Problem

Let x and y be real numbers. Let

$$
\ldots, F_{-2}, F_{-1}, F_{0}, F_{1}, F_{2}, \ldots
$$

be the doubly-infinite sequence that satisfies $F_{0}=x, F_{1}=y$, and $F_{k}=F_{k-1}+F_{k-2}$ for all $k \in \mathbb{Z}$. Show that

$$
\inf \left\{\left|F_{k}\right|: k \in \mathbb{Z}\right\} \leq \sqrt{\frac{\left|x^{2}+x y-y^{2}\right|}{5}}
$$

(Math Problem of the Week, June 15, 1997)
(Problem \#10825 in the American Mathematcal Monthly, October 2000)

Carl Miller

