
10

Lazy Scheduling: A Runtime Adaptive Scheduler
for Declarative Parallelism

ALEXANDROS TZANNES, University of Illinois, Urbana-Champaign

GEORGE C. CARAGEA, UZI VISHKIN, and RAJEEV BARUA, University of Maryland,

College Park

Lazy scheduling is a runtime scheduler for task-parallel codes that effectively coarsens parallelism on load
conditions in order to significantly reduce its overheads compared to existing approaches, thus enabling the
efficient execution of more fine-grained tasks. Unlike other adaptive dynamic schedulers, lazy scheduling
does not maintain any additional state to infer system load and does not make irrevocable serialization
decisions. These two features allow it to scale well and to provide excellent load balancing in practice but
at a much lower overhead cost compared to work stealing, the golden standard of dynamic schedulers. We
evaluate three variants of lazy scheduling on a set of benchmarks on three different platforms and find it
to substantially outperform popular work stealing implementations on fine-grained codes. Furthermore, we
show that the vast performance gap between manually coarsened and fully parallel code is greatly reduced
by lazy scheduling, and that, with minimal static coarsening, lazy scheduling delivers performance very
close to that of fully tuned code.

The tedious manual coarsening required by the best existing work stealing schedulers and its damaging
effect on performance portability have kept novice and general-purpose programmers from parallelizing
their codes. Lazy scheduling offers the foundation for a declarative parallel programming methodology that
should attract those programmers by minimizing the need for manual coarsening and by greatly enhancing
the performance portability of parallel code.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Runtime environ-
ments, optimization; D.3.2 [Programming Languages]: Language Classifications—Concurrent, dis-
tributed, and parallel languages; D.1.3 [Programming Techniques]: Concurrent Programming—Parallel
programming

General Terms: Algorithms, Performance, Languages

Additional Key Words and Phrases: Work stealing, adaptive scheduling, load balancing, nested parallelism,
task-parallel, fine-grained, declarative, performance portability

ACM Reference Format:

Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev Barua. 2014. Lazy scheduling: A runtime
adaptive scheduler for declarative parallelism. ACM Trans. Program. Lang. Syst. 36, 3, Article 10 (August
2014), 51 pages.
DOI: http://dx.doi.org/10.1145/2629643

This research was partially supported by the National Science Foundation under grants CSR-0834373 and
CNS-1161857.
Authors’ addresses: A. Tzannes, Department of Computer Science, University of Illinois at Urbana-
Champaign, Thomas M. Siebel Center for Computer Science, 201 N Goodwin Ave, Urbana, IL 61801;
email: atzannes@illinois.edu; G. C. Caragea, Department of Computer Science, University of Maryland,
A. V. Williams Building, College Park, MD 20742; U. Vishkin, The University of Maryland Institute for Ad-
vanced Computer Studies, College Park, MD 20742; email: vishkin@umd.edu; R. Barua, 1431 A. V. Williams,
Department of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742;
email: barua@umd.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0164-0925/2014/08-ART10 $15.00
DOI: http://dx.doi.org/10.1145/2629643

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:2 A. Tzannes et al.

1. INTRODUCTION

For close to a decade now, the clock speeds of general-purpose processors have re-
mained stagnant, and, instead, increased parallelism is the main avenue for improving
single-program performance. Nevertheless, parallel programming models are still in-
adequate for general-purpose programmers who value most ease of programming and
performance portability because they improve productivity. Certainly, good speedups
are also necessary to justify the effort of parallelizing code.

One of the tenets of general-purpose programming is modularity, the ability to com-
bine and reuse code (e.g., from libraries) to write large programs without reinventing
the wheel every time. For parallel code, that means supporting efficiently nested par-
allelism, the ability to create more parallelism from an already parallel context. This
need gave rise to task-parallel languages and libraries such as Cilk [Frigo et al. 1998],
Java Fork/Join [Lea 2000], Intel’s TBB [Robison et al. 2008], Microsoft’s TPL [Leijen
et al. 2009], and many others. In task-parallel programs, the programmer expresses
parallelism through high-level constructs that create tasks (e.g., parallel loops, paral-
lel reducers, futures, etc.) and have implicit synchronization and scheduling. Explicit
synchronizations, which are hard to reason about, are still possible but less frequently
needed. This greatly simplifies parallel programming and to some degree decouples it
from the target platform.

In addition to modularity, nested parallelism is also useful when parallelism gradu-
ally becomes available during computation and the original parallelism is insufficient
or imbalanced: Decomposing outer parallel tasks into subtasks can result in improved
load balance and increased parallelism, leading to better performance.

