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Abstract— Although modern object segmentation algorithms
can deal with isolated objects in simple scenes, segmenting non-
convex objects in cluttered environments remains a challenging
task. We introduce a novel approach for segmenting unknown
objects in partial 3D pointclouds that utilizes the powerful
concept of symmetry. First, 3D bilateral symmetries in the scene
are detected efficiently by extracting and matching surface
normal edge curves in the pointcloud. Symmetry hypotheses
are then used to initialize a segmentation process that finds
points of the scene that are consistent with each of the detected
symmetries. We evaluate our approach on a dataset of 3D
pointcloud scans of tabletop scenes. We demonstrate that
the use of the symmetry constraint enables our approach to
correctly segment objects in challenging configurations and to
outperform current state-of-the-art approaches.

I. INTRODUCTION

Rapid advances in robotic technology are bringing robots
out of the controlled environments of assembly lines and
factories into the unstructured and unpredictable “real-world”
workspaces of human beings. One of the prerequisites for
operating in such environments is the ability to segment
previously unseen objects in cluttered scenes. This remains
a challenging task due to the lack of prior information about
the shape and pose of the object as well as due to occlusions
in clutter.

In this paper we introduce a novel approach to object
segmentation in partial 3D pointclouds and apply it to heavily
cluttered tabletop scenes. At the core of our approach is
the observation that the three dimensional shape of common
objects is bilaterally symmetric. Although this assumption
might seem restrictive at first, it turns out that very few
man-made objects do not have this property [1]. Mugs,
chairs, boxes, bottles, computer screens all have at least
one bilateral symmetry plane. Moreover, it was argued that
symmetry is so prevalent in nature that the visual systems
of humans and animals use symmetry both to guide visual
attention [2] and as a cue for figure-ground segmentation [3].
Our proposed algorithm consists of two tightly coupled
steps. In the first step, candidate 3D bilateral symmetries are
detected by extracting and matching surface normal edge
curves of the pointcloud. Since the matching is done at
curve feature level it is more efficient than the traditional
approach of matching individual oriented points. In the
second step these candidates are used to initialize multiple
figure ground segmentations. The goal of each segmentation
is to find points in the scene that belong together according
to the grouping principles of proximity and convexity, and

*The authors are with the Department of Computer Science, Univer-
sity of Maryland, College Park, MD 20742, USA {aecins, fer,
yiannis}@umiacs.umd.edu

(a) Input pointcloud

(b) Our segmentation

Fig. 1: Example of a scene segmetned using our approach.
Color information is not used in the segmentation process
and is only used for visualization.

at the same time are geometrically consistent with a given
symmetry candidate. The key insight to our segmentation
approach is that symmetry hypotheses that correspond to
one of the objects in the scene are consistent with all of the
observed points of that object, while incorrect symmetries
are compatible with an unorganized set of points that can be
discarded in later processing stages.

To evaluate our method, we have collected a novel dataset
of tabletop scenes. Unlike most such datasets which contain
single RGB-D frames, we reconstruct high-quality point-
clouds of the scenes observed from multiple points using
an open source implementation of the KinectFusion algo-
rithm [4]. Additionally, in order to keep track of occlusions,
we construct a volumetric occupancy map for each of the
scenes [5]. Evaluation on this dataset shows that the use of
the symmetry constraint allows our approach to correctly and
accurately segment complex scenes containing non-convex
objects as well as multiple objects in stacked or touching
configurations while approaches that rely on convexity as
the primary grouping principle struggle in such scenarios.

The rest of the paper is organized as follows. We begin by
giving an overview of current approaches to object segmen-
tation. Section III presents our approach to finding potential
3D symmetry plane candidates in the scene. In section IV we



describe the details of our segmentation method. In section V
we show how to improve segmentation results by refining
the initial symmetries. In section VI we show how to filter
out incorrect segments based on a number of ”objectness”
measures. The paper concludes with an evaluation procedure
and results in Section VII.

II. RELATED WORK

Image segmentation is one of the fundamental problems
in Computer Vision and has been studied extensively. Most
of the classical segmentation algorithms were developed for
analyzing RGB or grayscale images and use texture, colour
and image contour features for grouping [6] [7] [8] [9].
Although suitable for certain tasks, they are not capable
of reliably segmenting objects in cluttered environments.
Nevertheless, these algorithms serve as a foundation for
more recent segmentation approaches which rely on 3D
information to overcome many of the limitations of its
predecessors.

