
PRAM-On-Chip: First Commitment to Silicon
Xingzhi Wen and Uzi Vishkin

University of Maryland

Categories and Subject Descriptors: C.1.4 Parallel
Architectures.
Terms: Design
Keywords: Parallel algorithms, PRAM, On-chip parallel
processor, Ease-of-programming, Explicit multi-threading, XMT

Introduction1 The eXplicit Multi-Threading (XMT) on-chip
general-purpose computer architecture is aimed at the classic goal
of reducing single task completion time. It is a parallel
algorithmic architecture in the sense that: (i) it seeks to provide
good performance for parallel programs derived from Parallel
Random Access Machine/Model (PRAM) algorithms, and (ii) a
methodology for advancing from PRAM algorithms to XMT
programs, along with a performance metric and its empirical
validation are provided [1]. Ease of parallel programming is now
widely recognized as the main stumbling block for extending
commodity computer performance growth (e.g., using multi-
cores). XMT provides a unique answer to this challenge. This
brief announcement (BA) reports first commitment to silicon of
XMT. A 64-processor, 75MHz computer based on field-
programmable gate array (FPGA) technology was built at the
University of Maryland (UMD). XMT was introduced in
SPAA’98. An architecture simulator and speed-up results on
several kernels were reported in SPAA’01. The new computer is a
significant milestone for the broad PRAM-On-Chip project at
UMD. In fact, contributions in the current BA include several
stages since SPAA’01: completion of the design using a hardware
description language (HDL), synthesis into gate level “netlist”, as
well as validation of the design in real hardware. This overall
progress, its context and uses of the much faster hardware over a
simulator are the focus of this BA.
The PRAM virtual model of computation assumes that any
number of concurrent accesses to a shared memory take the same
time as a single access. In the Arbitrary Concurrent-Read
Concurrent-Write (CRCW) PRAM concurrent access to the same
memory location for reads or writes are allowed. Reads are
resolved before writes and an arbitrary write unknown in advance
succeeds. Design of an efficient parallel algorithm for the
Arbitrary CRCW PRAM model would seek to optimize the total
number of operations the algorithms performs (“work”) and its
parallel time (“depth”) assuming unlimited hardware. Given such
an algorithm, an XMT program is written in XMTC, which is a
modest single-program multiple-data (SPMD) multi-threaded
extension of C that includes 3 commands: Spawn, Join and PS,
for Prefix-Sum—a Fetch-and-Increment-like command. The
program seeks to optimize: (i) the length of the (longest) sequence
of round trips to memory (LSRTM), (ii) queuing delay to the

1 {hsmoon,vishkin}@umd.edu.
XMT Home page: www.umiacs.umd.edu/~vishkin/XMT
Partially supported by NSF grant CCF-0325393.
Copyright is held by the author/owner(s).
SPAA’07, June 9-11, 2007, San Diego, California, USA.
ACM 978-1-59593-667-7/07/0006.

