Aren’t words atomic units?

✦ So far we have taken words to be atomic units in both syntax and semantics:
 – Syntax: [S [NP John] [VP saw [NP Mary]]]
 No internal structure to any of these words.
✦ Even in chapters on Semantics (Chapters 17, 18), words are not decomposed in any way:
 – SAW(JOHN,MARY)
 Just use capital letters
✦ Now we are going to look at richer models of the semantics of words: “Lexical Semantics”
Meaning of Words

✦ Lexical Semantics: What is it?

✦ Old view: Words have to be interpreted “in context”

✦ Recent view: Systematic structure for words

Definitions

✦ What is the lexicon?
 – A list of lexemes

✦ What is a lexeme?
 – Word Orthography + Word Phonology + Word Sense

✦ What is the word sense?

✦ What is a dictionary?

✦ What is a lexicon?

✦ What is a computational lexicon?
Lemmatization

- Mapping a wordform to a lemma
 - found → find, found
 - He found the book
 - He was determined to found the institution
- Is morphological parsing the same as lemmatization?
 - Example: “celebrations”
 - Morphology: celebrate + ion + s (root = celebrate)
 - Lemmatization: celebration + s (lemma = celebration)
 - Note: Difference between inflectional & derivational

Homonomy

- What is homonomy?
 - A bank holds investments in a custodial account
 - Agriculture is burgeoning on the east bank

- Variants
 - homophones: “read” vs. “red”
 - homographs: “bass” vs. “bass”
Polysemy

- What is **polysemy**?
 - The *bank* is constructed from red brick
 - I withdrew the money from the *bank*

- Systematic relationship between these senses:
 - BUILDING ↔ ORGANIZATION

- Distinguishing polysemy from homonymy is not straightforward

Metaphor and Metonymy

- Metaphor: Reference to concepts using words whose meanings are appropriate to other completely different kinds of concepts.
 - That doesn’t **scare** Digital

- [Metonymy is a type of polysemy: Use of one aspect of a concept/entity to refer to other aspects of the entity](http://example.com)
 - GM **killed** the Fiero
 - The White House **relayed** the news about the President’s condition

- Systematic relationship can be formalized:
 - Author(Jane Austen wrote Emma) ↔
 - Works of Author(I really love Jane Austen)
Synonymy

- **What is synonymy?**
 - How **big** is that plane?
 - How **large** is that plane?
- **Very hard to find true synonyms**
 - A **big** fat apple
 - ?A **large** fat apple
- **Influences on substitutability**
 - subtle shades of meaning differences
 - polysemy
 - register
 - collocational constraints

Hyponymy

- **What is hyponymy?**
- Not symmetric
 - Example: **car** is a **hyponym** of **vehicle** and **vehicle** is a **hypernym** of **car**
 - Test: *That is a car* implies *That is a vehicle*
- **What is an ontology?**
 - Ex: CAR#1 is an object of type **car**
- **What is a taxonomy?**
 - Ex: **car** is a kind of **vehicle**. CAR#1 is an object of type **car**
- **What is an object hierarchy?**
WordNet

Most widely used hierarchically organized lexical database for English (Fellbaum, 1998)

WordNet 3.0 has:
- 117,097 nouns (average noun has 1.23 senses)
- 11,488 verbs (average verb has 2.16 sense)
- 22,141 adjectives
- 4,601 adverbs

Demo: http://www.cogsci.princeton.edu/~wn/

Format of WordNet Entries

The noun “bass” has 8 senses in WordNet.
1. bass¹ - (the lowest part of the musical range)
2. bass², bass part¹ - (the lowest part in polyphonic music)
3. bass³, basso¹ - (an adult male singer with the lowest voice)
4. sea bass¹, bass⁴ - (the lean flesh of a saltwater fish of the family Serranidae)
5. freshwater bass¹, bass⁵ - (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
6. bass⁶, bass voice¹, basso² - (the lowest adult male singing voice)
7. bass⁷ - (the member with the lowest range of a family of musical instruments)
8. bass⁸ - (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

