Noisy Channel: Started in the Speech Recognition Community (but is used for lots of applications!)

Presented in Chapter 9
In the new edition of J&M
Bayes Theorem

\[P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)} \]

- Swap the order of dependence
- Sometimes easier to estimate one kind of dependence than the other

What does this have to do with the Noisy Channel Model?

Best \(H = \arg\max_{H} P(H \mid O) = \arg\max_{H} \frac{P(O \mid H)P(H)}{P(O)} \)
Noisy Channel Applied to Word Recognition

- \(\text{argmax}_w P(w|O) = \text{argmax}_w P(O|w) P(w) \)

- Simplifying assumptions
 - pronunciation string correct
 - word boundaries known

- Problem:
 - Given [n iy], what is correct dictionary word?

- What do we need?

<table>
<thead>
<tr>
<th>Word</th>
<th>Prior freq.</th>
<th>Prior P(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>new</td>
<td>2625</td>
<td>.001</td>
</tr>
<tr>
<td>neat</td>
<td>338</td>
<td>.00013</td>
</tr>
<tr>
<td>need</td>
<td>1417</td>
<td>.00056</td>
</tr>
<tr>
<td>knee</td>
<td>61</td>
<td>.000024</td>
</tr>
</tbody>
</table>

- Compute prior \(P(w) \)

| Word | Likelihood | Prior P(w) | \(P(O|w)P(w) \) |
|------|------------|------------|-----------------|
| new | .36 | .001 | .00036 |
| neat | .52 | .00013 | .000068 |
| need | .11 | .00056 | .000062 |
| knee | 1.00 | .000024 | .000024 |

- Now compute likelihood \(P([ni]|w) \), then multiply
Why N-grams?

- **Compute likelihood** $P([ni]|w)$, then multiply

| Word | $P(O|w)$ | $P(w)$ | $P(O|w)P(w)$ |
|------|----------|--------|--------------|
| new | .36 | .001 | .00036 |
| neat | .52 | .00013 | .000068 |
| need | .11 | .00056 | .000062 |
| knee | 1.00 | .000024| .000024 |

- **Unigram approach**: ignores context
- **Need to factor in context (n-gram)**
 - Use $P(need|I)$ instead of just $P(need)$
 - Note: $P(new|I) < P(need|I)$

Why is this useful?

- Speech recognition
- Handwriting recognition
- Spelling correction
- Machine translation systems
- Optical character recognizers
- Part of Speech Tagging
Language Model

- Definition: **Language model** is a model that enables one to compute the probability, or likelihood, of a sentence S, $P(S)$.
- This was the topic of last week’s notes …

Tying up Loose Ends: Another POS Tagging Approach

- Another approach to POS Tagging (A quick return to Chapter 5.6)
Transformation-Based Tagging (Brill Tagging)

- Combination of Rule-based and stochastic tagging methodologies
 - Like rule-based because rules are used to specify tags in a certain environment
 - Like stochastic approach because machine learning is used—with tagged corpus as input
- **Input:**
 - tagged corpus
 - dictionary (with most frequent tags)

Transformation-Based Tagging (cont.)

- **Basic Idea:**
 - Set the most probable tag for each word as a start value
 - Change tags according to rules of type “if word-1 is a determiner and word is a verb then change the tag to noun” in a specific order
- **Training is done on tagged corpus:**
 1. Write a set of rule templates
 2. Among the set of rules, find one with highest score
 3. Repeat step 2 until lowest score threshold is passed
 4. Keep the ordered set of rules
- **Rules make errors that are corrected by later rules**
TBL Rule Application

- Tagger labels every word with its most-likely tag
 - For example: *race* has the following probabilities in the Brown corpus:
 - $P(\text{NN}|\text{race}) = 0.98$
 - $P(\text{VB}|\text{race}) = 0.02$

- Transformation rules make changes to tags
 - “Change NN to VB when previous tag is TO”
 - *... is/VBZ expected/VBN to/TO race/NN tomorrow/NN becomes... is/VBZ expected/VBN to/TO race/VB tomorrow/NN*

TBL: Rule Learning

- 2 parts to a rule
 - Triggering environment
 - Rewrite rule

- The range of triggering environments of templates

 ![Schema](image)

 (from manning & schutze 1999:363)
TBL: The Algorithm

- Step 1: Label every word with most likely tag (from dictionary)
- Step 2: Check every possible transformation & select one which most improves tagging
- Step 3: Re-tag corpus applying the rules
- Repeat 2-3 until some criterion is reached, e.g., X% correct with respect to training corpus
- RESULT: Sequence of transformation rules

TBL: Rule Learning (cont.)

- Problem: Could apply transformations ad infinitum!
- Constrain the set of transformations with “templates”:
 - Replace tag X with tag Y, provided tag Z or word Z’ appears in some position
- Rules are learned in ordered sequence
- Rules may interact.
- Rules are compact and can be inspected by humans
Templates for TBL

The preceding (following) word is tagged \(z \).
The word two before (after) is tagged \(z \).
One of the two preceding (following) words is tagged \(z \).
One of the three preceding (following) words is tagged \(z \).
The preceding word is tagged \(z \) and the following word is tagged \(w \).
The preceding (following) word is tagged \(z \) and the word two before (after) is tagged \(w \).

<table>
<thead>
<tr>
<th>#</th>
<th>Change tags</th>
<th>From</th>
<th>To</th>
<th>Condition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NN</td>
<td>VB</td>
<td></td>
<td>Previous tag is (TO)</td>
<td>te/TOrice/NN (\rightarrow) VB</td>
</tr>
<tr>
<td>2</td>
<td>VBP</td>
<td>VB</td>
<td></td>
<td>One of the previous 3 tags is MD</td>
<td>might/MD with/MD (\rightarrow) VB</td>
</tr>
<tr>
<td>3</td>
<td>NN</td>
<td>VB</td>
<td></td>
<td>One of the previous 2 tags is MD</td>
<td>might/MD not reply/NN (\rightarrow) VB</td>
</tr>
<tr>
<td>4</td>
<td>VB</td>
<td>NN</td>
<td></td>
<td>One of the previous 2 tags is (DT)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>VBD</td>
<td>VBN</td>
<td></td>
<td>One of the previous 3 tags is VBZ</td>
<td></td>
</tr>
</tbody>
</table>

TBL: Problems

- First 100 rules achieve 96.8% accuracy
- First 200 rules achieve 97.0% accuracy
- Execution Speed: TBL tagger is slower than HMM approach
- Learning Speed: Brill’s implementation can take over a day (600k tokens)

BUT …

1. Learns small number of simple, non-stochastic rules
2. Can be made to work faster with FST
3. Best performing algorithm on unknown words
Tagging Unknown Words

- New words added to (newspaper) language 20+ per month
- Plus many proper names …
- Increases error rates by 1-2%
- Method 1: assume they are nouns
- Method 2: assume the unknown words have a probability distribution similar to words only occurring once in the training set.
- Method 3: Use morphological information, e.g., words ending with –ed tend to be tagged VBN.

Evaluation

- The result is compared with a manually coded “Gold Standard”
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.