same shared memory location (known as QRQW), and (iii) work
and depth (as per the PRAM model). Optimizing these ingredients
is a responsibility shared in a subtle way between the
architecture, the compiler, and the programmer/algorithm
designer. See also [1]. For example, the XMT memory
architecture requires a separate round-trip to the first level of the
memory hierarchy (MH) over the interconnection network for
each and every memory access; this is unless something (e.g.,
prefetch) is done to avoid it; and our LSRTM metric accounts for
that. While we took advantage of Burton Smith’s latency hiding
pipelining technique for code providing abundant parallelism, the
LSRTM metric guided design for good performance from any
amount of parallelism, even if it is rather limited. Moving data
between MH levels (e.g., main memory to first-level cache) is
generally orthogonal and amenable to standard caching
approaches. In addition to XMTC many other application-
programming interfaces (APIs) will be possible; e.g.,
VHDL/Verilog, MATLAB, and OpenGL.
A brain child of the SPAA community, the well-developed
PRAM algorithmic theory is second in magnitude only to its
serial counterpart, well ahead of any other parallel approach.
Circa 1990 popular serial algorithms textbooks already had a big
chapter on PRAM algorithms. Theorists (UV included) also
claimed for many years that the PRAM theory is useful. However,
the PRAM was generally deemed useless (e.g., see the 1993
LOGP paper). Since the mid-1990s, PRAM research was reduced
to a trickle, most of its researchers left it, and later book editions
dropped their PRAM chapter. The 1998 state-of-the-art is
reported in Culler-Singh’s parallel computer architecture book: “..
breakthrough may come from architecture if we can truly design a
machine that can look to the programmer like a PRAM”. In 2007,
we are a step closer as hardware replaces a simulator. The current
paper seeks to advance the perception of PRAM implementability
from impossible to available. The new computer provides
freedom and opportunity to pursue PRAM-related research,
development and education [2] without waiting for vendors to
make the first move. The new XMT computer is 11-12K times
faster than our XMT cycle-accurate simulator (46 minutes replace
1 year). This wall clock gap is itself a significant contribution:
heavier programs and applications and larger inputs to study
scalability can now be run. If runs of the XMT computer grossed
18 hours for this BA, simulator results would have been ready for
SPAA 2030. A programming assignment that ran over an hour on
a simulator in the Spring’06 UMD Parallel Algorithms course
takes under a second in Spring’07. Also, a general-purpose
algorithms course with its own computer, programming
methodology [1], programming language, and compiler is rather
uncommon.
Overview of the XMT Architecture and Computer The
XMT processor (see Fig 1) includes a master thread control unit
(MTCU), processing clusters (C0...Cn in Fig 1) each comprising
several TCUs, a high-bandwidth low-latency interconnection
network, memory modules (MMs) each comprising on-chip
cache and off-chip memory, a global register file (GRF) and a

http://www.umiacs.umd.edu/%7Evishkin/XMT

The new XMT system consists of 3 FPGA chips graciously
donated by Xilinx : 2 Virtex-4 LX200 and 1 Virtex-4 FX100. PCI
is used as the interface. In order to prototype as much parallelism
(e.g., number of TCUs) as possible: (i) there is no floating point
(FP) support, and (ii) the MTCU is a weak in-order processor.
Specifications of the system are presented in the table below. To
fully utilize the bandwidth of the interconnection network, two
cache modules are sharing one interconnection network port,
resulting in a total of 8 cache modules.

prefix-sum unit. Fig. 1 suppresses the sharing of a memory
controller by several MMs. The processor alternates between
serial mode, where only the MTCU is active, and parallel mode.
The MTCU has a standard private data cache used only in serial
mode and a standard instruction cache. The TCUs do not have a
write data cache. They and the MTCU all share the MMs. Our
SPAA’01 paper describes the way in which: (i) the XMT
apparatus of the program counters and stored program extends
the standard von-Neumann serial apparatus, (ii) virtual threads
coming from an XMTC program (these are not OS threads) are
allocated dynamically at run time, for load balancing, to TCUs,
(iii) hardware implementation of the PS operation and its
coupling with a global register file (GRF), (iv) independence of
order semantics (IOS) that allows a thread to advance at its own
speed without busy-waiting for other concurrent threads and its
tie to Arbitrary CW, and (v) a more general design ideal, called
no-busy-wait finite-state-machines (NBW FSM), guides the
overall design of XMT. In principle, the MTCU is an advanced
serial microprocessor that can also execute XMT instructions
such as spawn and join. Typical program execution flow is shown
on Fig.2. The MTCU broadcasts the instructions in a parallel
section, that starts with a spawn command and ends with a join
command, on a bus connecting to all TCU clusters. In parallel
mode a TCU can execute one thread at a time. TCUs have their
own local registers and they are simple in-order pipelines
including fetch, decode, execute/memory-access and write back
stages. The new computer has 64 TCUs in 4 clusters of 16 TCUs
each. (We aspire to have 1024 TCUs in 64 clusters in the future).
A cluster has functional units shared by several TCUs and one
load/store port to the interconnection network, shared by all its
TCUs. The global memory address space is evenly partitioned
into the MMs using a form of hashing. In particular, the cache-
coherence problem, a challenge for scalability, is eliminated: in
principle, there are no local caches at the TCUs. Within each
MM, order of operations to the same memory location is
preserved; a store operation is acknowledged once the cache
module accepts the request, regardless if it is a cache hit or miss.
Some performance enhancements were already incorporated in
the XMT computer seeking to optimize LSRTM and queuing
delay: (i) broadcast: in case most threads in a spawn-join section
need to read a variable, it is broadcasted through the instruction
broadcasting bus to TCUs rather than reading the variable serially
from the shared memory. (ii) Software prefetch mechanism with
hardware support to alleviate the interconnection network round
trip delay. A prefetch instruction brings the data to a prefetch
buffer at the TCUs. (iii) Non-blocking stores where the program
allows a TCU to advance once the interconnection network
accepts a store request without waiting for an acknowledgement.