Dynamic scheduling is necessary to reap the benefits of nested parallelism because
of its dynamically unfolding nature.Work stealing [Blumofe and Leiserson 1999] is cur-
rently the golden standard of dynamic scheduling for task-parallel languages because
of its efficiency and scalability, at least at the scale of shared memory platforms that we
consider in this article. Like all dynamic scheduling, however, work stealing must pay
some runtime scheduling overhead per task, which prevents very fine-grained tasks
from being executed efficiently. Currently, programmers are responsible for controlling
the granularity of tasks to rein in scheduler overheads. This is achieved either by not
exposing all available parallelism or by serializing some of the exposed parallelism. We
refer to both as coarsening of parallelism.

As we elaborate in Tzannes [2012a], coarsening has two goals: amortizing scheduler
overheads per task and pruning parallelism. Intuitively, amortizing is needed to avoid
exposing tasks that are too short, and pruning is needed to avoid exposing too many
tasks for the target platform. In the first case, the scheduling overheads but also other
characteristics of the platform (e.g., communication latency and bandwidth between
cores)make the profitable exploitation of parallelism that is too fine-grained impossible.
For example, advice such as “create tasks with at least X operations” is aimed at
achieving the amortization goal. In the second case (pruning), the scheduling overheads
are wasted because most of the exposed parallelism is superfluous and cannot be
exploited by the platform at hand.1 For example, advice such as “create approximately
8 · P tasks” aims at pruning excessive parallelism. Amortizing is relatively simple
because it only involves coarsening leaf tasks (the coarsened tasks do not have nested
tasks) to a fixed granularity. It involves detecting very fine-grained tasks and combining
a small number of them. Pruning is much harder because it depends on how much
parallelism a code exposes, which typically varies with its input data D, on how much
parallelism a platform can support in hardware M (e.g., how many cores it has), and

1It could, nevertheless, be useful on a larger platform.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:3

on what fraction of the platform is available to execute the code. This last parameter
depends on the calling context C of the code among other factors (e.g., it also depends
on what other programs are running concurrently, in the case of multiprogrammed
systems, which is the norm for general-purpose platforms). If the code is called from
a sequential context, perhaps the entire platform is available; but when called from a
parallel context, only a couple of cores may be free. In short, pruning depends on three
parameters (D, M, C).

Currently, programmers are responsible for coarsening for both pruning and amor-
tizing. This is problematic for two reasons: first, it is tedious, and second, since pruning
depends on the three parameters (D, M, C), manual coarsening often results in code
that has been overfit for some values of those parameters, thus harming performance
portability. Some measure of performance portability is possible with parametric prun-
ing, when the programmer writes his code so that it takes into account the input and
the platform. However, parametric pruning is even more tedious than naive tuning,
and taking into account the contextC means sacrificingmodularity, which by definition
hides context.

A holy grail for task-parallel programming is efficiently supporting declarative par-
allelism, where programmers are allowed—in fact, encouraged—to expose all available
parallelism2 without any coarsening and let the compiler, the runtime, and the platform
be responsible for efficiently executing such codes. In addition to relieving programmers
from tedious coarsening, declarative programming also benefits performance portabil-
ity by not hiding any of the available parallelism. Unfortunately, such codes are not
supported efficiently by existing languages, runtimes, and platforms, as confirmed by
our experimental results, and therefore manual coarsening remains justifiably the law
of the land.

Our proposed scheduling technique, lazy scheduling, performs pruning dynamically,
by adapting to load conditions. Static compiler transformations perform automatic
amortization of overheads for many commonly occurring types of codes. For example, it
is possible to approximately estimate statically the work per iteration of fine-grained
parallel loops (e.g., that do not contain function calls or inner loops) and pick a grain
size for the loop. Furthermore, when the number of iterations of a fine-grained loop is
statically unknown, the compiler can also generate a sequential version of the loop and
pick the appropriate version at runtime, based on the number of iterations [Tzannes
2012a]. Together with those static transformations, lazy scheduling makes program-
ming less tedious by practically eliminating the need for coarsening, and it makes codes
more performance portable by automatically pruning parallelism, which allows for the
maximum profitable amount of parallelism to remain exposed. We originally presented
lazy scheduling in Tzannes et al. [2010], where we adapted it to work stealing and
presented an implementation and experimental evaluation on the XMT manycore ar-
chitecture developed at the University of Maryland [Wen and Vishkin 2008], a platform
designed to exploit the theory of PRAM parallel algorithms by accommodating their
needs [Vishkin et al. 1998; Naishlos et al. 2001, 2003; Vishkin 2011].

