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Rapid advances in robotic technology are bringing robots out of the controlled

environments of assembly lines and factories into the unstructured and unpredictable

real-life workspaces of human beings. One of the prerequisites for operating in such

environments is the ability to grasp previously unobserved physical objects. To

achieve this individual objects have to be delineated from the rest of the environment

and their shape properties estimated from incomplete observations of the scene. This

remains a challenging task due to the lack of prior information about the shape and

pose of the object as well as occlusions in cluttered scenes. We attempt to solve this

problem by utilizing the powerful concept of symmetry. Symmetry is ubiquitous in

both natural and man-made environments. It reveals redundancies in the structure

of the world around us and thus can be used in a variety of visual processing tasks.

In this thesis we propose a complete pipeline for detecting symmetric objects

and recovering their rotational and reflectional symmetries from 3D reconstructions



of natural scenes. We begin by obtaining a multiple-view 3D pointcloud of the

scene using the Kinect Fusion algorithm. Additionally a voxelized occupancy map

of the scene is extracted in order to reason about occlusions. We propose two

classes of algorithms for symmetry detection: curve based and surface based. Curve

based algorithm relies on extracting and matching surface normal edge curves in

the pointcloud. A more efficient surface based algorithm works by fitting symmetry

axes/planes to the geometry of the smooth surfaces of the scene. In order to segment

the objects we introduce a segmentation approach that uses symmetry as a global

grouping principle. It extracts points of the scene that are consistent with a given

symmetry candidate. To evaluate the performance of our symmetry detection and

segmentation algorithms we construct a dataset of cluttered tabletop scenes with

ground truth object masks and corresponding symmetries. Finally we demonstrate

how our pipeline can be used by a mobile robot to detect and grasp objects in a

house scenario.
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Chapter 1: Introduction

1.1 Robots of The Future

Since ancient times humanity has dreamt of artificial contraptions, mechanical

or otherwise, that would serve and help us with our daily lives. We live in the age

where technology might be finally catching up to our dreams. The 20th century

has seen great progress in automation due to the introduction of small and efficient

electric motors and digital electronics. Industrial robots can be programmed to

execute predefined motions with extreme precision and repeatability. However, due

to their limited perceptual capabilities, they can not adapt to dynamic changes in the

environment. Specialist programming is required to ”reprogram” them for different

narrowly defined tasks. As a result industrial robots are only used in large-scale

manufacturing settings where operating space can be tailored to the specific needs

of the robot. The robots of the future will instead be encountered in the “real-world”

workspaces of our houses, shops, schools and hospitals, where they will interact and

work together with humans. This capability requires three major components: 1)

Navigation - robots need to move around in space without running into static

or dynamic obstacles such as sofas and humans; 2) Human robot interaction -

robots will need to understand human actions and intent, and at the same time be
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(a) (b)

Figure 1.1: Robot operating environments. (a) Today’s robot operate in environ-

ments where shapes and positions of all of the manipulable objects and obstacles are

known in advance. (b) In the future robots will work in messy and unpredictable

human environments.

able to communicate its own state and intent back to the humans in a natural way;

3) Manipulation - to do useful work, robots need the ability to alter the world

through physical contact. While progress in all three of these areas is required to

build a robotic butler, this thesis focuses on the latter one. Specifically we are

addressing the problem of developing perceptual capabilities required for robotic

manipulation of everyday objects.

1.2 Current Approaches to Perception For Manipulation

Like any perceptual process our pipeline begins with sensing the environment.

Usual sensor choices are 2D cameras capturing RGB information or 3D range sensors

that capture depth images or pointclouds. Once the data is captured, individual

objects must be delineated from the rest of the environment. Next object shape

properties are estimated in order to choose appropriate contact points between the
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gripper and the object and to plan a suitable grasp strategy. This has to be done

in typical messy real life scenarios where the objects are not placed in an orderly

manner but instead are piled on top of each other. This remains an extremely

challenging problem. There are countless variations in possible object shapes and

appearances. This problem is compounded by the fact that cluttered scenes contain

heavy occlusions, so only incomplete object observations are available in the data

captured by the sensors. As a result it is difficult to segment the scene (i.e. to figure

out which parts of the scene belong to different objects) and reconstruct the missing

shape information for the objects in the scene.

Current approaches to this problem can be largely divided into two classes:

model-based and shape primitive based. Model-based methods use a priori knowl-

edge about object appearance in order to recognize them in the scene. During the

training stage a full 3D CAD object model is rendered from multiple views and

visual/shape descriptors are computed and associated to each of the views. Object

6DOF pose in the scene is then recovered by extracting the descriptors from the

input data and finding the best matching set of the training descriptors. This is

often followed by a fine-tuning step that refines object pose by fitting the 3D model

to the observed data using the Iterative Closest Points algorithm [2]. Numerous

descriptor representations were proposed including contour models [3], feature con-

stellations [4] [5] and appearance templates [6]. More advanced methods are capable

of tracking the pose of multiple objects from multiple cameras by ensuring global

consistency between all object hypotheses using a simulation framework [7]. These

methods are capable of accurately estimating object pose in highly cluttered scenes.
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Moreover, the object shape can be fully reconstructed by aligning 3D models of the

object to the scene using the estimated pose. The downside of model-based methods

is that they are not capable of detecting objects that were not available during the

training stage. Manipulation of previously unseen objects is a key feature of truly

autonomous robots.

A more general family of methods finds objects by fitting parametric solid

shape primitives to the scene. Object shape and pose are obtained by simultaneously

estimating primitive pose and parameters. The choice of the primitives used defines

the trade-off between the accuracy of shape approximation and the robustness of

the fitting process. For cluttered scenes, boxes, cylinders and spheres can be fitted

to the input pointclouds using robust RANSAC method [8] [9]. These methods work

well for objects that are well approximated by the primitives used (i.e. boxes and

mugs) but are unsuitable for more complex objects (teddy bear). Several methods

use a more general family of primitives - superquadrics [10] [11]. These methods

are limited to single isolated objects and can not tolerate clutter since superquadric

fitting is very sensitive to noise and outliers [12].

1.3 Symmetry is Key!

Wherever there is structure - there is symmetry. In its most general sense sym-

metry is repetition of some element or pattern. Lack of repetition implies lack of

structure. Hence symmetry and structure are inseparable concepts. While symme-

try is not limited to geometry, from the point of view of perception we are interested

4



(a) Butterfly (b) Flower (c) Human face

(d) Taj Mahal (e) Car (f) Teapot

Figure 1.2: Examples of symmetry in nature and in man-made objects.

in symmetries in geometrical shapes. Symmetrical structures have two appealing

properties. Firstly, symmetrical structures are inherently stable. Whether it’s an

animal standing on its feet, or the the arrangement of atoms in a crystal lattice,

or the aerodynamics of a car - symmetrical structures achieve a certain balance of

forces that results in an overall stability of the system. Secondly, symmetric shapes

can be represented very efficiently, which allows for certain efficiencies in replication.

A fern expands as it grows by repeating the same pattern over an over again. An

artist making a pot rotates a piece of clay around an axis and shapes only one side

of the vessel. Due to these properties symmetry is pervasive both in natural and

man-made artifacts. In nature symmetrical structures can be encountered at all

scales, from the double helix of the DNA, to plant and animal bodies, all the way

to the galaxies. Man-made made objects are almost universally symmetric: chairs,

5



(a) (b) (c)

Figure 1.3: Human perception of symmetry (adapted from Treder [1]). (a) A

random blob pattern is perceived as disorganized. (b) The symmetry of a pattern is

immediately apparent to a human observer. (c) The sense of structure is increased

if pattern has multiple symmetries.

cups, screens, buildings, cars are all symmetric. In fact, if you take a look around

you right now, you will be hard-pressed to find asymmetrical objects.

Symmetry is so pervasive in natural environments that both human and animal

visual systems have evolved to actively exploit it for perception [13] [14]. Symme-

try plays a crucial role in the process of figure-ground organization i.e. the process

of figuring which parts of the environment form a whole [15]. This is illustrated

intuitively in Figure 1.3. A previously unseen pattern is perceived as a whole if it

exhibits symmetry. Multiple symmetries strengthen this effect, while a pattern with

no symmetry is perceived as lacking structure. Moreover, it was shown that humans

identify symmetries more quickly when it belongs to a single object as opposed to

being shared between two objects [16]. This finding suggests that object segmen-

tation and symmetry detection are tightly interlocked processes. Additionally, it

was found that local symmetry can be used to predict human eye movements when

looking at images of novel scenes [17]. This implies that symmetry is used as a cue

to guide our visual attention.

6



Symmetry information is particularly important for robotic grasping applica-

tions. Given a partial 3D scan of an object, symmetry can be used to reconstruct

the occluded parts of the object. Furthermore, symmetry is directly linked to the

object’s center of mass. Assuming uniform density, center of mass of an object al-

ways lies on the symmetry plane/axis of an object, or at their intersection in case of

multiple symmetries. Both of these properties can be used to predict a stable grasp

for previously unseen objects [11] [18].

1.4 Contributions of This Thesis

Symmetry encodes structural redundancies of our world. This thesis explores

approaches to revealing these redundancies and using them to enable general robotic

manipulation in complex and unpredictable environments. Specifically, we present a

complete system for segmenting objects and extracting their symmetries in densely

cluttered scenes. Unlike CAD model-based methods, our system doesn’t require any

object specific prior knowledge and can deal with previously unseen objects. Our

core assumption is that the three dimensional shape of objects is either reflectional

or rotational symmetric. Although this assumption might seem restrictive at first,

as discussed earlier, it holds true for a vast majority of rigid man-made objects.