The adjective “bass” has 1 sense in WordNet.
1. bass¹, deep⁶ - (having or denoting a low vocal or instrumental range)
 “a deep voice”; “a bass voice is lower than a baritone voice”; “a bass clarinet”
Distribution of Senses among WordNet Verbs

Lexical Relations in WordNet

<table>
<thead>
<tr>
<th>Relation</th>
<th>Also called</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponym</td>
<td>Subordinate</td>
<td>From concepts to subtypes</td>
<td>breakfast² — meal¹</td>
</tr>
<tr>
<td>Hypernym</td>
<td>Member-Meronym</td>
<td>From groups to their members</td>
<td>faculty² — professor¹</td>
</tr>
<tr>
<td>Has-Instance</td>
<td>Has-Member</td>
<td>From concepts to instances of the concept</td>
<td>composer² — Bach¹</td>
</tr>
<tr>
<td>Instance</td>
<td>Member-Of</td>
<td>From instances to their concepts</td>
<td>Austen¹ — author¹</td>
</tr>
<tr>
<td>Member Holonym</td>
<td>Has-Part</td>
<td>From members to their groups</td>
<td>cpi² — crew¹</td>
</tr>
<tr>
<td>Part Holonym</td>
<td>Part-Of</td>
<td>From wholes to parts</td>
<td>table² — leg³</td>
</tr>
<tr>
<td>Antonym</td>
<td>Opposites</td>
<td>From parts to wholes</td>
<td>course² — meal¹</td>
</tr>
</tbody>
</table>

Figure 19.2 Lexical relations in WordNet.

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponym</td>
<td>From events to superordinate events</td>
<td>fly² — travel³</td>
</tr>
<tr>
<td>Troponym</td>
<td>From a verb (event) to a specific manner elaboration of that verb</td>
<td>walk¹ — stroll¹</td>
</tr>
<tr>
<td>Entails</td>
<td>From verbs (events) to the verbs (events) they entail</td>
<td>smoke¹ — sleep¹</td>
</tr>
<tr>
<td>Antonym</td>
<td>Opposites</td>
<td>increase³ — decrease³</td>
</tr>
</tbody>
</table>

Figure 19.3 Verb relations in WordNet.
Synsets in WordNet

- Example: \{chump, fish, fool, gull, mark, patsy, fall guy, sucker, schlemiel, shlemiel, soft touch, mug\}
- Definition: “a person who is gullible and easy to take advantage of”.
- Important: This exact synset makes up one sense for each of the entries listed in the synset.
- Theoretically, each synset can be viewed as a concept in a taxonomy
 - Compare to: \(\exists w, x, y, z \) Giving(x) ^ Giver(w,x) ^ Givee(z,x) ^ Given(y,x).
 - WN represents “give” as 45 senses, one of which is the synset \{supply, provide, render, furnish\}.

Hyponomy in WordNet
Word Sense Disambiguation

- For any given lexeme, can its senses be reliably distinguished?
- Assumes a fixed set of senses for each lexical item
- Example: “bank”
 - bank\(^1\) = financial institution (bank manager)
 - bank\(^2\) = sloping mound (river bank)
 - bank\(^3\) = biological repository (blood bank)
 - bank\(^4\) = building belonging to financial institution (bank robber)
 - bank\(^5\) = turning motion, e.g., in aviation (bank left)

Automated Word Sense Disambiguation

- One of the main applications of WordNet is word-sense disambiguation.
- Supervised WSD: A training corpus is manually annotated with WordNet synsets. For each phrase-synset pair a list of words occurring in the context is stored. New phrases are classified according to the closest context vector
Automated Word Sense Disambiguation

- Unsupervised WSD: Given two phrases, consider all possible synsets. Select the two synsets that are closest in the WordNet hierarchy.
- Distance can be defined as:
 - Number of edges (possibly weighted)
 - Word overlap of the glosses

Internal Structure of Words

What are the meaning components underlying word senses?