This article extends our prior work [Tzannes et al. 2010] in the following ways:

—We propose two new alternatives for lazy scheduling and show how they scale on
three different multicores. We also show that our original method does not scale with
some declarative codes.

—We implement and evaluate the three lazy scheduling alternatives just described on
commercial multicores and compare them in terms of scalability and performance.
We also compare them to existing work stealing approaches, both on declarative

2Within the confines of structured high-level parallel constructs.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:4 A. Tzannes et al.

and coarse codes. On declarative code, lazy scheduling achieves an average speedup
between 2× and 3× compared to existing work stealing and matches its performance
on coarsened code. We also find that, when parallelism is amortized (either manually
or automatically), lazy scheduling achieves a software performance optimality ratio3

above 85% in the worst case among the benchmarks explored and above 92%, on
average, whereas work stealing achieves 51% in the worst case and 71%, on average.

—We compare different work stealing algorithms in terms of their space and time
bounds when scheduling parallel loops, and we discuss some limitations of lazy
scheduling in terms of synthetic worst-case scenarios.

Overall, we believe lazy scheduling constitutes a significant step toward the efficient
execution of declarative code, with the simultaneous benefits of less tedious program-
ming and improved performance portability.

2. BACKGROUND

The idea of work stealing is at least as old as Burton and Sleep [1981] and Halstead’s
[1984]work on functional programming, but it gained popularity with Cilk [Frigo et al.
1998] and is now incorporated in many commercial products [Lea 2000; Robison et al.
2008; Leijen et al. 2009; Leiserson 2009]. In work stealing, each worker (i.e., processor
or thread) that encounters parallel work (e.g., a parallel loop or future) starts executing
some of that work and places the continuation (the remaining parallel work and the
rest of the parent) on a shared work-pool. When a processor runs out of work, it looks
for available work on that shared work-pool. The design of the work-pool makes work
stealing interesting: It consists of one double-ended queue, called a deque, per worker.
Deques are “double-ended” because data are accessed from both ends: Each worker
treats its own deque as a stack, accessing it from one end, but it treats all other deques
as queues, accessing them from the other end, when its own deque is empty. Owning
one end of the local deque greatly reduces the need for synchronization for workers
accessing their own deque.

A worker pushes parallel tasks it encounters onto its deque and pops tasks when it
runs out of work, treating its own deque as a stack. When a worker runs out of work
and its deque is empty, it becomes a thief : It picks a victim worker at random and tries
to steal a task from its deque. Popping the newest task from the local deque results
in depth-first execution, and stealing the oldest task from a victim deque results in
breadth-first thefts.

Four major benefits of work stealing are (1) depth-first execution promotes tempo-
ral and often spatial locality and (2) keeps the stack footprint bounded relative to a
sequential execution of the same program; (3) breadth-first thefts tend to result in
stealing larger chunks of work, thereby resulting in good load-balancing while mini-
mizing the scheduling overheads of thefts, which are expensive; (4) the deques can be
implemented efficiently with low synchronization overheads. A disadvantage of work
stealing is its stealing phase, when idle processors randomly probe deques for work,
causing potentially unnecessary interprocessor communication.
Task Descriptors (TDs), also known as work descriptors, are used to describe ranges

of tasks coming from parallel loops, reducers, or other parallel constructs that simulta-
neously create multiple tasks. The specific structure of TDs is implementation-specific,
but one possible implementation is the following: The ID of the first task and the num-
ber of tasks (or the ID of the last task) can be used to represent the range; a single

3The software performance optimality ratio is formally defined in Tzannes [2012a]. Informally, it answers
the question “how far is the performance of a piece of software from optimal?” because it is the ratio of the
best possible execution time (e.g., with any coarsening) over the execution time achieved (e.g., with a given
coarsening) for a given problem, input, and execution platform.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:5

pointer to the code to be executed is necessary since all tasks execute the same code
using the task ID (iteration ID) as a parameter; a pointer to the stack frame of the
parent task is also needed to allow access to its variables and for synchronizing with
the parent on completion. Optionally, TDs may contain additional fields such as a grain
size (the minimum number of tasks the TD should contain), the maximum number of
chunks into which to split the TD, or a cost estimate of the tasks it contains.

When it comes to scheduling TDs, there are several different ways to treat them.
The two main categories include iteratively breaking off constant-sized chunks from
the TD and recursively splitting it in half, which we call Eager Binary-Splitting (EBS).
We cover these alternatives in the next subsections.

2.1. Iterative Chunking

Two commonly used approaches of iterative chunking are work-first and help-first,
described here. Both have a critical path that is linear in the number of tasks N in the
TD, so the recursive splitting approaches, which incur a smaller O(logN) overhead on
the critical path, are usually preferred. Nonetheless, work-first can in certain situations
be preferable to recursive splitting, as we show in Table II.