One such approach is the active segmentation approach
of Mishra et al. [10]. Depth and RGB cues are used to find
an edge image of the scene, and objects are segmented by
finding a closed contour in the edge map around a given fixa-
tion point. This method is able to segment compact objects in
simple scenes. Additional segmentation cues can be obtained
by projecting the depth image into three-dimensional space
and analyzing the geometry of the resulting 3D pointcloud.
In [11] Richtsfeld et al. presegment the scene by fitting
planes and NURBS to the pointcloud data and then merge
the resulting segments into object hypotheses. The likelihood
of two segments belonging to the same object is computed
by training an SVM classifier on a number of appearance
and geometrical features. The use of robust shape primitives
in the presegmentation step allows this method to deal with
compact objects in stacked configurations.

Several methods were proposed that explicitly model the
assumption that objects tend to be convex in their shape.
Stein et al. [12] use surface normals to oversegment the
pointcloud into supervoxels and estimate their adjacency
using the distance between their 3D centroids. Pairs of ad-
jacent supervoxels are classified as either convex or concave
based on the relative position and surface normal orientation
difference of their centroids. Supervoxels are then merged
to find components that are enclosed by convex edges.
A favorable property of the algorithm is that non-convex
objects tend to get divided into their convex parts. In another
work Karpathy et al. find objects in 3D meshes of indoor
scenes [13]. The input mesh is oversegmented using an
adaptation of Felzenswalb’s algorithm [6] producing a set
of overlapping object hypotheses. Individual hypotheses are
then classified as object or non-object based on a number of
features including compactness, convexity, smoothness and
symmetry. Zheng et al. proposed to reason about physical
stability of objects in the scene [14]. Their method estimates
the volumetric extent of segments extracted from pointcloud
data and then combines them into configurations that are
stable under the gravity constraint. This method is capable
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Fig. 2: Symmetry detection from a pair of oriented points.

of correctly segmenting non-convex objects, but fails in
situations when volumetric reconstruction is unreliable.

Symmetry has been utilized as an attention mechanism to
detect potential object locations in the scene. In [15] Koostra
et al. generate 2D saliency maps by finding symmetric
configurations of image gradients and show that these maps
can be used to guide the segmentation process. Potapova
et al. [16] showed that higher quality saliency maps can
be obtained by extracting locally symmetric depth image
patches. More recently Teo et al. [17] proposed to use
symmetry both as an object detector and as a constraint in
the segmentation process. Curved bilateral symmetries are
detected and are used to setup a foreground segmentation
that forces the segments to be symmetric with respect to
the detected symmetry curves. The idea of using symmetry
both as an attention and grouping mechanism is similar
to our approach. However, unlike [17] which operates on
single 2D images, our approach works on multiple view 3D
pointclouds, which enables it to produce accurate results even
in extremely cluttered scenes.

III. SYMMETRY DETECTION
Bilateral symmetry detection in 3D data has been studied

extensively in the fields of Computer Vision, Robotics and
Graphics [18]. Most of the proposed methods rely on the
idea of finding symmetric correspondences between oriented
points. A bilateral symmetry plane S = {ns, ds} described
by a unit normal ns and distance to the origin ds reflects a
point p associated with surface normal vector n to a reflected
point pr, nr such that:

pr = p− 2ns(p · ns − ds) (1)
nr = n− 2ns(ns · n) (2)

The coordinates of any two points in space p1 and p2
uniquely define a bilateral symmetry plane that is perpen-
dicular to the line connecting the points and contains the
midpoint between them. The parameters of this plane are:

ns =
p1 − p2
‖p1 − p2‖

(3)

ds =
(p2 − p1) · ns

2
(4)

The matching score of the symmetric correspondence be-
tween p1 and p2 can be measured by the angular difference
between the normal of one of the points and the reflected
normal of the other point:

MS(p1, p2) = ∠(n1, n
r
2) (5)

Thus a naive approach to discovering symmetries in a
pointcloud is to find every pair of points that forms a valid
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Fig. 3: Symmetry detection. (a) Input pointcoloud. (b) Overegmentation. (c) Segment boundary points. (d) Linked edge
curves. (e) and (f) Symmetry correspondences and resulting symmetry hypotheses. Only 3 of the 61 symmetry hypotheses
detected for this scene are shown here.

symmetry correspondence and then filter the set of symmetry
hypotheses to recover the dominant symmetries. However
this is computationally prohibitive since the number of point
pairs that need to be checked is quadratic in the number of
points in the pointcloud. An alternative is to find correspon-
dences between distinctive features of the pointcloud that are
represented by a smaller number of points but at the same
time exhibit the same symmetries as the original pointcloud.
One candidate for such features are surface normal edges i.e.
points where the surface normal direction changes abruptly.
By eliminating points belonging to smoothly varying sur-
faces, normal edges can be represented by a fraction of the
points of the original pointcloud while preserving most of the
geometrical information, allowing symmetries to be detected
efficiently and accurately.