This is the field of “Lexical Semantics”
Thematic Roles (θ-Roles)

What is a thematic role?
- give: $(\exists \ w, x, y, z) \text{Giving}(x) \land \text{Giver}(w, x) \land \text{Givee}(z, x) \land \text{Given}(y, x)$
- break: $(\exists \ w, x, z) \text{Breaking}(x) \land \text{Breaker}(w, x) \land \text{BrokenThing}(z, x)$

A **thematic role** is a way of expressing this commonality. The subjects of both verbs is an **agent**.

Generic Thematic Roles

<table>
<thead>
<tr>
<th>Thematic Role</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT</td>
<td>The volitional causer of an event</td>
</tr>
<tr>
<td>EXPERIENCER</td>
<td>The experiencer of an event</td>
</tr>
<tr>
<td>FORCE</td>
<td>The non-volitional causer of the event</td>
</tr>
<tr>
<td>THEME</td>
<td>The participant most directly affected by an event</td>
</tr>
<tr>
<td>RESULT</td>
<td>The end product of an event</td>
</tr>
<tr>
<td>CONTENT</td>
<td>The proposition or content of a propositional event</td>
</tr>
<tr>
<td>INSTRUMENT</td>
<td>An instrument used in an event</td>
</tr>
<tr>
<td>BENEFICIARY</td>
<td>The beneficiary of an event</td>
</tr>
<tr>
<td>SOURCE</td>
<td>The origin of the object of a transfer event</td>
</tr>
<tr>
<td>GOAL</td>
<td>The destination of an object of a transfer event</td>
</tr>
</tbody>
</table>
Examples of Thematic Roles

<table>
<thead>
<tr>
<th>Thematic Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT</td>
<td>The waiter spilled the soup.</td>
</tr>
<tr>
<td>EXPERIENCER</td>
<td>John has a headache.</td>
</tr>
<tr>
<td>FORCE</td>
<td>The wind blows debris from the mall into our yards.</td>
</tr>
<tr>
<td>THEME</td>
<td>Only after Benjamin Franklin broke the ice...</td>
</tr>
<tr>
<td>RESULT</td>
<td>The French government has built a regulation-size baseball diamond...</td>
</tr>
<tr>
<td>CONTENT</td>
<td>Mona asked “You met Mary Ann at a supermarket”?</td>
</tr>
<tr>
<td>INSTRUMENT</td>
<td>He turned to poaching catfish, stunning them with a shocking device...</td>
</tr>
<tr>
<td>BENEFICIARY</td>
<td>Whenever Ann Callahan makes hotel reservations for her boss...</td>
</tr>
<tr>
<td>SOURCE</td>
<td>I flew in from Boston.</td>
</tr>
<tr>
<td>GOAL</td>
<td>I drove to Portland.</td>
</tr>
</tbody>
</table>

Diathesis Alternations

- Thematic roles are a shallow semantic language for making simple inferences:
 - John [AGENT] broke the window [THEME]
 - The window [THEME] broke
 - John [AGENT] broke the window [THEME] with a rock [INSTRUMENT]
 - A rock [INSTRUMENT] broke the window [THEME]
- Thematic Grid (θ-grid):
 - [Agent, Theme, Instrument]
 - Sometimes called Case Frame
- Multiple argument realizations are called **verb alternations** or **diathesis alternations**
 - Example: Dative alternation
 - She gave the book to John
 - She gave John the book
Early Theories of Thematic Roles

- 1967–1968: Fillmore; Gruber; Jackendoff
- Each argument of a predicate bears a particular thematic role.
- Gruber/Jackendoff: Account for semantics and use grammar derived to say something about syntax
 - Break vase with hammer: Change of state \rightarrow vase:goal
 - Break vase against wall: Motion \rightarrow vase:theme
- Fillmore: Account for syntax and use that to describe semantics.
 - Test for D(ative): What he did to the house was ruin it
 [ruin assigns D(ative)=affectum]
 - Ungrammatical, not D: *What he did to the house was build it
 [build assigns F(active)=effectum]

Why Posit Thematic Level Distinct from Syntactic Subcategorization?