Our approach can be seen as a generalization of shape primitive fitting approaches,

where instead of fitting shapes to the 3D data, symmetries are fitted instead. This

allows our approach to avoid the problem of approximating complex object shapes

with simple geometric primitives. Our pipeline consists of three major steps:

7



• Obtaining a multiple view 3D surface reconstruction of a scene

• Detecting candidate object symmetries

• Segmenting individual objects based on the candidate symmetries

The rest of this thesis is organized as follows. Chapter 2 describes the data

collection procedure used to acquire 3D reconstructions. In addition to the tradi-

tional pointcloud-based reconstruction of the scene surfaces we collect a voxel-based

occupancy map of the scene that is required for the later processing stages. We dis-

cuss the sensor calibration procedure for a commodity structured light depth sensor

that is necessary to achieve high-quality reconstructions. We also present a dataset

of densely cluttered tabletop scenes used for testing and evaluating the efficacy of

our perception pipeline.

Chapter 3 addresses the problem of symmetry detection in 3D pointclouds. We

propose two approaches. A curve-based approach detects reflectional symmetries by

extracting and matching surface normal edge curves in the pointcloud. A surface-

based approach can be used to detect both rotational and reflectional symmetries by

fitting symmetry axes/planes to the geometry of the smooth surfaces extracted from

the scene. This step acts as an attention operator that finds candidate symmetries

in the scene.

In chapter 4 we discuss the algorithms for obtaining high quality object seg-

mentation masks given a set of candidate symmetries in the scene. The goal of the

segmentation stage is to find points in the scene that belong together according to

the local grouping principles of convexity, and at the same time are geometrically
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consistent with a given symmetry candidate. Our segmentation algorithm can be

used with slight modifications to segment both reflectional and rotational symmetric

objects. We demonstrate how a simplified version of our pipeline can be used by a

collaborative robot to pick up objects in a kitchen scenario.

We conclude this thesis by discussing the avenues for future research.

9



Chapter 2: Data Collection

In this chapter we discus the data acquisition process as well as introduce the

dataset used to test and evaluate our perception pipeline.

2.1 Reconstruction pipeline

Since our goal is to use symmetry as a constraint on an object’s three di-

mensional shape, we are interested in collecting 3D geometric data. Unlike a static

camera, a robot equipped with an imaging sensor fits the paradigm of an active

observer [19]: it can actively change the position of its sensors in the world in order

to collect additional information about the environment. Hence, our data collection

process should not be limited to single views. Instead we want to collect data from

multiple views and combine it into a single 3D reconstruction of the scene. In addi-

tion to surface reconstruction, we also want to get an occupancy map of the scene

that identifies the free and occupied space. This information is used by symmetry

detection and segmentation stages to evaluate the compatibility of scene points with

candidate symmetries.

10



2.1.1 Surface reconstruction

The problem of 3D reconstruction from multiple images, known as Structure

from Motion (SFM), is one of the oldest problems in computer vision [20]. Although

the field has seen steady progress over the last several decades [21] [22], image based

methods still struggle to produce highly accurate, dense and noise-free models. The

main limitation of these methods is that both scene geometry and camera frame-

to-frame poses (ego-motion) need to be estimated simultaneously. This problem

can be alleviated by the use of 3D range sensors. 3D sensors directly measure the

surface geometry of the scene, thus greately simplifying geometry and ego-motion

estimation problems. For our pipeline we use the KinectFusion algorithm [23], that

uses Kinect sensor to deliver extremely accurate dense 3D reconstructions while

running in real time.

The primary idea behind Kinect Fusion is to fuse measurements from a se-

quence of depth images into a single model. The fused model is maintained using

a volumetric Truncated Signed Distance Function (TSDF) [24]. Given a voxelized

volume TSDF represents a surface within the volume by storing for each voxel the

signed distance d to the nearest observed surface. Given a new frame, Kinect Fu-

sion algorithm starts by back-projecting the depth image to a pointcloud. Camera

pose in is then estimated by aligning the pointcloud to the TSDF using the ICP

algorithm. The depth map is fused into the TSDF volume by updating voxels that

project into the current depth map. The final TSDF is the weighted average of the

TSDF’s from individual depth maps. This achieves the effect of smoothing noisy

11



(a) (b)

Figure 2.1: Surface reconstruction of a simple tabletop scene. (a) Using default

calibration parameters provided by the camera driver. (b) Using calibrated depth

camera intrinsics as well as depth distortion calibration.

measurements from multiple depth maps which allows recovering dense noise-free

scene models. Once the data is captured, the final mesh model can be extracted by

running the Marching Cubes algorithm [25] on the TSDF.

For our experiments we used an Asus Xtion Pro sensor (similar to Kinect) for

data capture and an open-source implementation of the KinectFusion algorithm [26]

with a voxel size of 3.1 millimeters. KinectFusion has no bundle adjustement or

loop closure mechanism, so errors in frame-to-frame pose estimates accumulate over

multiple frames leading to inconsistencies and tearing in the reconstructed model.

Hence, a high quality sensor calibration is required to achieve precise reconstruc-

tions. This can be done by calibrating the intrinsics and the radial distortion of

Kinect’s infrared camera [27]. Additionally, it was found that Kinect sensors ex-

hibit complex systematic residual errors in their depth measurement values. In a

robotic manipulation scenario, these can result in the robot not being able to pick

up the object, since it is perceived as either being too far or too close to it’s true

12



Figure 2.2: Pointcloud reconstruction of a tabletop scene.

position. To correct these errors we constructed a series of pixel-wise lookup tables

that store the multiplicative values for the depth measurements at different depth

ranges [28]. Figure 2.1 shows the output of our surface reconstruction process on a

sample tabletop scene.

After obtaining the scene mesh we convert it to a pointcloud and remove all

points that do not belong to the tabletop objects. This is done by detecting the

table plane and extracting points lying directly above it. Finally we donwsample the

pointcloud using a voxelgrid filter with voxel size of 5 millimeters. Our experiments

show that this resolution is sufficient for our needs and at the same time significantly

reduces the processing time for the further processing stages of our pipeline. An

example of the final scene pointcloud is shown in Figure 2.2.

2.1.2 Occupancy mapping

To construct an occupancy map of the scene we use the OctoMap algorithm [29].

Given a sequence of depth maps and corresponding camera poses, it generates a 3D
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volumetric map, where each voxel is labeled as either occupied, occluded or free

space. At runtime each voxel stores the probability of the corresponding space be-

ing occupied. Voxel occupancy probabilities are updated by casting rays defined

by the depth maps into the volume. If a voxel is traversed by a ray, it’s occu-

pancy probability in decreased. Conversely if a ray endpoint falls within a voxel,

it’s occupancy probability is increased. After integrating all of the depth maps, the

occupancy probabilities are thresholded to classify voxels as either free or occupied.

Voxels that were never traversed by a ray are considered occluded. The resulting

map is expected to have very few tightly localized occupied voxels and large chunks

of free and occluded voxels. OctoMap takes advantage of this data sparsity by

storing the map in an octree datastructure. This significantly reduces the memory

footprint of the algorithm and allows storing of large maps.

For our experiments we used the open-source implementation of the OctoMap

algorithm [30]. Since OctoMap has no mechanism for frame-to-frame camera pose

estimation, we used poses estimated by KinectFusion instead. The occupancy map

was constructed with voxel size of 5 millimeters. In our experiments, we have found

that lower resolutions negatively affected the performance of the symmetry detection

and segmentation stages of our pipeline. One of the downsides of the OctoMap

algorithm is that rays are integrated into the volume sequentially on a CPU, which

results in slow performance. To alleviate this bottleneck we only processed every

5th frame of our sequences and for each depth map use every 10th point.

Finally, to reason about scene occlusions we compute the three dimensional

Euclidean Distance Transform (EDT) of the occupancy map. In the context of
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Figure 2.3: Visualization of the occupancy map. Green shows the interface (bound-

ary) between the occupied and free space, while red shows the interface between

occupied and free space. In the right image, notice the trailing ”tail” behind the

objects, that corresponds to the occlusions behind the objects.

robotics EDT is usually used for path planning and collision avoidance. Given

a binary spatial map where obstacles are labeled with ones, an EDT computes

the Euclidean distance from each voxel in the map to the nearest obstacle voxel.

EDT allows quickly evaluating the distance from an arbitrary point in space to

the nearest obstacle. Given an occupancy map, we construct the EDT by treating

both occluded and occupied voxels as obstacles. As will be discussed in the following

chapters, we will use the EDT to judge which points of the scene are compatible with

a given symmetry by reflecting/rotating the point and checking it’s distance to the

occluded/occupied space. We will use EDT (Pi) to denote the distance from point

Pi to the nearest occluded/occupied voxel in the scene. The distance is clamped to

a maximum of docclmax in order to reduce the influence of outliers. We used the value

of docclmax = 3cm throughout our experiments.
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Figure 2.4: Sample scenes from the Cluttered Tabletop Dataset.

2.2 Cluttered Tabletop Dataset

To evaluate our pipeline we propose a new Cluttered Tabletop Dataset, which

contains 3D reconstructions of 89 cluttered tabletop scenes. The set of objects

used in the dataset ranges from simple objects like boxes to highly non-convex

objects such as bowls and stuffed toys. Scenes have varying complexity, from single

objects to up to 15 objects put side by side and stacked on top of each other, as

shown in Figure 2.4. Scenes were captured by manually moving a depth sensor in

approximately 120◦ horizontal arc around the center of the scene. This strategy

was chosen to simulate the environment sensing procedure that could be executed

by a robot with a camera mounted on its manipulator. All of the scenes were

labeled with ground-truth pointwise segmentation masks for the individual objects,
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Figure 2.5: Labeling for one of the scenes in the Cluttered Tabletop Dataset.

