, $g(0) \geq g\left(x_{0}\right)-x_{0}>0$, which is a contradiction. Therefore, $g(x) \leq x$ and $|f(x)| \leq x$ for all $x \geq 0$.