- Capture similarity between different (but related) uses of same lexical item
 Example:
 - John rolled the ball down the hill
 - The ball rolled down the hill
 - roll: [NP, NPa, PP] \rightarrow [NPb, PP]
- Obviate need for subcategorization frames
 - Mapping from syntax to lexical-semantics
 - Fillmore: General principles for complement selection
 see: NP(NP); go: NP(PP)
 - E. Williams (81): Specifies argument structure and uses general linking routines
Why Posit Distinct Thematic Level? (continued)

-* Fillmore’s algorithm: Realize ‘salient’ token as NP and ‘non-salient’ token as PP; Let Case determine word order
 Example: smear
 John smeared paint on the wall
 John smeared the wall with paint
-* E. Williams’ algorithm:
 theme → NP (always);
 goal → PP_{TO} (dominating NP) or NP_2
 Example: give
 John gave the book to Mary
 John gave Mary the book
 give: [actor,theme,goal]

Primitive Decomposition

-* Representation of the internal structure of words:
 – Jim killed his philodendron
 – Jim did something to cause his philodendron to become not alive
-* Translate “kill” into more complex set of predicates.
-* kill = “cause to become not alive”
-* Criticism of decompositional approach:
 ?John caused Bill to die on Tuesday by shooting him Monday
Schank’s Primitives

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATRANS</td>
<td>The abstract transfer of possession or control from one entity to another.</td>
</tr>
<tr>
<td>PTRANS</td>
<td>The physical transfer of an object from one location to another</td>
</tr>
<tr>
<td>MTRANS</td>
<td>The transfer of mental concepts between entities or within an entity.</td>
</tr>
<tr>
<td>MBUILD</td>
<td>The creation of new information within an entity.</td>
</tr>
<tr>
<td>PROPEL</td>
<td>The application of physical force to move an object.</td>
</tr>
<tr>
<td>MOVE</td>
<td>The integral movement of a body part by an animal.</td>
</tr>
<tr>
<td>INGEST</td>
<td>The taking in of a substance by an animal.</td>
</tr>
<tr>
<td>EXPEL</td>
<td>The expulsion of something from an animal.</td>
</tr>
<tr>
<td>SPEAK</td>
<td>The action of producing a sound.</td>
</tr>
<tr>
<td>ATTEND</td>
<td>The action of focusing a sense organ.</td>
</tr>
</tbody>
</table>

Other Types of Primitives

- **Substantives:** I, YOU, SOMEONE, SOMETHING, PEOPLE
- **Mental predicates:** THINK, KNOW, WANT, FEEL, SEE, HEAR
- **Speech:** SAY
- **Determiners and quantifiers:** THIS, THE SAME, OTHER, ONE, TWO, MANY (MUCH), ALL, SOME, MORE
- **Actions and events:** DO, HAPPEN
- **Evaluators:** GOOD, BAD
- **Descriptors:** BIG, SMALL
- **Time:** WHEN, BEFORE, AFTER
- **Space:** WHERE, UNDER, ABOVE
- **Paronymy and taxonomy:** PART (OF), KIND (OF)
- **Movement, existence, life:** MOVE, THERE IS, LIVE
- **Metapredicates:** NOT, CAN, VERY
- **Interclausal linkers:** IF, BECAUSE, LIKE
- **Space:** FAR, NEAR, SIDE, INSIDE, HERE
- **Time:** A LONG TIME, A SHORT TIME, NOW
- **Imagination and possibility:** IF... WOULD, CAN, MAYBE
Predicate-Independent vs. Predicate-Dependent

Predicate-Independent (F):
Syntax first: Single set of roles is chosen independent of the type of predicates involved
- effectum(build)-F
- affectum (ruin)-D
- Test: What John did to the house was ruin/*build it.