Our strategy for extracting normal edges is similar to
that presented in [19] which utilizes the duality between
segmentation and edge detection. We oversegment the point-
cloud into patches whose borders are likely to lie along
normal edges and then find the boundaries between them.
We use the algorithm of Papon et al. [20] that segments
pointclouds into supervoxels with high boundary adherence.
To avoid extracting boundaries between supervoxels that
belong to the same flat surface, we merge all adjacent
supervoxels that have collinear surface normals (Figure 3b).
Superovxel boundary points are found by extracting points
which have at least one neighbour that belongs to a different
supervoxel (Figure 3c). Boundary points are then linked
together using a Minimum Spanning Tree algorithm to form
a set of disjoint edge curves C = {C1, ..., Cn}. Each curve
Ci = (p1Ci

, ..., pmCi
) is represented by an ordered set of

points and describes a surface normal edge in the pointcloud
(Figure 3d).

Once the edge curves are extracted, pointcloud symmetries
can be recovered by finding symmetrical pairs of edge
curves. Given a pair of edge curves Ci, Cj we exhaustively
search for symmetrical correspondences between their indi-
vidual points {pCi , pCj} using the point matching approach
described above, with the difference that the curve tangent
direction is used as orientation vector instead of the surface
normals. Matches are filtered by removing correspondences
with a match score higher than a threshold MS(pCi , pCj ) >
6◦ and enforcing a one-to-one correspondence relationship.
This results in a set of noisy candidates for the global
symmetry plane aligning the two curves. To recover the
global symmetry plane we take an approach similar to the
one proposed in [21]. Symmetrical candidates are treated as
samples of the probability density function of the global sym-
metry plane. The problem of recovering the global symmetry
plane becomes equivalent to clustering these candidates. To
do the clustering we represent the candidates with points in
three dimensional space by weighting the symmetry plane
normal by the distance to the origin i.e. ns/ds. We then
use mean shift clustering [22] to find the dominant mode of
the distribution and use its maximum as the symmetry plane
aligning the two curves. This procedure is run on every pair
of edge curves resulting in a set of 3D bilateral symme-
try hypotheses for the input pointcloud S = {S1, ..., Sk}
(Figure 3e). It is important to note that the resulting set of
hypotheses will inevitably contain a large number of false
hypotheses. This however does not pose a problem since
the subsequent stages of the processing pipeline will discard
most of the erroneous symmetries and only require that the
initial symmetry hypothesis set contains symmetries that are
close enough to all of the true symmetries of the pointcloud.
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Fig. 4: Symmetry consistency analysis. A square and a triangle are observed by the camera. pr denotes the reflection of
point p and p′ denotes the symmetric neighbor of p. (a) p reflects to its symmetric neighbor. (b) p reflects to occluded space.
(c) p reflects to unoccluded space. Note that all of the observed points belonging to the square and none of the points of
the triangle are consistent with symmetry S.

IV. SYMMETRY SEGMENTATION

The goal of the segmentation step is to find object hypothe-
ses i.e. subsets of points in the pointcloud that are consistent
with the detected bilateral symmetries and at the same time
respect the basic grouping laws of proximity and convexity.
Consider the set of visible surface points P . To check if
a point p ∈ P is consistent with a symmetry hypothesis
S we analyze its reflection [23]. We distinguish between
three different cases. If p is reflected to another point of
the pointcloud p′, we call them symmetric neighbors and
they are both considered to be supporting the symmetry S
(Figure 4a). If on the other hand it reflects into occluded
space it does not support the symmetry but is still compatible
with it (Figure 4b). Finally if a point reflects to unoccluded
space it violates the symmetry S (Figure 4c).