Colored points denote individual segments and green planes show corresponding

symmetries.

as well as corresponding object rotational and reflectional symmetries, as illustrated

in Figure 2.5.
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Chapter 3: Symmetry Detection in 3D Pointclouds

3.1 Introduction

Symmetry is ubiquitous in natural and man-made objects. Gestalt psychol-

ogysts have recognized the role of symmetry in the human visual system as an

important cue that serves as input to the higher level visual processes such as seg-

mentation [15]. This observation has been mirrored in Computer Vision applica-

tions, where symmetry is used as a preprocessing step for a variety of object-centric

perception tasks such as object recognition [31], retrieval [32], reconstruction [33] as

well as robotic manipulation [11].

Unlike most of the previously proposed approaches that operate on high qual-

ity 3D models of single objects, our aim is to detect symmetries of multiple objects

in incomplete pointclouds. Our approach is to first extract stable geometric features

and then find symmetries within single or multiple feature instances. In order to

handle cluttered scenes, the features used have to satisfy two properties: a single

feature must belong to a single object and at the same time it must capture the

geometry of the underlying object. Although orientable 3D point features may seem

like an obvious choice, they are not suitable for our task. Due to the limitations

in the resolution of the pointcloud and the nature of the shape of the object, ex-
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tracting a sufficient number of features may be problematic. For example, a box

only has 6 corners that can serve as discriminative feature points and only few of

those may be visible due to occlusions. A bowl has no unique feature points at

all. Alternatively we propose two families of approaches that use curve and surface

features instead. Our curve-based approach detects reflectional symmetries by ex-

tracting surface normal edge curves and then searching for pairs of curves that are

”aligned” by a reflectional symmetry. In our surface-based approach we first extract

smooth surfaces from the pointcloud and then fit reflectional/rotational symmetry

planes/axes to the segments. For rotational symmetry, we define a novel measure of

fitness between an oriented point and a symmetry axis that allows us to fit a symme-

try axis directly to the segment points. Reflectional symmetries are detected using

an ICP-like technique that alternates between finding correspondences between sym-

metric points and refining the candidate symmetry plane given the correspondences.

For each of the three approaches we define a set of confidence measures that can be

used to control the precision-recall tradeoff of the method.

3.2 Related Work

A large amount of research in Computer Vision is devoted to symmetry detec-

tion in 2D and 3D data. Most of the 2D approaches rely on extracting and matching

intensity discontinuities such as edges and point features. One of the first success-

ful methods for detecting symmetry in 2D images is the ”Generalized Symmetry

Transform” of Reisfeld et al. [34]. The main idea of the method is that two image
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points provide evidence for the existence of symmetry at a midpoint between them

if they ”reflect” onto each other. This principle was used to generate a continuous

”symmetry map” that measures how symmetrical the neighborhood around an im-

age point is. This idea was extended by Loy and Eklundh [35] who employed robust

oriented SIFT features to improve the quality of symmetrical matching. Pairs of

symmetrically matching feature points were used to generate reflectional and rota-

tional symmetry hypotheses which were then aggregated in a Hough voting scheme

to find the dominant symmetries in the image. Some approaches proposed symme-

try for attention [36], and symmetry to aid segmentation of symmetric objects [37].

More recently Teo et al. [38] proposed to detect curved reflectional symmetries and

used them to drive the segmentation process by embedding a symmetry term into

the cost function of the Markov Random Field (MRF) used for segmentation.

For three dimensional data most of the existing methods focus on recovering

symmetries from complete 3D models. Sun et al. proposed to detect global sym-

metries in a 3D model by analyzing its three dimensional surface normal histogram

called the Extended Gaussian image (EGI) [39]. The key assumption is that an

EGI of an object has the same global symmetries as the object itself. Thus they

can be discovered by finding the transformation that maximizes the correlation be-

tween the original and transformed EGIs. This assumption however does not hold

for noisy and incomplete object models. Podolak et al. [32] defined the ”Planar

Reflective Symmetry Transform” that captured the degree of symmetry of an object

with respect to all possible planes passing through it. Exact object symmetries were

then detected by extracting the transform maxima. In [40], Mitra et al. . relied on
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orientable feature matching to detect partial symmetries in complete 3D meshes of

single objects. Symmetry hypotheses were found by matching uniquely orientable

keypoints on the surface of the mesh and filtering out the dominant ones using

mean shift clustering. This approach was capable of detecting reflectional, rota-

tional, translational and scaling transformations present in the mesh. Thrun and

Wegbeit reasoned about occlusions of the scene to detect symmetries in partial 3D

pointclouds [41]. Symmetries were found by searching through the space of possible

transformations and finding the one that minimizes the number of points that reflect

into the unoccluded space and maximizes the match between the original and the

reflected clouds. Detected symmetries were then used to reconstruct occluded parts

of the object.

3.3 Notation

We use the following notation to denote oriented points, symmetries and re-

flections/rotations of points throughout this and the following chapters:

• P = {p, n} - an oriented point with coordinate p and a normal vector n.

• Srefl = {nrefl, drefl} - a reflectional symmetry plane defined by a normal nrefl

and distance to origin drefl.

• Srefl = {nrefl, prefl} - a reflectional symmetry plane defined by a normal nrefl

and a point prefl lying in the symmetry plane.

• Srefl(·) - a reflection of either a point or a normal by the reflectional symmetry
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plane Srefl.

• Srot = {drot, prot} - a rotational symmetry axis defined by a point prot of the

axis and the direction vector drot.

• Srot(·, θ) - a rotation of a point or normal by angle θ around the rotational

symmetry axis Srot

3.4 Curve-based symmetry detection

Consider a simple toy example of detecting reflectional symmetries of a box.

The edges of the box are the straight lines connecting it’s vertices. It is immediately

obvious that edges provide sufficient information for discovering the symmetries

of the box: we can find pairs of edges for which there exists a symmetry plane

that reflects them onto each other. Following this process we will find some of the

symmetries that are not correct (between edges that don’t lie on the same planar

surface of the box), but we are guaranteed not to miss any of the true symmetries.

This observation motivates our curve-based symmetry detection approach. Given

a pointcloud with surface normal information we define surface normal edges as

an ordered set of points where surface normal direction changes abruptly. After

extracting the edges we find symmetric matches between pairs of such edges. Using

a robust clustering method allows us to recover symmetries even from noisy edges

that contain a high number of outliers.
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3.4.1 Pointcloud edge detection

Our strategy for extracting normal edges is similar to that presented in [42]

which utilizes the duality between segmentation and edge detection. We oversegment

the cloud into patches whose borders are likely to lie along normal edges and then

find the boundaries between them. We use the algorithm of Papon et al. [43] that

segments pointclouds into supervoxels with high boundary adherence. To avoid

extracting boundaries between supervoxels that belong to the same flat surface we

merge all adjacent supervoxels that have collinear surface normals (Figure 3.2d).

Superovxel boundary points are found by extracting points which have at least one

neighbor that belongs to a different supervoxel (Figure 3.2b). Boundary points

are then linked together using a Minimum Spanning Tree algorithm to form a set

of disjoint edge curves C = {C1, ..., Cn}. For each of the curves, its pointwise

tangent direction vectors are estimated by fitting lines to each of its points and

their neighbors. Each curve Ci = (p1Ci
, ..., pmCi

) is represented by an ordered set of

oriented points and describes a surface normal edge in the cloud (Figure 3.2e).

3.4.2 Reflectional symmetry detection

Once the edge curves are extracted, pointcloud symmetries can be recovered

by finding symmetrical pairs of edge curves. The basis of this process is the idea

of symmetrical correspondence between two oriented points. Consider two points

in space Pi and Pj. The coordinates of the points uniquely define a reflectional

symmetry plane that is perpendicular to the line connecting the points and contains
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Figure 3.1: Symmetry detection from a pair of oriented points.

the midpoint between them. Representing the symmetry plane Srefl = {nrefl, drefl}

by its normal and distance to the origin, its parameters can be expressed as:

nrefl =
pi − pj
‖pi − pj‖

(3.1)

drefl =
(pj − pi) · n

refl

2
(3.2)

We define the matching score of the symmetric correspondence between Pi

and Pj as the angular difference between the normal of one of the points ni and the

reflected normal of the other point Srefl(nj):

MS(Pi, Pj) = ∠(ni, S
refl(nj)) (3.3)

By putting a threshold on the maximum allowed matching score, we can reject

noisy symmetric correspondences. This mechanism allows us to decide if a valid

symmetry plane exists for a pair of points and to recover that symmetry.

Given a pair of edge curves Ci, Cj we exhaustively search for symmetrical

correspondences between their individual points {PCi
, PCj

} using the symmetrical

24



(a) (b) (c)

(d) (e) (f)

Figure 3.2: Curve-based symmetry detection. (a) Input pointcoloud (d) Segmen-

tation (b) Segment boundary points (e) Linked edge curves (c) and (f) Symmetry

correspondences and corresponding symmetry hypotheses.

correspondence matching approach described above. Curve tangent direction vec-

tors are used as orientation vectors instead of surface normals, since surface nor-

mal estimates are inherently noisy at the points of high curvature. Matches are

filtered by removing correspondences with a match score higher than a threshold

MS(PCi
, PCj

) > αmax and enforcing a one-to-one correspondence relationship. This

results in a set of noisy candidates for the global symmetry plane aligning the two

curves. To recover the global symmetry plane we take an approach similar to the

one proposed in [40]. Symmetry candidates are treated as samples of the prob-

ability density function of the global symmetry plane. The problem of recovering

the global symmetry plane becomes equivalent to clustering these candidates. To do

the clustering we represent the candidates with points in three dimensional space by
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weighting the symmetry plane normal by the distance to the origin i.e. nrefl/drefl.