Predicate-Dependent (G/J):
Semantics first: Roles identified by particular positions arguments occupy wrt primitive predicates
- BE → theme x location \((be) \)
- CAUSE → agent x theme \((roll) \)
- CHANGE → theme x source x goal \((break) \)

Local vs. Non-Local Orientation

Local (Localist Hypothesis) (G/J):
- Notions of motion & location are central.
- Motion (GO): Theme = moving object; Source/Goal/Path Location (BE): Theme = located object; Location

Non-Local Orientation (F):
- Concerned w/ causal dimension (affected obj)
- Does not distinguish verbs of motion & location
- Can't tell which object moved

Locative alternation
- F: break the vase \((D) \) w/ the hammer \((I) \)
 break the vase \((D) \) against the wall \((L) \)
- G/J: break the vase \((Goal) \) w/ the hammer \((Theme) \)
 break the vase \((Theme) \) against the wall \((Location) \)
Local vs. Non-Local Approach: Issues

Local approach (G/J):
- How do we assimilate abstract verbs to verbs of motion & location?
- Introduce fields (Ident, Exist, etc.): abstract domains.
- Sometimes need a dual representation to account for causal dimension
 Example: Nancy broke the vase with a hammer
 hammer = Theme (Jackendoff) / Instrument (Fillmore)
 E1: CAUSE (Nancy, GOIdent (Vase, Broken))
 E2: CAUSE (Nancy, GOLoc (hammer, vase))
 [E2 causes E1]

Non-Local approach (F):
- Attempts to account for this CAUSAL relation
- Notions of motion/location are not given any special consideration

Thematic Hierarchy Constraint

Agent > Instrument > Theme

Used to determine the thematic role of the subject of the sentence

Examples:
- John (A) opened the door (T)
- John (A) opened the door (T) with the key (I)
- The key (I) opened the door (T)

Passive: Run in reverse
- The door (T) was opened by John (A)
Decomposition vs Non-Decomposition

- Decompositional/Compositional (Schank, Jackendoff, Gruber) vs. Non-Decompositional (Fillmore)
- What is decompositional (compositional)?
- Why hard? Need to decide on primitives.
 - Jackendoff: LCS
 - Schank: CD
- Exhaustive (Schank) vs. non-exhaustive (Jackendoff)
 - CD: elucidate causal structure
 - LCS: closer to syntactic structure—requires modifiers to differentiate meanings.

Jackendoff’s Semantic Theory

- Predicate-centered (Gruber) begins with three basic primitives:
 - GO – all verbs of motion (event)
 - STAY – maintenance of motion (event)
 - BE – state
 - Test: What happened was ___ (event/state)
- PLACEs and PATHs are represented as preposition-like functions (TO, FROM, etc.)
 - The train traveled from D to B
 - The bacteria stayed in his body
 - The statue stands on Cambridge Common
 - Examples:
Jackendoff (continued)

- **Others: GO_Ext:**
 The road goes to Boston (state, not event)
- **ORIENT:**
 The sign points to Philadelphia.
- **Agentive predicates: CAUSE, LET**
 Laura took the bird from the cage.
 \[\text{CAUSE (LAURA, [GO (BIRD, [FROM (CAGE)])])}\]
 Laura released the bird from the cage.
 \[\text{LET (LAURA, [GO (BIRD, [FROM (CAGE)])])}\]
- **CAUSE takes an instrument; LET doesn't.**
 Apparent counterexample:
 Laura took ... with a hanger.
 Laura released ... with a hanger.