To segment all of the objects in the scene we setup multi-
ple graph based foreground segmentation problems. A graph
is constructed for each of the symmetry hypotheses where
nodes correspond to the points of the pointcloud and edges
are established between adjacent points of the pointcloud as
well as between the symmetrical neighbours under a given
symmetry. Let L = {fg, bg} be labels corresponding to
object and background respectively. Object hypotheses are
segmented by finding a labeling f that assigns a label fp ∈ L
to all points in the pointcloud, such that the following energy
functional is minimized:

E(f) =
∑
p∈P

Dp(fp) +

λsmooth

∑
{p1,p2}∈Nsmooth

V smooth
p1,p2

· δ(fp1 6= fp2) +

λsym
∑

{p,p′}∈Nsym

V sym
p,p′ · δ(fp 6= f ′p)

(6)

where δ(·) denotes an indicator function. The first term is
the symmetry consistency term Dp(fp) that ensures that
the points consistent with the current symmetry hypothesis
are labeled as foreground. V smooth

p1,p2
is the smoothness term

defined between neighbouring points of the pointcloud. It
forces segment boundaries to lie along the surface normal

edges and not across flat surfaces. Finally V sym
p,p′ is the sym-

metry term that sums up the cost of assigning different labels
to symmetric points in the pointcloud. λsmooth and λsym
determine the influence of the smoothness and symmetry
terms. In our experiments we set both of these weights to
2. Once the graphs are constructed they are optimized using
the graph-cuts algorithm [24]. To speed up graph inference
we reduce the number of points in the scene pointcloud by
downsampling it with a voxel grid filter with voxel size of
0.01 metres. We will now discuss how we compute each of
the terms in the graph.

A. Symmetry consistency term

Given a symmetry hypothesis S, a point p is reflected
to pr. We can find the symmetrical neighbour of p by
searching for the nearest neighbour p′ of the reflected point
and checking the distance between them. If it is smaller than
a threshold ‖pr − p′‖ < dmax, point p is likely to belong
to the object and hence its background weight is set to 0.
Foreground weight is set according to the angle between the
reflected normal and the symmetrical neighbour normal:

Dp(fg) = 1− ∠(nr, n′)− αmin

αmax − αmin
(7)

Dp(bg) = 0 (8)

On the other hand, if the distance to the nearest neighbour
is greater than dmax, point p has no symmetrical neighbours
and its foreground weight is set to 0. The background weight
is set to 0 if the reflected point occupies occluded space. If
it reflects to unoccluded space its background weight is set
proportionally to the distance to the nearest point:

Dp(fg) = 0 (9)

Dp(bg) =


‖pr − p′‖ − dmax

dbuf
if pr ∈ unoccludedspace

0 otherwise
(10)

The following constant values are used: dmax = 0.01,
αmin = 15◦, αmax = 45◦ and dbuf = 0.03.



B. Smoothness term

Point adjacency in the pointcloud Nsmooth is estimated by
connecting every point to 5 of its nearest neigbours. Smooth-
ness weights are set between every pair of neighbouring
points. One viable option is to set the edge weights according
to the angle between the surface normals of neighbouring
points. A smaller angle indicates that points belong to the
same surface while a large angle suggests the existence of
a surface normal edge between the points. This approach
can be improved by modulating the weights based on the
convexity criterion. This modification captures the intuition
that objects tend to be convex while boundaries between
two objects on top of each other tend to be concave. Given
two points p1 and p2 we define them to be in a convex
arrangement if n1 ·(p1−p2) > 0. The binary weight between
them is set as:

V smooth
p1,p2

=


exp

(
−∠(n1, n2)

σconvex

)
if n1 · (p1 − p2) > 0

exp

(
−∠(n1, n2)

σconcave

)
otherwise

(11)

where σconvex = 360◦ and σconcave = 30◦.

C. Symmetry term

Symmetrical neighbour edges are established between all
points which are reflected to existing points of the pointcloud
i.e. Nsym = {p, p′ | ‖pr − p′‖ < dmax}. Once again the
weights are set based on the difference in their normal angles:

V sym
p,p′ = 1− ∠(n, n′)− αmin

αmax − αmin
(12)

The values of the constants are the same as in the symmetry
consistency term.

