Problem Set #2

Due date: Wednesday, February 11th.

1. Find a self-dual binary [6, 3]-code.

2. Suppose that n and d are positive integers with $d > 2n/3$. Prove that does not exist a binary $[n, 2, d]$-code.

3. Suppose that a message consisting of 6 zeroes is sent through a binary symmetric channel with bit-error probability $p = 0.1$. What’s the probability the received message contains exactly three 0’s and three 1’s?

4. (a) Let $C \subseteq \mathbb{F}_2^7$ be the code with generator matrix

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

Find a parity check matrix for C.

(b) Suppose that this code is used on a binary symmetric channel. Suppose that a 7-bit codeword $x \in C$ is sent across the channel, and the received word x' is the same as x except that the 5th bit is flipped. What’s the syndrome of x'? (Use the parity check matrix you found in part (a).)

5. Prove that there is no such thing as a perfect binary $[16, k, 3]$-code.

6. (Extra credit.) How many binary $[n, 2]$-codes exist? (In other words, count the number of subspaces of dimension 2 in \mathbb{F}_2^n. Express your answer as a formula involving n.)