2.1.1. Work-First Work Stealing. The work-first approach, which we called Serializing
Work Stealing (SWS) in Tzannes et al. [2010], keeps the first task of a task descriptor
(or the grain first tasks if a grain size is specified) and pushes the rest onto the local
deque. The drawback of work-first work stealing is that a task descriptor created by
a parallel loop is never split, so its accesses by workers contending for work will be
serialized.

In Section 2.3, we present a simple example to illustrate the limitations of work-first
and of the other alternatives when scheduling a TD.

2.1.2. Help-First Work Stealing. The help-first work stealing approach treats a parallel
loop as a sequential loop whose iterations each spawn one parallel task (Algorithm 1).
This approach also serializes the creation of the tasks, but it creates a TD per task,
allowing parallel access to them, unlike the work-first approach described earlier. By
creating a TD per task (or per grain tasks when a grain size is provided), help-first
work stealing ends up having a potentially unbounded memory footprint relative to
the sequential footprint for the same code.

ALGORITHM 1: Parallel loop semantics with help-first work stealing

for i ∈ {1, 2, . . . , N} do
spawn CODE(i);

end
sync;

Guo et al. [2010] have implemented a scheduler that adaptively switches between
the help-first and work-first work stealing to get the benefits of help-first task cre-
ation while keeping the memory footprint bounded. However, the depth (critical path)
of scheduling a parallel loop of N tasks is linear in N for both help-first and work-
first approaches. This depth is added to the critical path of the application and can
overwhelm it in some cases. The EBS approaches described here reduce this depth
from linear to logarithmic in the number of tasks. Furthermore, the work by Hendler
and Shavit [2002] seems to suggest that recursive splitting benefits performance by
spreading tasks around in larger chunks, rather than stealing a single task at a
time.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:6 A. Tzannes et al.

Fig. 1. Processing a task descriptor with simple partitioner.

2.2. Eager Binary Splitting (SP & AP)

Intel’s Threading Building Blocks (TBB) [TBB 2008], Cilk++ [Leiserson 2009], and
more recently CilkPlus [CilkPlus 2011] implement EBSwork stealing schedulers: upon
creating, stealing, or popping a TD, a worker splits it into two TDs of approximately
equal number of tasks and pushes one on its deque; then, the worker continues itera-
tively splitting the remaining TD until a (manually or automatically) pre-determined
grain size is reached. We call this approach eager because splitting proceeds regardless
of runtime conditions such as load.

An important performance consideration for EBS is when to stop splitting. Although
splitting TDs is helpful for creating enough parallelism and achieving load balance, ex-
cessive splitting induces unnecessary overheads, which can severely hurt performance.
It can be preferable to coarsen parallelism by stopping the splitting of TDs before they
are reduced to a single tasks and execute all the tasks in the coarser TDs sequentially.
Finding this stop-splitting-threshold (sst) is hard because it depends on several factors,
such as the number of available workers, the number of tasks of each parallel loop
(which can be a function of the input), and the calling context (e.g., sequential vs. par-
allel), which is often unknown when programming in a modular way. For example, the
author of a library of parallel algorithms does not know in which context they will be
called.

TBB offers two options for controlling the splitting of TDs: Simple Partitioner (SP)
and Auto-Partitioner (AP).4 Cilk++ and CilkPlus only implement SP: By default, the
grain size is set to min(K, N/ 8P) unless manually overridden.5 This means a loop
will be split into at least 8P TDs (assuming N > 8P), and TDs will have at most K
iterations.

Cilk++ also has a mechanism inherited from Cilk [Frigo et al. 1998] for reducing
parallelism overheads by creating two versions of functions and choosing at runtime
which one to execute: the one for fast local and serialized execution with simplified syn-
chronizations, or the one for true parallel execution that pays the full synchronization
cost.6 This mechanism is orthogonal to our proposed lazy-scheduling, and combining
the two approaches would be beneficial.