V. REFINEMENT

The output of the segmentation step is a set of object
hypotheses H = {H1, ...,Hn} associated with bilateral sym-
metry planes S = {S1, ..., Sn} used to generate them. Im-
portantly, most of the incorrect symmetry planes are likely to
result in empty object hypotheses which can be immediately
discarded. This is due to the fact that incorrect symmetry
hypotheses are not compatible with an object-like sets of
points in the observed scene pointcloud. However, noise in
the detected symmetry planes can result in incomplete object
hypotheses even if they are close to the correct symmetries
of the scene (Figure 5a). These types of errors can be
corrected by aligning the original object hypotheses with
their reflected versions. Points of hypothesis H are reflected
around the corresponding symmetry plane S and then aligned
back to H using the ICP algorithm [25] (Figure 5c). To
ensure fast and accurate convergence we use the point-
to-plane distance metric for correspondence estimation and
force correspondences to be one-to-one. A refined symmetry
estimate S̄ is then recovered by applying the mean shift
filtering technique used in the symmetry detection step on
the correspondences between the points of the original and
the reflected pointclouds. Finally the segmentation procedure

(a) (b)

(c) (d)

Fig. 5: Segmentation refinement process. (a) Initial symmetry
is not precise, leading to an incomplete object hypothesis. (b)
Initial object hypothesis is reflected around the symmetry
(shown in red). (c) They are aligned and a more accurate
symmetry estimate is recovered from aligned pointclouds.
(d) Repeating the segmentation process with the refined
symmetry returns a correct object hypothesis.

described above is run again using the refined symmetry
hypothesis S̄ (Figure 5d). This procedure is applied to all
of the non-empty object hypotheses resulting in the refined
set of hypotheses H̄ = {H̄1, ..., H̄m}.

VI. SEGMENTATION FILTERING

In order to reduce the number of false object hypotheses
we employ a filtering process based on a number of ”ob-
jectness” measures. These measures are used to rate each
hypothesis on how likely is it to correspond to an object in
the scene.
Smoothness score. Object hypotheses should be smooth i.e.
their boundaries should not cross flat surfaces. We measure
the smoothness of a hypothesis H by counting the average
number of smooth links between adjacent points of the
pointcloud that are broken by the segmentation. To make sure
that surface normal edges do not contribute to the score we
only count links for which the angle between point normals
is smaller than a threshold. Let BH = {pi, pj | pi ∈ H, pj ∈
P/H, {pi, pj} ∈ Nsmooth} be the set of links between
neighbouring points in the pointcloud that were broken by
the object hypothesis H . The smoothness score is calculated
as:

Smooth(H) =
1

|H|
∑

{pi,pj}∈BH

δ(∠(ni, nj) < αsmooth) (13)



Fig. 6: Example of a multiple view pointcloud of a scene
from the dataset shown from different viewpoints.

Occlusion score. All of the points of a valid object hypoth-
esis should reflect to the occluded space. We evaluate this
property by calculating the fraction of the hypothesis points
that fullfill this requirement:

Occl(H) =
1

|H|
∑
pi∈H

δ(pi ∈ occluded space) (14)

Object hypotheses that satisfy both Smooth(H) <
ssmooth and Occl(H) > soccl are considered valid. The rest
of the hypotheses are rejected.

VII. EXPERIMENTS AND RESULTS

A. Dataset

To evaluate our method we collected a dataset consisting
of 89 scenes of various objects placed on a table. The set of
objects included simple objects like boxes as well as non-
convex objects such as a teddy bear. Complexity of the scenes
varied from single objects to multiple objects put side by side
and stacked on top of each other. Scenes were captured by
moving a Kinect sensor in approximately 60◦ horizontal arc
around the center of the scene. Object points were extracted
as points lying above the table plane and their ground truth
segmentation masks were manually labeled. An example of
a pointcloud from the dataset is shown in Figure 6.

B. Evaluation procedure and methods

Unlike the majority of modern segmentation algorithms
which assign a single object label to every point in the
pointcloud, our method returns a set of object segments that
can be spatially overlapping. Moreover, some points might
not get assigned to any segment at all. We believe that this
property does not reflect negatively on our approach. We
argue that the utility of a segmentation process for a robotic
system should be measured not by the number of points in
the scene that were assigned a correct object label, but by
the number of objects in the scene for which sufficiently
accurate segmentation masks were returned. This principle
motivates our choice of the evaluation metric. An object in
the scene is considered to be segmented correctly if there
exists a predicted segment that overlaps sufficiently with
its ground truth segmentation mask (intersection over union
metric is used to compute the overlap). Recall is calculated as
the fraction of the objects in the dataset that were segmented
correctly and precision as the number of correctly segmented
objects normalized by the total number of returned segments.