We then use mean shift clustering [44] to find the dominant mode of the distribu-

tion and use its maximum as the symmetry plane aligning the two curves. This

procedure is run on every pair of edge curves resulting in a set of 3D reflectional

symmetry hypotheses for the input pointcloud S = {Srefl
1

, ..., Srefl
k } (Figure 3.2c).

Finally, we filter out symmetries for which the ratio of the number of valid sym-

metric correspondences to the total number of points in the corresponding curves is

lower than a threshold ninlier. This allows us to remove some of the false symmetry

hypotheses that will inevitably be detected by our approach.

3.5 Surface-based symmetry detection

While the curve-based approach focuses on the high curvature features of the

pointcloud, our surface-based approach makes use of the dense geometric informa-

tion available from the smooth surfaces. It capitalizes on the fact that many objects

contain large continuous surfaces which share the same symmetries as the complete

object. First, we oversegment the pointcloud using a region growing algorithm that

uses local surface normals and point connectivity to enforce a smoothness constraint.

To detect scene symmetries, we employ a geometric fitting approach. Two separate

algorithms are used to fit rotational symmetry axes and reflectional symmetry planes

respectively to the scene segments. Since the segments are noisy, we ensure that

both algorithms are robust to outliers and at the same time are sensitive enough to

detect symmetries from limited support.

26



(a)

(b) (c)

Figure 3.3: Scene pointcloud pre-segmentation. (a) Scene pointcloud. Pre-

segmentation with (b) θsmooth = 10◦, and (c) θsmooth = 15◦.

3.5.1 Smooth surface segmentation

We employ a variant of the region growing algorithm with a smoothness con-

straint [45]. Pointcloud points are sorted in the order of increasing curvature and

the point with the minimum curvature is selected as the seed point. At each step six

of the nearest neighbors of the current seed point are examined. Segment smooth-

ness is enforced by requiring that the angle between the normals of neighboring

points is smaller than a threshold θsmooth. Unlike the standard approach, in which

all of the neighboring points satisfying the smoothness constraint are added as new
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segment points, we only grow the segment if at least half of the neighbors satisfy

the constraint. This prevents the segments from ”leaking” over the surface normal

boundaries due to noisy surface normal estimates. The newly added points are used

as new seeds. The process continues until no more valid neighbors can be found or

all of the pointcloud points belong to a segment. If there are any points remaining

they are used to initialize a new segment.

To increase the likelihood of recovering the necessary segments, we run the

above segmentation algorithm at several smoothness thresholds. Specifically we use

θ1 = 10◦ and θ2 = 15◦. Figure 3.6 shows an example of a scene pre-segmentation.

Note how the two segmentations complement each other. With θ1 = 10◦ the front

faces of the red and violet boxes are segmented correctly, while the teddy bear is

over-segmented. On the other hand, with θ1 = 15◦ teddy bear is segmented correctly

while the box faces are merged.

3.5.2 Rotational symmetry detection

Rotational symmetry imposes a strong constraint on the shape of an object.

We observe that for any point on the surface of a rotational symmetric object, the

corresponding surface normal lies in the plane formed by the symmetry axis and the

point itself, as shown on Figure 3.4. This allows us to formulate an optimization

scheme that fits a rotational symmetry axis directly to the segment pointcloud.

Consider a pointcloud consisting of oriented points Pi = {pi, ni} and a can-

didate symmetry axis Srot = {prot, drot} described by a point and a unit direction
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Figure 3.4: Constraint imposed on the points of a rotationally symmetric object.

The surface normal n of any point of a rotationally symmetric object must lie in

the plane formed by the symmetry axis S and the point p itself.

vector. Let ∠(Srot, Pi) denote the angle between the point normal ni and the plane

formed by the symmetry axis Srot and point pi. The candidate symmetry axis can

be fitted to the pointcloud by minimizing the following function over the symmetry

axis parameters:

∑

i

min(∠(Srot, Pi), αmax) (3.4)

where αmax is the maximum angle used to limit the influence of outliers. In our

experiments we use αmax = 45◦. This function can be minimized using a non-linear

solver such as Levenberg-Marquardt.

To initialize the minimization we use PCA to construct three candidate sym-

metry axes that go through the center of mass of the pointcloud and are aligned

to the segment principal axes. We have found this initialization procedure ensures

that at least one of the three axes will converge to the true symmetry axis. Once all
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(a) (b)

(c) (d)

Figure 3.5: Rotational symmetry detection stages shown for the blue bowl segment

in Figure 3.6. (a) Input pointcloud. (b) Initial symmetries. (c) Refined symmetry.

(d) Cloud reconstructed by rotating the segment around the symmetry axis.

three axes are refined, the one attaining the minimum error is selected as the single

final hypothesis. This is motivated by the fact that, except for a degenerate case of a

sphere, any shape can have at most one rotational symmetry axis. Figure 3.5 shows

the symmetry detected for a bowl. Note how our approach manages to accurately

detect the symmetry from a partial pointcloud, which allows us to reconstruct the

complete shape of the object.

In order to find symmetries for all of the rotational symmetric objects in a

scene, we apply our detection approach to all of the segments returned by the smooth

segmentation stage. While the resulting set oh hypotheses is likely to contain all of

the true rotational symmetries, it will also contain many false positives, since the
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scenes are expected to contain objects that have no rotational symmetries (e.g. a

box). To filter out these cases we define a set of metrics that measure how well a

rotational symmetry axis fits a given segment.

Symmetry score. Symmetry score measures how well a candidate symmetry

axis fits the points of a segment. It is calculated as the total fitness error between

the final symmetry axis and the segment, normalized to the [0, 1] range:

Symrot =
1

N

∑

i

min(∠(Srot, Pi), αmax)

αmax

(3.5)

where θmax = 60◦ and N is the number of points in the segment. Lower symmetry

score implies a better fit between a symmetry and a segment.

Perpendicularity score. Intuitively, there is no unique way of fitting a

rotational symmetry to flat surface, such as a face of a box. In fact, given our

definition of fitness between a symmetry axis and a point, all of the points of a

flat segment achieve a fitness score close to zero for any symmetry axis that is

perpendicular to the segment. This means that the symmetry score can not be used

to filter out such segments. To handle this corner case we measure how perpendicular

a segment is to a symmetry candidate. The perpendicularity score between a point

and a symmetry axis is calculated as the angle between the point normal and the

symmetry axis:

Perprot(Pi) =
∠(drot, ni)

90◦
(3.6)
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Perpendicularity between a segment and a axis is defined as the average of point

perpendicularity scores.

Symmetries that satisfy all of the above filtering checks are accepted as final

symmetry candidates. Specifically, a symmetry candidate Srotis accepted as valid

if satisfies the following conditions: Symrot < Symrot
max and Perprot < Perprotmax.

Symmetries that don’t satisfy at least one of the measures are discarded.

3.5.3 Reflectional symmetry detection

Unlike the case of rotational symmetry, reflectional symmetry does not im-

pose any constraints on the position or surface normal orientation of single points.

Instead, relationships are established between pairs of symmetric points. We say

that point P ′
i is a symmetric correspondence of Pi under the reflectional symmetry

Srefl if the two points ”reflect” onto each other i.e. P ′
i is similar to Srefl(Pi) - the

reflection of Pi by Srefl. This motivates our fitting approach that alternates between

symmetric correspondence estimation and symmetry plane refinement.

We represent a symmetry plane Srefl = {prefl, nrefl}by a point lying in the

plane prefl and the plane’s normal nrefl (note that this is a different representation,

from the one used in our curve-based approach). For each point Pi we compute its

reflection Srefl(Pi) and search for its nearest neighbor P ′
i in the pointcloud. Since

we are dealing with incomplete object scans, we do not expect every point to have

a valid symmetric match. Thus we only establish a correspondence if the distance

between the reflected point and its nearest neighbor is less than 1cm. Addition-
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Figure 3.6: Visualization of the reflectional symmetry fitting approach (a) Input

object pointcloud and candidate symmetry. Black curve denotes the observed points

of the object. (b) Grey curve denotes the reflected pointcloud and blue lines show

the estimated symmetric correspondences.

ally, we reject all correspondences for which the angle between the reflected normal

Srefl(ni) and the corresponding normal n′
i is greater than 45◦. After establishing

the correspondences, we minimize the following function for the parameters of the

symmetry plane:

∑

{i}

dp,pl(S
refl(Pi), P

′
i ) (3.7)

where dp,pl stands for point to plane distance and {i} is the set of points that have

a correspondence. This process is repeated until convergence or until a maximum

number of 20 iterations is reached. Since correspondences are only established be-

tween points that are already approximately symmetric, this method results in very

accurate alignment between a symmetry and a pointcloud. However, similar to ICP,

it requires a good initial symmetry plane estimate [46].