2.2.1. Simple-Partitioner. Figure 1 shows how SP splits a task descriptor while the num-
ber of iterations in its range is above an sst, referred to as grain size in TBB’s manual
[TBB 2008]. This eagerness to split may result in an excessive number of TDs being

4TBB also provides affinity partitioner, which increments AP with a mechanism for improving locality for
codes with consecutive parallel loops over the same data by trying to map tasks that access the same data
to the same worker [Acar et al. 2000; Robison et al. 2008]. However, affinity partitioner does not offer a
different way for controlling the splitting of TDs.
5K = 512 for Cilk++ and K = 2,048 for CilkPlus. N is the number of loop iterations and P the number of
processors.
6This optimization is not currently available in CilkPlus, but it is planned in future releases.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:7

created, which is why the programmer is expected to define an appropriate sst to stop
the splitting earlier. The TBB manual [TBB 2008] suggests the following approach to
determine the appropriate sst7:

(1) Set the sst parameter of the parallel loop to 10,000. This value is high enough to
amortize the scheduler overhead sufficiently for practically all loop bodies but may
unnecessarily limit parallelism.

(2) Run your algorithm on one processor.
(3) Start halving the threshold parameter and see howmuch the algorithm slows down

as the value decreases.
⇒ A slowdown of about 5% to 10% is a good setting for most purposes.

There are two problems with this approach. First, it is extremely tedious. Not only
does the programmer have to provide a threshold, he has to run his program several
times to find the appropriate threshold. Moreover, if the code has multiple parallel
loops, a different threshold has to be determined for each loop, which means more
runs. Ideally we would want the 5–10% slowdown to be only compared to the code of
the parallel loop, not of thewhole application, so the programmerwill have to isolate the
parallel loops during this tuning process and time them separately. Finally, because
the code will run on a single processor, this tuning process will also be very slow.
Second, another equally serious problem with this approach is that the derived fixed
threshold limits the performance portability of the code to different platforms, inputs,
and contexts. More evidence thatmanual coarsening is tedious and harms performance
portability can be found in Tzannes [2012a, chapter 3].

In conclusion, EBS with SP is an improvement over work-first and help-first work
stealing because splitting task descriptors reduces scheduling overhead on the critical
path from linear to logarithmic. However, determining the grain size (sst) manually
is very tedious, and if it is a fixed constant, as suggested by TBB’s tuning procedure,
it harms performance portability. Work-first and help-first work stealing also have
the same issue of needing a manually determined grain size. AP, described hereafter,
attempts to relieve the programmer from picking a grain size (sst) but is only partly
successful.

2.2.2. Auto-Partitioner. TBB’s other option for controlling splitting, AP, splits the tasks
of a parallel loop into K · P TDs, assuming the number of iterations in the original
parallel loop is at least K · P, where P is the number of workers and K is a small
implementation-specific constant. AP replaced SP as TBB’s default scheduler because it
relieves the programmer frommanually picking the sst and delivers good performance.
It has two fixed parameters, K and V , as well as an additional field-per-task descriptor
we call chunks (called n in Robison et al. [2008]). When executing a parallel loop and
creating its TD, chunks is initialized to K · P. Every time the task descriptor is split,
chunks is also halved (Figure 2), and whenever a TD is stolen, chunks is set to be at
least V , which gives AP some limited runtime granularity adaptivity. A TD is not split
further if chunks ≤ 1 or if it is not divisible (i.e., contains a single task or fewer than
grain tasks). K and V are set to four in Robison et al. [2008].

Instead of coarsening parallelism by combining tasks with the sst, AP uses chunks
to determine into how many pieces to split a TD. This is preferable because it does
not require programmer tuning, it allows for some platform and dataset portability by
taking into account the total number of workers, and it performs better than SP in
most cases. The programmer can still define an sst in case more aggressive coarsening

7Newer versions of the TBB manual dropped this section as AP, which does not require an sst, became the
default partitioner.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:8 A. Tzannes et al.

Fig. 2. Processing a task descriptor with auto-partitioner.

is required. For example, if the iterations of a parallel loop are few and fine-grained,
AP might still perform excessive splitting without a manually determined sst.

Unfortunately, AP is context insensitive and often results in excessive splitting in the
presence of nested parallelism. Although splitting iterations into K · P task descriptors
for a parallel loop executed from the original sequential context is usually a good
heuristic, if that same loop is executed in a nested context, the outer parallelism will
likely suffice, and fewer chunks would be preferable. For example, for D levels of
nested parallel loops of N iterations each, AP will create TDd = Nd−1 · (K · P) TDs for

the loop at nesting depth d over the course of the execution and a total of
� N
i=1 TDi

TDs, which may be excessive.8 These TDs will not exist simultaneously in memory,
but the runtime overheads of creating them over the course of the execution are still
substantial. The maximum number of TDs concurrently present in the system will be
in the order of O(P · (log K + logV + (D− 1) · log (K · P))), which is O(D · P · log P) for
constant values of K and V . Reducing K to reduce the number of chunks may result in
insufficient parallelism and load imbalance, especially for non-nested loops, so it is not
a viable solution. Our lazy scheduling approach is context sensitive by being adaptive
to runtime load conditions and overcomes the portability pitfalls of SP and AP and the
serialization of parallelism creation of work-first and help-first work stealing without
requiring programmer tuning.