Recall
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Fig. 7: PR curves for segmentation evaluation. Stars mark the
the maximum F-measure for each method. Crosses denote
results for hypotheses combined over all thresholds for
Felzenswalb and LCCP methods.

Denoting by HT the set of ground truth masks for all objects
in all of the scenes of a dataset and by HP the set of
predicted object hypotheses:

P =
1

|HP |
∑

Ht∈HT

δ( max
Hp∈HP

O(Hp, Ht) > σo) (15)

R =
1

|HT |
∑

Ht∈HT

δ( max
Hp∈HP

O(Hp, Ht) > σo) (16)

where

O(H1, H2) =
H1 ∩H2

H1 ∪H2
(17)

and σo is the desired overlap score. In our evaluation we
use the value of σo = 0.9. We choose such a high overlap
requirement since small errors in segmentation can lead to
significant errors in later stages of the processing pipeline of
a robot (i.e. grasp selection and path planning).

We evaluate the following 3 segmentation algorithms:
Felzenswalb. An adaptation of the Felzenswalb segmenta-
tion algorithm for pointcloud data taken from [13]. Segmen-
tation threshold k was varied from 0.5 to 7 in steps of 0.5.
LCCP [12]. A supervoxel-based segmentation with a con-
vexity prior. The following parameters were used: voxel
seed resolution Rvoxel = 0.005, supervoxel seed resolution
Rseed = 0.04. Concavity tolerance threshold βthresh was
varied between 10◦ and 70◦ in steps of 5◦.
Proposed method. Segmentation parameters were fixed as
described above. We show results for three occlusion filtering
thresholds soccl = {0.97, 0.88, 0.99}. For each of them
smoothness threshold ssmooth was varied from 0.01 to 0.05
in steps of 0.01.



C. Results

Figure 7 shows the precision recall curves for the three
algorithms. Felzenswalb and LCCP methods achieve similar
performance while the proposed method significantly outper-
forms both of them. Our method achieves an overall higher
precision and recall scores and an F-measure of 0.60. As
expected, using stricter filtering thresholds leads to increases
in precision at the cost of recall. The maximum F-measure is
achieved with soccl = 0.99 and ssmooth = 0.02. Remarkably,
our method achieves a very high recall of 86% when using
the least aggressive filtering setting (soccl = 0.97, ssmooth =
0.05). This means that even though our algorithm generates
a number of false positives, it produces very accurate object
segmentation masks for almost all of the objects in the
dataset. To compare the same property for Felzenswalb and
LCCP we combined all of the hypotheses generated by these
algorithms at all threshold levels and calculated the precision
recall scores. As shown in Table I these methods achieve
a maximum recall of 55% and 29% respectively. Even if
a perfect filtering technique, capable of removing all false
positives and none of the true positives, was used to improve
the results of these methods, their performance would still
be limited.

Looking at scenes in Figure 8, we can identify two distinct
types of object configurations where Felzenswalb and LCCP
methods fail:

1) touching objects where the transition between objects
is not concave are merged together. In row 1 transition
between the speaker and the coffee box is non-concave.

2) objects separated by an occlusion boundary are over-
segmented. In row 2 the box is occluded by the milk
carton.

In both of these cases convexity criterion is not sufficient to
correctly group the points into objects. On the other hand
symmetry provides a global object-level grouping principle,
which allows our method to correctly segment these scenes.

Algorithm F-measure Highest recall
Felzenswalb 0.33 55%

LCCP 0.31 29%
Symmetry (soccl = 0.97) 0.52 86%
Symmetry (soccl = 0.98) 0.56 85%
Symmetry (soccl = 0.99) 0.60 79%

TABLE I: Segmentation quantitative evaluation.

VIII. CONCLUSIONS AND FURTHER WORK

In this paper we demonstrated how bilateral symmetry
can be used as a prior for segmenting objects in 3D point-
clouds of cluttered scenes. Symmetry is used both as an
attention mechanism that provides seeds for the segmentation
process and as a grouping mechanism that helps solve the
figure-ground organization problem. Our approach requires
no training and relies solely on geometric information to
segment scenes. Evaluation on a novel challenging dataset
shows that it outperforms current state-of-the-art approaches.

Most importantly, it achieves very high recall scores. In
the future work we plan to increase the precision of our
approach by in employing more advanced object hypothesis
filtering techniques. Furthermore we will extract accurate
object level symmetries for the segmented objects and use
them to reconstruct the occluded parts of the objects.
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