One of the ways to generate initial hypotheses is by jointly sampling plane
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positions from a grid defined around the pointcloud and plane orientations from

a unit sphere. This is computationally prohibitive, since sampling from an n ×

n × n grid is O(n3) and densely sampling from a sphere incurs a large constant

factor [32]. We avoid the costly position sampling by only sampling orientations

and then refining plane positions based on the pointcloud structure. We start by

sampling points from the surface of a unit sphere aligned to the principal axes of

the segment pointcloud. Specifically, we rotate the unit vector corresponding to the

largest principal axis by multiples of degrees 36◦ around the two remaining principal

axes. In spherical coordinates, this corresponds to uniform angular sampling in

polar and azimuth angles. If any two normals are opposites of each other, we

discard one of them since they define the same symmetry plane. This results in

25 candidate orientations. For each orientation, we construct a symmetry plane

Srefl that goes through the segment’s center of mass. To refine the position of a

plane we first find all points that could potentially form symmetric correspondences

if the symmetry plane was shifted appropriately. Given a point Pi, its potential

symmetric neighbors Pj are enclosed in a cylinder centered at Pi with an axis parallel

to the plane normal nrefl. These “cylindrical” neighbors can be found efficiently

by projecting the pointcloud onto the symmetry plane and performing a radius

search. We filter out correspondences for which the angle between the normal ni and

the reflected neighbor normal nrefl
j is greater than 10◦. For each of the remaining

correspondences, we calculate the shift distance di,j as the distance between the

symmetry plane and the midpoint between Pi and Pj. We compute the median

shift dmedian from all correspondences and use it to shift the symmetry candidate’s
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(a) (b) (c)

Figure 3.7: Reflectional symmetry detection stages shown for a teddy bear segment

in Figure 3.6. Top and bottom rows show different sides of the segment. (a) Input

pointcloud. (b) One of the initial symmetries. (c) Refined initial symmetry.

point along its normal:

Srefl = {prefl + dmedian ∗ n
refl, nrefl} (3.8)

After generating the initial symmetries, we apply the global iterative refinement

described above to obtain the final symmetry detections. Figure 3.7 shows the

symmetry detected for a teddy bear.

Similarly to the case of rotational symmetry we implement several filtering

measures.
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Symmetry score. Symmetry fitness score is only defined for the points that

have symmetric correspondences. For a point P with a symmetric correspondence

P ′ the fitness score is calculated as the normalized angle between the reflected point

normal and the corresponding point normal:

Symrefl(Pi) =
min(∠(Srefl(ni), n

′
i), αmax)

αmax

(3.9)

with αmax = 20◦. The fitness between the symmetry plane and a segment is defined

as the average symmetry score for all of the correspondences.

Inlier score. We want to reject symmetries which don’t have sufficient sup-

port, i.e. that have too few symmetric correspondences. Inlier score is calculated

as:

Inlierrefl =
Ncorr

N
(3.10)

where Ncorr is the number of correspondences under a given symmetry and N is the

number of points in the segment.

3.6 Experiments

To compare the proposed approaches we tested their performance on the Clut-

tered Tabletop Dataset. As discussed in Chapter 2 the scenes in the dataset contain

a high amount of clutter which poses a significant challenge for precise symmetry

detection. We evaluate our approaches in terms of their ability to predict individual
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symmetries present in the scenes. In Section 3.6.1 we discuss the details of the exper-

imental setup and the evaluation procedure used. We then presents the quantitative

results and discuss the strengths and shortcomings of the proposed approaches in

Section 3.6.2.

3.6.1 Evaluation procedure

Our evaluation procedure is inspired by the evaluation method used for 2D

symmetry detection [47]. Similarity between a predicted symmetry S and the ground

truth symmetry SGT is measured based on the angular and positional differences

between the two symmetries. The geometric definitions of the angle between two

axes and the angle between two planes provide good measures of angular similarity

between rotational and reflectional symmetries respectively:

∆angle(S, SGT ) = ∠(S, SGT ) (3.11)

Finding a measure of positional similarity between symmetries is more chal-

lenging. The distance between the lines/planes does not provide a meaningful mea-

sure of similarity between symmetries. For example, two rotational symmetry axes

belonging to different objects in the scene may intersect outside the bounds of the

scene. The situation is even more extreme in case of reflectional symmetries, since

any two planes will always intersect, unless they are parallel. It is more revealing to

measure the distance between the two symmetries in the spatial area defined by the

object that exhibits the ground truth symmetry. Since our dataset contains object
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segmentation masks associated with every ground truth symmetry, we use the cen-

troids of the segments as the estimates of the locations of the object. Specifically,

given a ground truth symmetry SGT associated with a ground truth segment SegGT

with centroid CtrGT , we define the distance to a predicted symmetry S as the Eu-

clidean distance between the projections of the segment centroid onto the predicted

and ground truth symmetries:

∆pos(S, SGT ) = ‖projSGT
(CtrGT )− projS(CtrGT )‖ (3.12)

Given the above definitions we say that a ground truth symmetry SGT in

the scene is predicted correctly if there exists a predicted symmetry such that the

angular difference ∆angle(S, SGT ) is less than t1 = 10◦ and positional difference

∆pos(S, SGT ) is less than t2 = 10 cm. If several of the predicted symmetries satisfy

these criteria for the same ground truth symmetry, the predicted symmetry achieving

the smallest distance difference is counted as a true positive detection, while the

rest are considered false positive. Predicted symmetries that do not match to any

of the ground truth symmetries are considered false positive, while ground truth

symmetries that do not get matched to any predicted symmetries are considered

false negative.

We use the evaluation procedure described above to perform the precision-

recall analysis of our symmetry detection approaches. For each of the three meth-

ods we varied the parameters of the confidence measures used to filter the detected

symmetries. The values for parameters used are summarized in Table 3.1. Each
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approach was evaluated on the corresponding symmetry type i.e. curve-based and

surface-based reflectional symmetry detection approaches were evaluated on reflec-

tional ground truth symmetries, while surface-based rotational symmetry approach

was evaluated on ground truth rotational symmetries.

Method Parameter min max step

Curve-based reflectional
MS 1◦ 15◦ 1◦

ninlier 0.1 0.5 0.1

Surface-based rotational
Symrot 0.004 0.03 0.002
Perrot 0.6 0.7 0.1

Curve-based reflectional
Symrefl 0.7 0.95 0.05

Inlierrefl 0.2 0.8 0.2

Table 3.1: Parameters used for evaluating symmetry detection. Parameters were

varied from min value to max value in steps of size step.

3.6.2 Results and discussion

Figure 4.3 shows the PR curves and the maximum f-scores for the three al-

gorithms. Curve-based reflectional symmetry detection achieves an f-score of 10%.

While the algorithm achieves a high level of recall, it comes at a price of very low

precision. This can be attributed to the fact that the output of the normal edge

detection is very noisy. This results in many false positive symmetric matches be-

tween curves that belong to different objects or non-symmetric curves of the same

object.

On the other hand, curve-based detection approaches achieve a comparable

high recall, but have much higher precision. The dense geometric information avail-
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Figure 3.8: PR curves for symmetry detection evaluation. Stars mark the point

of maximum F-measure.

able from the smooth segments allows these methods to detect the symmetries much

more reliably, while ignoring many of the false positives. The reflectional symme-

try detection approach achieves an f-score of 40%. Rotational symmetry detection

has the highest f-score of 80%. This is due to the fact that rotational symmetry

places a much stricter constraint on the shape of an object, compared to reflectional

symmetry. In general, the main source of errors of the surface-based methods stem

from the imperfections of the presegmentation process. Two kinds of errors can be

distinguished. Firstly some of the segments can span multiple objects, which results

in false negatives, since it becomes harder to extract true symmetries for both of

the objects. Secondly, a segment that only spans a part of the object may possess
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additional symmetries that are not present in the complete object, which results

in false positive detections. Additionally, a large number of false positive reflec-

tional symmetries come from the rotationally symmetric objects. This is due to the

fact that for a rotational symmetric object, a plane passing through the symmetry

axis defines a valid reflectional symmetry. As a result the filtering process can not

distinguish these symmetries as invalid.

3.7 Conclusions

Symmetry detection is an important perceptual capability that serves as a

preprocessing step for many visual tasks. In this chapter we presented two families

of approaches for reflectional and rotational symmetry detection in pointclouds. An

evaluation on a challenging dataset of cluttered scenes showed that the surface-based

approaches deliver the highest quality results, especially for rotational symmetries.

All of the methods achieve a very high recall (> 90%) under relaxed filtering con-

ditions. As expected, this comes at a cost of reduced precision. This observation

suggests that a more sophisticated filtering approach may retain the same recall per-

formance while increasing the precision by intelligently discarding false positives. In

the next chapter we discuss how symmetry detection results can be used to aid

object segmentation, and, how the segmentation step can be used to filter our false

positive symmetry detections.
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Chapter 4: Symmetry Segmentation

4.1 Introduction

Figure-ground organization, the process of grouping smaller percepts into a

whole, is one of the core abilities required for visual perception. Symmetry is one

of the main grouping laws proposed by Gestalt psychologists. In this chapter we

propose a method for segmenting reflectional and rotational symmetric objects in

cluttered scenes. Given a set of candidate symmetries we initialize multiple figure-

ground segmentations. The goal of each segmentation is to find points in the scene

that belong together according to the grouping principles of proximity and convexity,

and at the same time are geometrically consistent with a given symmetry candidate.