Some specifications of the FPGA XMT system
Clock rate 75 MHz Number of TCUs 64 (4 X 16)
Memory size 1GB DDR2 Shared cache size 64KB (8 X 8)
Mem. data rate 2.4GB/s MTCU local cache 8KB

Execution time in seconds
Application Basic XMT Opteron
M_Mult 182.8 80.44 113.83
Sorting 16.066 7.573 2.615
Two applications were tested: (i) dense integer matrix
multiplication and (ii) randomized quicksort. Column XMT in the
execution time table gives the XMT computer execution time.
Column Basic gives XMT time without the 3 enhancements
above. Column Opteron gives time of a 2.6 GHz AMD Opteron
processor, with 64KB+64KB L1, 1MB L2, memory bandwidth
6.4GB/s (2.67X larger than XMT) using GCC in RedHat Linux
Enterprise 3. Integer multiplication takes 5 cycles in the FPGA
system. Since FP multiplication often also takes around 5 cycles,
execution time on XMT system with FP support should also be
similar. The size of the matrix was 2000x2000. The serial sorting
is a standard randomized quicksort. A known parallel quicksort
was used for XMT. Input size was 20 million integers. As can be
seen, the run time of the 75MHz XMT parallel computer was a bit
faster than the recent 2.6 GHz AMD uniprocessor on matrix
multiplication and slower on quicksort. Also, initial performance
study of the FPGA implementation for several micro-benchmarks
confirms prior simulation-based results. Ongoing work includes
architecture analysis using the FPGA system as a prototype.
Conclusion Using on-chip low overhead mechanisms including a
high throughput interconnection network XMT executes PRAM-
like programs efficiently. As XMT evolved from PRAM
algorithm, it gives (i) an easy general-purpose parallel
programming model, while still providing (ii) good performance
with any amount of parallelism provided by the algorithm (up-
and down-scalability), and (iii) backwards compatibility on serial
code using its powerful MTCU with its local cache. Most other
parallel programming approaches need more coarse-grained
parallelism, requiring a (painful to program) decomposition step.

Fig. 2 Parallel and serial modeFig.1 Block diagram of XMT

s
p
a
w
n

j
o
i
n

C 0 …

MM
0 …

interconnection network

MM
m

prefix-sum unit GRF

MTCU

$

MM
1

C 1 C n

s
p
a

A single (though hard working) individual (X. Wen) with no
prior design experience was able to complete synthesizable HDL
description in Verilog, as well as the new FPGA-based XMT
computer in slightly more than two years. This attests to the basic
simplicity of the XMT architecture and ease of implementing it
(in addition to the relative simplicity of its parallel
programming).

w
n

j
o
i
n

References
[1] U. Vishkin, G. Caragea and B. Lee. Models for advancing PRAM and
other algorithms into parallel programs for a PRAM-On-Chip platform. In
Handbook of Parallel Computing: Models, Algorithms and Applications,
Editors: R. Rajasekaran and J. Reif, CRC Press, Sept. 2007, to appear.
[2] U. Vishkin. Tutorial at ISCA’07 and ICS’07.

