Problem

For any positive integer n, let \mathbf{P}_{n} denote the set of sequences of positive integers which are nonincreasing and which sum to n. For any sequence $S \in \mathbf{P}_{n}$, let $f(S)$ be the product of the terms of S multiplied by the factorials of the number of times each distinct term appears. For example,

$$
f(5,3,3,2,2,2,1)=(5 \cdot 3 \cdot 3 \cdot 2 \cdot 2 \cdot 2 \cdot 1)(1!\cdot 2!\cdot 3!\cdot 1!)=4320 .
$$

Prove that for any n,

$$
\sum_{S \in \mathbf{P}_{\mathbf{n}}} \frac{1}{f(S)}=1
$$

(Math Problem of the Week, 8/11/96)
Carl Miller