The key insight to our segmentation approach is that symmetry hypotheses that

correspond to one of the objects in the scene are consistent with all of the observed

points of that object, while incorrect symmetries are compatible with an unorganized

set of points that can be easily discarded. Using the results from Chapter 3 we

present a complete pipeline for detecting symmetries and using them to segment

objects in a pointcloud. We evaluate our approach on a challenging dataset and

demonstrate how a simplified version of our system can be used by a mobile robot

to manipulate objects in a kitchen scenario.
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4.2 Related Work

Image segmentation is one of the fundamental problems in Computer Vision

and has been studied extensively. This problem is inspired by Gestalt theory of per-

ceptual organization which states that there exist a number of bottom-up ”grouping

laws” which allow humans to perceive the visual stimuli in terms of coherent groups

corresponding to meaningful objects and patterns [48]. The laws of proximity, sim-

ilarity, continuity and closure are implicitly used in all modern segmentation algo-

rithms. Most of the classical segmentation algorithms were developed for analyzing

RGB or greyscale images and use texture, color and image contour features for

grouping [49] [50] [51] [52]. Although suitable for certain tasks, they are not capable

of reliably segmenting objects in cluttered environments. This is due to the fact

that image features are too weak to be used in a purely bottom-up fashion. Discon-

tinuities in intensity images are caused both by object boundaries as well as surface

texture making the two extremely difficult to distinguish. Nevertheless, these algo-

rithms serve as a foundation for more recent segmentation approaches which rely

on 3D information to overcome many of the limitations of its predecessors.

One such approach is the active segmentation approach of Mishra et al. [53].

Depth and RGB cues are used to find an edge image of the scene, and objects

are segmented by finding a closed contour in the edge map around a given fix-

ation point. This method is able to segment compact objects in simple scenes.

Additional segmentation cues can be obtained by projecting the depth image into

three-dimensional space and analyzing the geometry of the resulting 3D pointcloud.
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In [54] Richtsfeld et al. presegment the scene by fitting planes and NURBS to the

pointcloud data and then merge the resulting segments into object hypotheses. The

likelihood of two segments belonging to the same object is computed by training

an SVM classifier on a number of appearance and geometrical features. The use of

robust shape primitives in the presegmentation step allows this method to deal with

compact objects in stacked configurations.

Several methods were proposed that explicitly model the assumption that ob-

jects tend to be convex in their shape. Stein et al. [55] use surface normals to

oversegment the pointcloud into supervoxels and estimate their adjacency using the

distance between their 3D centroids. Pairs of adjacent supervoxels are classified as

either convex or concave based on the relative position and surface normal orienta-

tion difference of their centroids. Supervoxels are then merged to find components

that are enclosed by convex edges. A favorable property of the algorithm is that

non-convex objects tend to get divided into their convex parts. In another work

Karpathy et al. find objects in 3D meshes of indoor scenes [56]. The input mesh is

oversegmented using an adaptation of Felzenswalb’s algorithm [49] producing a set

of overlapping object hypotheses. Individual hypotheses are then classified as ob-

ject or non-object based on a number of features including compactness, convexity,

smoothness and symmetry. Zheng et al. proposed to reason about physical stability

of objects in the scene [57]. Their method estimates the volumetric extent of seg-

ments extracted from pointcloud data and then combines them into configurations

that are stable under the gravity constraint. This method is capable of correctly seg-

menting non-convex objects, but fails in situations when volumetric reconstruction
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is unreliable.

Symmetry has been utilized as an attention mechanism to detect potential

object locations in the scene. In [58] Koostra et al. generate 2D saliency maps by

finding symmetric configurations of image gradients and show that these maps can

be used to guide the segmentation process. Potapova et al. [59] showed that higher

quality saliency maps can be obtained by extracting locally symmetric depth image

patches. More recently Teo et al. [38] proposed to use symmetry both as an object

detector and as a constraint in the segmentation process. Curved reflectional sym-

metries are detected and are used to setup a foreground segmentation that forces the

segments to be symmetric with respect to the detected symmetry curves. The idea

of using symmetry both as an attention and grouping mechanism is similar to our

approach. However, unlike [38] which operates on single 2D images, our approach

works on multiple view 3D pointclouds, which enables it to produce accurate results

even in extremely cluttered scenes.

4.3 Approach

The goal of the segmentation step is to find object hypotheses i.e. subsets

of points in the pointcloud that are consistent with the detected symmetries and

at the same time respect the basic grouping law of convexity. To check if a point

Pi of the pointcloud is consistent with a symmetry hypothesis S we analyze its

reflection/rotation by the symmetry [41]. Consider the case of reflectional symmetry.

We distinguish between three different options for the reflection of a point. If P is
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Figure 4.1: Symmetry consistency analysis. A square and a triangle are observed

by the camera. pr denotes the reflection of point p and p′ denotes the symmetric

neighbor of p. (a) p reflects to its symmetric neighbor. (b) p reflects to occluded

space. (c) p reflects to unoccluded space. Note that all of the observed points

belonging to the square and none of the points of the triangle are consistent with

symmetry S.

reflected to another point of the pointcloud P ′, we call them symmetric neighbors

and they are both considered to be supporting the symmetry S (Figure 4.1a). If on

the other hand it reflects into occluded space it does not support the symmetry but

is still compatible with it (Figure 4.1b). Finally if a point reflects to unoccluded

space it violates the symmetry S (Figure 4.1c). Similar principles can be used for

evaluating consistency with a rotational symmetry, with the difference that the point

needs to be rotated around the symmetry axis instead of being reflected. To capture

these properties, we define two pointwise measures: symmetry score Sym(P ) and

occlusion score Ocl(P ). These scores are calculated differently for rotational and

reflectional symmetry, but in both cases, the scores are normalized to lie in the [0, 1]

range and a lower score indicates better compatibility with a symmetry hypothesis.

To segment all of the objects in the scene we setup multiple graph based fore-

ground segmentation problems. A graph is constructed for each of the symmetry
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hypotheses where nodes correspond to the points of the pointcloud and edges are

established between adjacent points of the pointcloud. Let L = {fg, bg} be la-

bels corresponding to object and background respectively. Object hypotheses are

segmented by finding a labeling f that assigns a label fp ∈ L to all points in the

pointcloud, such that the following energy functional is minimized:

E(f) =
∑

p∈P

Dp(fp) + λ
∑

{p1,p2}∈N

Vp1,p2 · δ(fp1 6= fp2) (4.1)

where δ(·) denotes an indicator function. The first term is the unary term Dp(fp)

that ensures that the points consistent with the current symmetry hypothesis are

labeled as foreground. Vp1,p2 is the binary term defined between neighbouring points

of the pointcloud. It forces segment boundaries to lie along the surface normal edges

and not across flat surfaces. λ determines the influence of the binary term. In our

experiments we set both this weight to 2. Once the graphs are constructed they

are optimized using the graph-cuts algorithm [60]. We will now discuss how the

different terms are computed for rotational and reflectional symmetries.

4.3.1 Unary term

4.3.1.1 Rotational symmetry

As discussed in section 3.5.2, the fitness score between an oriented point and

a rotational symmetry S is calculated as the normalized angle between the point
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normal and the plane containing the symmetry axis and the point itself:

Symrot(P ) =
∑

i

min(∠(Srot, Pi), αmax)

αmax

(4.2)

For the occlusion score, we repeatedly rotate P around the symmetry axis by

θ degrees and check the distance from the rotated point to the nearest occluded

voxel. The distance lookup is done efficiently using the EDT computed during

the reconstruction process (see section 2.1.2). Occlusion score for a single point is

calculated as the maximum of these distances:

Occlrot(P ) =
maxi(EDT (Srot(P, θ ∗ i)))

dmax

, (4.3)

where θ = 30◦ and n ∈ {1, ..., 12} and dmax = 3cm is the clamping distance used for

the EDT.

The unary weights are set as:

Dp(fg) = (1− Symrot(P )) ∗ (1−Ocl(P rot)) (4.4)

Dp(bg) = Sym(P rot) +Ocl(P rot) (4.5)

These terms encode the intuition that a point belonging to the surface of a rotation-

ally symmetric object has to satisfy both the symmetry fitness and the occlusion

constraints.
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4.3.1.2 Reflectional symmetry

In the case of reflectional symmetry, the symmetry fitness score is only defined

for the points that have symmetric correspondences. For a point P with a symmetric

correspondence P ′ the fitness score is calculated as the normalized angle between

the reflected point normal and the corresponding point normal:

Symrefl(P ) =
min(∠(Srefl(n), n′), αmax)

αmax

(4.6)

The occlusion score, which is defined for all of the points in the scene, is computed

by reflecting the points by the symmetry plane and checking the distance to the

nearest occluded voxel:

Oclrefl(P ) =
EDT (P ′)− dmax

dmax

(4.7)

For a point that has a symmetric neighbor, the unary weights are computed

similarly to the rotational symmetry case (equations 4.4 and 4.5). If a point has

no symmetric correspondence, its foreground weight is set to 0, while the occlusion

score is used for the background weight:

Dp(fg) = 0 (4.8)

Dp(bg) =
Ocl(P, Srefl)

dmax

(4.9)
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4.3.2 Binary term

Unlike the unary term, binary term does not depend on the symmetry type,

and is computed in the same way for rotational and reflectional symmetries. Point

adjacency in the pointcloud N is estimated by connecting every point to 9 of its

nearest neighbors. Binary weights are set between every pair of neighboring points.

One viable option is to set the edge weights according to the angle between the

surface normals of neighboring points. A smaller angle indicates that points belong

to the same surface while a large angle suggests the existence of a surface normal

edge between the points. This approach can be improved by modulating the weights

based on the convexity criterion. This modification captures the intuition that

objects tend to be convex while boundaries between two objects on top of each

other tend to be concave. Given two points P1 and P2 we define them to be in a

convex arrangement if n1 · (p1 − p2) > 0. The binary weight between them is set as:

Vp1,p2 =























exp

(

−
n1 · n2

σconvex

)

if n1 · (p1 − p2) > 0

exp

(

−
n1 · n2

σconcave

)

otherwise

(4.10)

where σconvex = 2 and σconcave = 0.15.