Jackendoff’s Fields

- **Central notion in J's later work**
- **Allows many generalizations to be stated**
- **GO, STAY, BE extend to fields other than spatial field (Loc)**
- **Localist Hypothesis: focuses on motion/location**
- **Other types of meaning are available (by analogy): use fields to provide distinctions**
 - Possessional: Miriam took the gift.
 - Identificational: The coach turned into a pumpkin.
 - Circumstantial: They led me to believe it.
 - Temporal: We moved the meeting to Tuesday.
Some Cross-Field Generalizations

<table>
<thead>
<tr>
<th>Action</th>
<th>Location</th>
<th>Circumstance</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO</td>
<td>Max came into the room</td>
<td>Max came to be called a hero</td>
</tr>
<tr>
<td>GO_EXT</td>
<td>The highway goes from D to B</td>
<td>Ron's speech went from 2 to 4</td>
</tr>
<tr>
<td>STAY</td>
<td>The iguana stayed in Africa</td>
<td>The iguana stayed ugly</td>
</tr>
<tr>
<td>CAUSE STAY</td>
<td>Bill kept the book on the shelf</td>
<td>Bill kept David working</td>
</tr>
<tr>
<td>BE</td>
<td>Bill is in Africa</td>
<td>Bill is happy</td>
</tr>
<tr>
<td>CAUSE GO</td>
<td>Max pushed through the crowd</td>
<td>Max pushed to get his way</td>
</tr>
<tr>
<td>LET GO</td>
<td>Laura released the bird from the cage</td>
<td>Laura released Fred from washing dishes</td>
</tr>
</tbody>
</table>

Mapping from Input Dependency to English Dependency Tree

Knowledge Resources in English only: (LVD; Dorr, 2001).
Problems with Thematic Roles

- Difficult to come up with a standard set of thematic roles
- Researchers attempting to do so often break up AGENT and THEME into many specific roles
- Difficult to formally define roles, e.g., AGENT = animate, volitional, sentient, causal (but maybe not!)
- Alternate versions of semantic roles: PropBank, FrameNet

Proposition Bank (PropBank)

- Each sense of a verb has specific roles, given the names Arg0, Arg1, Arg2, etc.
- Arg0 represents a “proto-agent”
 - Agent-like” meaning
 - Intentionality, volitionality, causality, etc.
- Arg1 represents a “proto-patient”
 - Patient-like properties
 - Undergoing change of state, causally affected by another participant, etc.
- FrameSet agree.01
 - Arg0: Agreeer
 - Arg1: Proposition
 - Arg2: Other entity agreeing
- Example: [Arg0 John] agreed [Arg1 on everything] [Arg2 with Mary]
FrameNet

- Goal: Make inferences across different verbs (not just across sentences using the same verb)
- Relates these sentences:
 - [Arg1 The price of bananas] increased [Arg2 5%]
 - [Arg1 The price of bananas] rose [Arg2 5%]
- Roles are not specific to a verb—they are specific to a frame
- A frame is a script-like structure containing frame elements
- Core roles:
 - Item = entity that has a position on a scale
 - Attribute = scalar property possessed by item
 - Difference = distance Item changes
 - Example: [Item Oil] rose [Attribute in price] [Difference by 2%]

Selectional Preferences

- Semantic constraints imposed by a lexeme on the concept that can fill roles associated with it.
- Verbs often exhibit type preferences for their arguments:
 - Eat (OBJ: food)
 - Think (SUBJ: intelligent entity)
- Analyzing a corpus with verb-argument pairs, it’s possible to derive the proper semantic types by looking at the hypernyms of the arguments
Selectional Restrictions (continued)

*“I wanna eat someplace that's close to UMD.”
 – Case 1: eat - intransitive (me)
 – Case 2: eat - transitive (Godzilla)
*Why is Case 1 preferred?

\[(\exists \ w,x,y) \ Eating(x) \land Agent(w,x) \land Theme(y,x) \land Isa(y,EdibleThing)\]

Implementation of Selectional Restrictions

Sense 1
hamburger, beefburger --
(a fried cake of minced beef served on a bun)
=> sandwich
 => snack food
 => dish
 => nutriment, nourishment, nutrition...
 => food, nutrient
 => substance
 => matter
 => physical entity
 => entity
Next Time

* Read Chapters 17, 20