Another potential danger with AP, even without nested parallelism, is that, once it
starts executing one of the original K · P “fat” chunks, it will execute it to completion,
without the possibility of revisiting this coarsening decision of not further splitting the
TD. If the tasks of a loop are severely imbalanced, one of the “fat” chunks may contain
most of the work, and the performance will suffer of poor load balancing. For that
reason, the time bound (presented later) for work stealing schedules does not apply to
AP. We give more details in Section 9.3.

Note that even though the default grain size for Cilk++ and CilkPlus splits TDs into
8P (or more) TDs, the similarity with AP ends there. The grain size is determined at
the onset of the parallel loop and is not affected by thefts, as in the case of AP. Cilk++
and CilkPlus still follow the SP algorithm; they just use a grain size that is parametric
in N and P.

2.3. Illustrating Example

This section illustrates how the four different options for scheduling a TD as just
described work by means of a simple example. Assume we have two workers, WA and
WB, and that WA starts working on a TD with 16 tasks, while WB is hungry. For

8These formulas correct the incorrect (but conservative) formula of (K · P)d reported in Tzannes et al. [2010].

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:9

simplicity, assume that those tasks do not create nested parallelism and that no grain
size sst was provided by the programmer, making it default to 1.

2.3.1. Work-First. WA will create a TD with tasks 2 through 16, place it on its deque,
and start executing the first task. In the meantime, worker WB steals the TD from
WA’s deque, takes tasks 2, places the remaining TD (tasks 3–16) on its deque, and
starts executing task 2. WA eventually finishes executing task 1 and looks for work on
its deque, which it finds empty, so it tries to steal work from WB; it is successful, takes
task 3, places the remaining TD on its deque, and starts executing task 3. And so on.

This example illustrates four shortcomings of work-first work stealing:

(1) If two or more workers end up executing tasks from a TD, they will keep stealing
the TD from each other, effectively serializing accesses to it.

(2) On modern multicores with private caches, thefts are expensive because they in-
duce coherence traffic by modifying remote deques, which presumably reside in the
private cache of the victim worker.

(3) Unless a grain size is provided, each time a worker needs more work, it removes
a single task from a TD; this means that TDs (and thus deques) will be accessed
as many times as the tasks they have, which introduces significant overheads for
fine-grained tasks.

(4) Because of the implicit barrier at the end of parallel loops, tasks need to synchronize
upon termination, usually by atomically decreasing a variable representing the
number of pending tasks. Unless a grain size is provided, tasks are executed one
at a time, and synchronization will also happen individually for each task, possibly
inducing significant overheads.

2.3.2. Help-First. Worker WA starts by pushing 15 TDs on its deque, each containing
a single task, thus incurring an overhead on the critical path linear in the number of
tasks. During that time, WB steals a TD and executes that task. When WA finishes
pushing TDs, it executes its remaining task. From that point on, WA and WB keep
consuming TDs off WA’s deque until all tasks are executed causing nontrivial cache
coherence traffic on architectures with private caches.

The shortcomings of help-first work stealing are similar to those of work-first except
that, instead of having serialized access to a single TD, it has a serialized TD creation
linear in the number of tasks, as well as a corresponding memory overhead.

2.3.3. Simple-Partitioner. WA splits the TD and pushes a TD with 8 tasks and repeats
splitting and pushing TDs with 4, 2, then 1 task, remaining itself with a single task.
During that time, worker WB steals the TD with 8 tasks, and it splits and pushes TDs
with 4, 2, and 1 task on its own deque.WA proceeds to execute its remaining task, then
pops the TD with 1 task from its deque and executes it. Then WA pops the TD with 2
tasks, splits it, pushes half back on to its deque, and executes its remaining task. And
so on.

Therefore, SP solves the problem of serialized access to TDs of work-first work steal-
ing and that of serialized TD creation of help-first work stealing, and it reduces the
number of thefts that cause unwanted coherence traffic. Nevertheless, it still pays
excessive overheads for deque transactions and synchronization, which are linear in
the number of tasks, and, although it reduces the time overhead on the critical path
from linear to logarithmic, this added logarithmic overhead on the critical path is
problematic.

2.3.4. Auto-Partitioner. Assume K = 2 and V = 4 (while having V > K is not necessarily
useful, we choose it here to better illustrate how AP works). WA sets the number of
chunks of its TD of 16 tasks to K · P = 4. It splits the TD (and the number of chunks)

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:10 A. Tzannes et al.