4.3.3 Hypothesis rejection

For a given symmetry, the output of our segmentation approach is a segmen-

tation mask, each associated with the symmetry hypothesis used to generate it.
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In order to reject false positive segments we employ a filtering process based on a

number of geometrical ”objectness” measures. These measures are used to rate each

segment hypothesis on how likely is it to correspond to an object in the scene.

Symmetry score. A valid segment predicted by our segmentation approach

must be symmetric. Symmetry score of a segment is calculated as the average

symmetry score for all of the points of the segment:

Sym(H) =
1

|H|

∑

Pi∈H

Sym(Pi) (4.11)

where H is the predicted segment.

Occlusion score. As discussed previously, all of the points of the segment

must lie in the occluded/occupied space of the scene when rotated/reflected by the

symmetry. Segment occlusion score is the average of its point-wise occlusion scores:

Occl(H) =
1

|H|

∑

Pi∈H

Ocl(Pi) (4.12)

Smoothness score. Object hypotheses should be smooth i.e. their bound-

aries should not cross flat surfaces. We measure the smoothness of a hypothesis

H by counting the average number of smooth links between adjacent points of the

pointcloud that are broken by the segmentation. To make sure that surface normal

edges do not contribute to the score we only count links for which the angle be-

tween point normals is smaller than a threshold. Let BH = {Pi, Pj | Pi ∈ H,Pj ∈

P/H, {Pi, Pj} ∈ N} be the set of links between neighboring points in the pointcloud
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that were broken by the object hypothesis H. The smoothness score is calculated

as:

Smooth(H) =
1

|H|

∑

{Pi,Pj}∈BH

δ(∠(ni, nj) < αsmooth) (4.13)

Object hypotheses that satisfy Sym(H) < ssym, Occl(H) < soccl and Smooth(H) <

ssmooth are considered valid. The rest of the hypotheses are rejected. By changing

these thresholds, our algorithm can be tuned to achieve a necessary precision-recall

trade-off.

4.4 Pipeline

In this section we present an approach to combining the symmetry detection

methods described in Chapter 3 with the segmentation method described above,

into a complete pipeline for segmenting rotationally and reflectional symmetrical

objects in 3D reconstructions of cluttered scenes. Figure 4.2 shows the flowchart of

the system. It consists of two sequential streams: one for rotational and the other

for reflectional symmetries. Given an input pointcloud and an EDT of the scene,

rotational objects are detected first. Next the points belonging to the detected

rotational object segments are removed from the input pointcloud, before pass-

ing it to the reflectional symmetry stage. By doing this, we avoid the previously

discussed problem of detecting reflectional symmetries on rotationally symmetric

surfaces (Section 3.6.2). It has an added benefit of speeding up the reflectional sym-

metry stage of the pipeline, since it is operating on the smaller pointcloud. After
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Figure 4.2: System flowchart.

segmenting both rotational and reflectonal objects we combine the outputs from

both stages. Since some of the objects in the scene may have multiple symmetries

(e.g. a box), the segments generated for any of these symmetries should be identical.

To handle these cases, we merge the segments for which the intersection over union

is greater than 95% and concatenate the symmetries used to generate them. This

allows our pipeline to return segments associated with multiple symmetries.

4.5 Experiments

We evaluate our approach on the scenes from the challenging Cluttered Table-

top Dataset. We investigate its ability to predict accurate segmentation masks as

well as to detect object symmetries. We evaluate three versions of our approach.

The first version uses the complete pipeline with surface-based approaches used for

rotational and reflectional symmetry detection (Rot + Refl (surface)). To investi-

gate the importance of modeling rotational symmetries, we test two versions of our

pipeline that only use reflectional symmetry to segment the scenes. The two ver-

sions use surface-based (Refl (surface)) and curve-based (Refl (curve)) approaches

for the symmetry detection stage.
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The performance of our pipeline directly depends on the quality of the detected

symmetries. If none of the symmetries of an object are detected, the segmentation

stage will not be able to segment it. On the other hand, if an incorrect symmetry is

supplied to the segmentation stage, there is a good chance it will be rejected by the

segment hypothesis filtering process. Thus we use a set relaxed filtering parameters

for the symmetry detection stages, that maximize recall of the detected symmetries

at the cost of precision. The values of the parameters used are shown in table 4.1.

Method Parameter Value

Curve-based reflectional
MS 7◦

ninlier 0.3

Surface-based rotational
Symrot 0.02
Perrot 0.6

Curve-based reflectional
Symrefl 0.8

Inlierrefl 0.3

Table 4.1: Filtering parameters used for the symmetry detection stages in the

evaluation of our pipeline.

4.5.1 Segmentation evaluation

Unlike the majority of modern segmentation algorithms which assign a single

object label to every point in the pointcloud, our method returns a set of object

segments that can be spatially overlapping. Moreover, some points might not get

assigned to any segment at all. We believe that this property does not reflect

negatively on our approach. We argue that the utility of a segmentation process

for a robotic system should be measured not by the number of points in the scene
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that were assigned a correct object label, but by the number of objects in the scene

for which sufficiently accurate segmentation masks were returned. This principle

motivates our choice of the evaluation metric. An object in the scene is considered to

be segmented correctly if there exists a predicted segment that overlaps sufficiently

with its ground truth segmentation mask (intersection over union metric is used

to compute the overlap). Recall is calculated as the fraction of the objects in the

dataset that were segmented correctly and precision as the number of correctly

segmented objects normalized by the total number of returned segments. Denoting

by HT the set of ground truth masks for all objects in all of the scenes of a dataset

and by HP the set of predicted object hypotheses:

P =
1

|HP |

∑

Ht∈HT

δ( max
Hp∈HP

O(Hp, Ht) > σo) (4.14)

R =
1

|HT |

∑

Ht∈HT

δ( max
Hp∈HP

O(Hp, Ht) > σo) (4.15)

where

O(H1, H2) =
H1 ∩H2

H1 ∪H2

(4.16)

and σo is the desired overlap score. In our evaluation we use the value of σo = 0.9.

We choose such a high overlap requirement since small errors in segmentation can

lead to significant errors in later stages of the processing pipeline of a robot (i.e.

grasp selection and path planning).

In addition to the three versions of our pipeline we evaluate two bottom-up
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segmentation approaches that rely on convexity as the main grouping principle. The

first one is the popular Felzenswalb graph segmentation algorithm adapted to point-

cloud data [56]. The second is the LCCP [55] that segments the scene by merging

supervoxels found in the scene. The meta-parameters used for these algorithms as

well as the segmentation stages in out pipeline are described in Table 4.2.

Method Parameter min max step

Reflectional segmentation
Symrefl 0.1 0.6 0.1

Oclrefl 0.005 0.045 0.01

Rotational segmentation
Symrot 0.01 0.03 0.01
Oclrot 0.01 0.015 0.005

Felzenswalb k 0.5 7.0 0.5

LCCP βthresh 10◦ 70◦ 5◦

Table 4.2: Parameters used for evaluating symmetry detection. Parameters were

varied from min value to max value in steps of size step.

The PR curves for the evaluated algorithms are shown on figure Figure 4.3.

LCCP and Felzenswalb achieve a similar performance with maximum F-measures

of 31% and 33% respectively. Both methods are significantly outperformed by the

symmetry-based methods. This shows that local convexity alone is not sufficient for

accurate object segmentation in highly cluttered environments. Looking at results

in Figure 4.4, we can identify two distinct types of object configurations where

Felzenswalb and LCCP methods fail:

1. touching objects where the transition between objects is not concave are

merged together. In row 1 transition between the speaker and the coffee box

is non-concave.

56



Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Felzenswalb    F = 0.33

LCCP     F = 0.31

Refl (curve)    F = 0.60

Refl + Rot (surface)  F = 0.73

Refl (surface)    F = 0.65

Figure 4.3: PR curves for segmentation evaluation. Stars mark the point of max-

imum F-measure.

2. objects separated by an occlusion boundary are oversegmented. In row 2 the

box is occluded by the milk carton.

In both of these cases convexity criterion is not sufficient to correctly group the

points into objects. On the other hand symmetry provides a global object-level

grouping principle, which allows our method to correctly segment these scenes.

Among the symmetry-based methods Refl (surface), our complete pipeline

with rotational and reflectional symmetry stages, achieves the highest f-score of 73%.

Approaches relying solely on the reflectional symmetry achieve similar recall, but

have a lower precision. This can be attributed to two reasons. Approaches that do
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Input pointcloud Felzenswalb LCCP Rot + Refl (curve)

Figure 4.4: Comparison of segmentation results on individual scenes. For each

method best segments were automatically selected by choosing the predicted seg-

ments that have the highest overlap with ground truth masks.
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not explicitly model rotational symmetry can only segment rotational objects if they

happen to detect a reflectional symmetry that goes through the rotational symmetry

axis. Even if such symmetry is detected, reflectional segmentation imposes fewer

constraints on the segment, compared to a rotational method. As a result it is less

likely to segment it correctly. Additional segmentation errors arise if the axis of

a rotationally symmetric objects lies in the symmetry plane of a different objects.

The two will be merged together by a reflectional segmentation approach. Finally,

Refl (surface) achieves an f-score of 65% outperforming Refl (curve) with 60%. The

lower performance can be explained by the fact that Refl (curve) uses an inferior

symmetry detection stage.

