Problem

Let $f: \mathbb{Z} \to \mathbb{Z}$ be a function satisfying the following two conditions:

1. $f(n + a + b) - f(n + a) - f(n + b) + f(n) \in \{-1, 0, 1\}$ for all n, a, and b.

2. For all n and a, there are an infinite number of values for b such that $f(n + a + b) - f(n + a) - f(n + b) + f(n) = 0$.

Show that for some pair of reals (x, y), either $f(n) = \lfloor xn + y \rfloor$ for all n, or $f(n) = \lceil xn + y \rceil$ for all n.

(Math Problem of the Week, 8/18/96)
Carl Miller