Table I. Shortcomings of Existing Work Stealers

Deque Transactions Overhead Added Context

Scheduler # Thefts & Synchronizations to Critical Path Sensitive

Work-First excessive O(N) O(N) No
Help-First excessive O(N) O(N) No
Simple-Partitioner good O(N) O(log N) No
Auto-Partitioner good O(P) O(log P) No

and pushes half (8 tasks, chunks = 2) on its deque. It proceeds to push a TD with 4
tasks and chunks= 1, and it starts executing its remaining 4 tasks sequentially. In the
meantime, WB steals the TD with 8 tasks and chunks= 2, but it sets chunks = V = 4
because chunks < V and the TD arrived through a theft. Then,WB splits the TD twice,
pushing on its deque TDs with 4 and 2 tasks, and proceeds to execute its 2 remaining
tasks. WA continues by popping its remaining TD, which has 4 tasks and chunks = 1.
Since WA did not acquire the TD through a theft, it does not update chunks to V , and
since chunks = 1, it proceeds to execute all 4 tasks. WB proceeds similarly, except its
chunkswill contain 2 tasks.

AP improves on SP by reducing the TD creation overhead on the critical path to loga-
rithmic in the number of workers P and the deque transaction and synchronization to
linear in P. However, AP is not context sensitive and incurs these overheads regardless
of whether the parallel loop was nested or not, which can be excessive in the presence
of nested parallelism.

Table I summarizes the shortcoming of the different work stealing approaches. In
Section 3, we present lazy scheduling, our proposed solution that has all of the advan-
tages of AP, plus it is effectively context sensitive.

2.4. Theoretical Bounds

Blumofe and Leiserson [1999] helped the adoption of work stealing by proving the
good performance of randomized work stealing for fully strict computations9 using
only parallel function calls. The expected time to execute a fully strict computation on
P workers using randomized work stealing is T1/ P+O(T∞), where T1 is the minimum
sequential execution time (i.e., the total work) and T∞ the minimum execution time
with an infinite number of workers (i.e., the depth of the parallel computation [the
length of the critical path]). The stack space required is at most PS1, where S1 is the
minimum stack space requirement for the sequential execution.

More recent results relax the restriction of fully strict computations but, to the best of
our knowledge, still omit including language constructs that introduce multiple tasks
simultaneously, such as parallel loops. A notable exception is found in Cormen et al.
[2009, chapter 27], which talks about the added logN term on the critical path for SP.
In the presence of loops, the just described bounds need to be amended, as we discuss
in Section 9.

3. LAZY SCHEDULING

The lack of performance portability in the best existing schedulers (EBS with SP or
AP) is a serious issue for general-purpose parallel programming because not only do
we want code to run efficiently for different input sets and contexts, we also want it
to run faster on a variety of different existing and future parallel platforms with dif-
ferent numbers of cores. Ease of programming is also a crucial consideration: Free-
ing the programmer from manually coarsening parallelism, which is effectively a

9Computations where all join edges from a child task go to its parent. In other words, a parent task cannot
complete while it has unfinished child tasks.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:11

full-program manual optimization, will shorten his development cycle and make him
more productive. Although AP does not require manual tuning, we show that in codes
with nested fine-grained parallelism, its performance degrades considerably, and man-
ually coarsening parallelism is necessary.

In this article, we present the concept of lazy scheduling and three concrete vari-
ations of lazy scheduling based on work stealing. The concept of lazy scheduling is
broader than work stealing, however, and it can be applied to other types of schedul-
ing; we show one concrete example of that in Section 8. Lazy scheduling overcomes the
drawbacks related to performance portability in SP and AP by not using any statically
determined threshold to decide when to stop splitting a TD. Instead, it uses runtime
conditions alone in making those decisions. Furthermore, lazy scheduling does not
make irrevocable serializing decisions that could harm load balancing, and it does not
require maintaining any additional state to monitor load conditions.

3.1. The two Insights of Lazy Scheduling

The first insight of lazy scheduling is that pushing work (e.g., by splitting a task
descriptor or by pushing a single task) onto the shared work-pool (the local deque in
work stealing) is likely to be a wasted overhead if other workers are busy with other
work. In such a situation, it is better for the worker to first execute some work locally,
without pushing work onto the work-pool, and then check the system load again to
decide whether to make some local work available globally. In this way, unnecessary
splitting andwork-pool transactions are avoided, but tasks are pushed on the work-pool
when other workers are hungry (i.e., looking for work). This insight is also valuable for
avoiding work-pool transactions both for parallel-loop TDs and for tasks that are not
splittable (e.g., those originating from a parallel function call).