4.5.2 Symmetry evaluation

We investigate the symmetry detection performance of our pipeline Refl + Rot

(surface). For each of the scenes, symmetries associated with the returned segments

are concatenated together and are treated as outputs of a symmetry detection ap-

proach. The procedure described in section 3.6.1 is used for evaluation. Figure 4.5

shows the PR curves for the reflectional and rotational symmetry detection results

after the segmentation process. The results for surface-based symmetry detection

approaches (without the segmentation step) are shown shown for comparison.

Rotational symmetries are detected very reliably with an f-score of 89%, while

reflectional symmetries get a more modest score of 63%. For both symmetry types,

our pipeline significantly outperforms the raw surface-based approaches. This con-
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Figure 4.5: PR curves for symmetry detection results for the complete pipeline.

Stars mark the point of maximum F-measure.

firms our hypothesis, that segmentation can be viewed as a reliable filtering stage

for the detected symmetries. The performance gap between pre and post segmenta-

tion results is particularly notable for reflectional symmetries - an increase of 23%.

This is due to the fact that our pipeline removes rotationally symmetric parts of the

scene before detecting reflectional symmetries. This has an effect of ”decluttering”

the scene, making further processing easier.
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Figure 4.6: Output of our complete pipeline. First image in a row shows the input

pointcloud. Following images show the detected objects and their symmetries.
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4.5.3 Runtime analysis

The runtime of our complete pipeline (Section 4.4) depends on the number and

of the objects present in the scene, the complexity of their individual shapes as well

as on their arrangement. The computational complexity of the symmetry detection

(both rotational and reflectional) for a single segment is bounded by the performance

of the Levenberg-Marquardt optimization, which has the worst-case computational

complexity of O(n3) where n is the number of points in a pointcloud. Symmetry

detection algorithms have to be run on every segment returned by the smooth surface

segmentation process. The symmetry segmentation steps have the same complexity

of O(n3) due to the use graph-cuts algorithm. A graph-cuts algorithm has to be

run for every symmetry detected during the symmetry detection stage.

Table 4.3 shows the average computational times for the different stages of our

pipeline. Performance were measured on a modern Intel i7 CPU. Scenes consisting

of 4 or less objects required 1.5 seconds, while more complex scenes took 8.4 seconds

to process.

Pipeline stage 4 or less objects more than 10 objects

Rotational stage 0.3 sec 0.9 sec
Reflectional stage 1.2 sec 7.5 sec

Total 1.5 sec 8.4 sec

Table 4.3: Average runtimes for different stages of our pipeline for the scenes from

the Cluttered Tabletop Dataset.
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4.6 Object grasping by a mobile robot

In this section we describe an application of a simplified version of our percep-

tion pipeline in the context of robot manipulation. A mobile robot was tasked with

picking dishes such as bowl mugs and plates, from a table in a kitchen scenario. The

shape of the graspable objects was modeled as cylinders. This model is generalizes

well to a large amount of dishes and can be used by the robot to pick up previously

unseen objects.

4.6.1 Robot platform

Our robot consisted of a dual arm Baxter collaborative robot mounted on an

omnidirectional mobile base. The right arm was equipped with a ReFlex 3-fingered

gripper and was used for object grasping. An Asus Xtio Pro RGB-D sensor was used

as the main vision sensor. It was mounted on the left arm, such that it’s position

could be controlled to get a better view of the scene. The pose of the camera relative

to the arm was estimated by running stereo calibration on the RGB images from

the depth sensor and the RGB camera installed in the wrist of robot’s arm. The

Robot Operating System (ROS) [61] was used to program and control the robot.

4.6.2 Perception pipeline

The perception pipeline consisted of two main stages: reconstruction and de-

tection. To reconstruct the scene multiple RGB-D frames were captured by moving

the depth sensor in a sequence of predefined arm poses. The poses were chosen such
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that the table and its objects would be clearly visible to the camera. Due to the

low precision of the motor encoders of the Baxter robot as well errors in camera to

robot calibration, the camera pose available through the ROS transform tree was

too noisy to be used for reconstruction purposes. Instead, a purely computer vision

approach was used. SIFT feature correspondences were extracted from the RGB-D

frames an SolvePNP was used to find camera poses. The pointclouds from each of

the frames were then stitched together using ICP.

Next, object pointcloud was acquired, by detecting the table plane and ex-

tracting points lying above it. The resulting pointcloud was then segmented using

Euclidean Clustering. A symmetry axis was then fitted to every segment using the

approach described in Section 3.5.2. Finally, the parameters of the bounding cylin-

ders were estimated for every segment for which a valid rotational symmetry was

detected. Given a segment and a symmetry axis, the radius of the cylinder was

found as the maximum distance between the detected symmetry axis and any point

of the segment. Cylinder bounding planes were found by projecting segment points

onto the axis and finding the bounding points.

4.6.3 Grasping

Given the parameters of a bounding cylinder a set of candidate grasps were

proposed. The grasps were generated such that the end effector would envelop the

object around the symmetry axis while respecting the size of the cylinder. The final

grasp was chosen based on the reachability analysis. Once the desired pose of the
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end effector was selected, arm motion was planned using the RRT planner.

4.6.4 Results

Figure 4.7 shows the multiple stages of the perception and grasping processes.

In our experiments the robot was able to reliably pick objects placed in different

poses on the table. The perception pipeline was found to be very robust and general

enough to handle multiple scenarios that it was not specifically programmed for.
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(a) (b)

(c) (d)

Figure 4.7: Robot grasping application. (a) Robot reconstructs the scene by

moving the depth sensor mounted on the left arm. (b) The reconstructed view of

the table. (c) Robot grasping the bowl (d) Cylinders fitted to the reconstruction

shown in green.
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4.7 Final Conclusions and Outlook

In this thesis we have investigated the use of rotational and reflectional sym-

metries for delivering perceptual constructs required for unconstrained robot object

manipulation. We have presented a complete pipeline for segmenting symmetric

objects in 3D reconstructions. Our pipeline uses symmetry first as an attention

operator, that provides seeds for the segmentation process and then as a group-

ing principle to segment individual objects. This tandem use of symmetry borrows

inspiration from the studies of human visual system. In our experiments we have

demonstrated the ability of our approach to deliver high quality segmentations and

symmetry detections of objects in extremely cluttered scenes. This confirms our hy-

pothesis that symmetry imposes a strong constraint on the three dimensional shape

of the objects, which can and should be exploited by perceptual systems. Finally

we have demonstrated how a system similar to ours can be deployed on a mobile

robot.

There are several avenues for improvement of our work. We have observed that

rotational symmetry, while more specialized, imposes a stronger constraint on object

shape. Modeling additional ”combinatorial” symmetry classes that correspond to a

more limited, yet common set of object, classes could improve the performance of our

system even further. An example is a set of 3 perpendicular planes which correspond

to box-like objects. It would be interesting to see if the sound geometrical principles

used in our pipeline can be encoded in a more advanced inference framework such as

a Deep Convolutional Neural Network. This has the potential of automating some
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of the parameter learning steps required to fine-tune out system. Additionally it can

significantly reduce the computational load of the system making it applicable to

real-time robotics. Finally, to make our system truly autonomous we would need to

automate the data collection process. Symmetry could be used to guide this process

by providing cues for selecting the next viewpoint used to observe the scene.

While fully unconstrained manipulation remains an elusive task, we believe

that the approaches demonstrated in this thesis bring us closer to that goal.
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[11] Ana Huamán Quispe, Benôıt Milville, Marco A Gutiérrez, Can Erdogan, Mike
Stilman, Henrik Christensen, and Heni Ben Amor. Exploiting symmetries and
extrusions for grasping household objects. In Robotics and Automation (ICRA),
2015 IEEE International Conference on, pages 3702–3708. IEEE, 2015.

[12] Franc Solina and Ruzena Bajcsy. Recovery of parametric models from range im-
ages: The case for superquadrics with global deformations. IEEE transactions
on pattern analysis and machine intelligence, 12(2):131–147, 1990.

[13] Juan D Delius and Brigitte Nowak. Visual symmetry recognition by pigeons.
Psychological research, 44(3):199–212, 1982.

[14] Martin Giurfa, Birgit Eichmann, and Randolf Menzel. Symmetry perception
in an insect. Nature, 382(6590):458, 1996.

[15] Jon Driver, Gordon C Baylis, and Robert D Rafal. Preserved figure-ground
segregation and symmetry perception in visual neglect. Nature, 360(6399):73–
75, 1992.

[16] Marco Bertamini, Jay D Friedenberg, and Michael Kubovy. Detection of sym-
metry and perceptual organization: The way a lock-and-key process works.
Acta psychologica, 95(2):119–140, 1997.

[17] Gert Kootstra and Lambert RB Schomaker. Prediction of human eye fixa-
tions using symmetry. In The 31st Annual Conference of the Cognitive Science
Society (CogSci09), pages 56–61. Cognitive Science Society, 2009.

[18] Jeannette Bohg, Matthew Johnson-Roberson, Beatriz León, Javier Felip, Xavi
Gratal, N Bergstrom, Danica Kragic, and Antonio Morales. Mind the gap-
robotic grasping under incomplete observation. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 686–693. IEEE, 2011.

70



[19] Yiannis Aloimonos. Active perception. Psychology Press, 2013.

[20] Carlo Tomasi and Takeo Kanade. Shape and motion from image streams un-
der orthography: a factorization method. International Journal of Computer
Vision, 9(2):137–154, 1992.
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