Directly implementing lazy scheduling to follow this insight is not obvious because
checking if other workers are hungry for work can be expensive. For example, main-
taining global state such as a count of hungry workers will not scale without hardware
support, and, on the other hand, querying workers to determine if they are hungry
requires expensive remote accesses.

The second insight of lazy scheduling provides a lightweight heuristic for inferring
the load of the system during runtime. It involves looking at the size of the shared
work-pool or parts thereof. For work stealing, for example, a worker looks at the size
of its local deque, and, if it is below a threshold, the worker pushes a TD onto its
deque. If the deque size is below a threshold (empty in our original implementation
[Tzannes et al. 2010]), this is a strong indication that other workers were hungry
and stole work from it. On the other hand, if the local deque is above the threshold,
pushing tasks onto it is postponed, and the worker executes work locally, checking the
size of the deque frequently. This effectively results in dynamic load-based coarsening
by avoiding unnecessary shared work-pool operations and by coalescing or skipping
synchronization operations.

Unlike other work-pool transactions that have to be atomic, reading its size for
inferring load can be done in a racy way to reduce its overheads, as long as the error in
the result is reasonable. For example, if the worker queries the size of its deque while
a theft is performed, it is acceptable for the check to return any of the two values for
the size, before or after the theft. This is because a slightly stale value does not perturb
the efficiency of the load heuristic in practice, as long as deque checks are performed
frequently.

Lazy scheduling creates a new logical state in which tasks may be in the postponed
state. Postponed tasks are those that have become available for parallel execution, but
the lazy scheduler has detected that the system is under load and has not yet placed
them onto the shared work-pool; instead, those tasks reside in memory that is private

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:12 A. Tzannes et al.

Fig. 3. Processing a task descriptor with Depth-First Lazy Work Stealing (DF-LS).

to the worker that created or stole them (e.g., its stack). A worker starts by working on
its most recently postponed tasks; then, in the case of lazy work stealing, it works on
the tasks in its deque before trying to steal work.

As we mentioned, lazy scheduling relies on polling the shared work-pool frequently;
otherwise, a decrease in system load can go unnoticed, and workers might run out of
work and sit idle for nontrivial lengths of time. In this article, our focus is to improve
the performance of very fine-grained parallelism, so a reasonable implementation is
to check poll the work-pool between tasks. Nevertheless, as we discuss in Section 9.4,
when a program includes coarse tasks, additional polling may be necessary.

3.2. Main Benefit of Lazy Scheduling and Our Focus on Parallel Loops

The main benefit of lazy scheduling is its very low overhead in the common case
when tasks are executed on the worker that originated them compared to existing ap-
proaches. This much lower overhead means that lazy scheduling is much less sensitive
to parallelism granularity, allowing programmers to overexpose parallelism with min-
imal performance degradation. The difference in performance between eager and lazy
scheduling is therefore more apparent in applications that have lots of fine-grained
parallelism, especially when it is irregular, in which case the over-decomposition of
parallelism has the added potential benefit of better load balancing. For that reason,
we focus our description and experimental approach on code expressed through parallel
loops or reductions. Nevertheless, lazy scheduling is also applicable to other constructs,
as we briefly demonstrate in Section 8 (remember: the two insights help decide when
to make work shared, which is orthogonal to how parallelism is expressed in the code).

3.3. Depth-First Lazy Work Stealing

In this section, we describe Depth-First Lazy Scheduling (DF-LS) as applied to work
stealing, which we originally implemented on XMT [Tzannes et al. 2010]. We call it
depth-first because it does not follow the breadth-first thefts order of work stealing,
and although we were aware of the issue at the time, we did not see performance
degradation on XMT, so we chose it for its simpler implementation. Depth-first lazy
work stealing was presented in Tzannes et al. [2010] under the name of Lazy Binary
Splitting (LBS). In Section 6.1, we present Breadth-First Lazy Scheduling (BF-LS),
which follows the breadth-first thefts order and has scalability advantages over DF-LS
on commercial multicores.

DF-LS checks if the local deque is empty and only then splits the current task
descriptor. Figure 3 shows how a DF-LS worker processes a task descriptor upon
creating it, popping it off the local deque, or stealing it. The gray boxes highlight the
differences compared to Figure 1. Unlike deque transactions that require expensive
memory fences, deque-is-empty checks do not, thusmaking themvery cheap operations.

Figure 3 shows an additional improvement in DF-LS—t hat it also stops splitting
when the number of tasks in the task descriptor is equal to or below a statically

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:13

determined profitable parallelism-threshold (ppt). This is useful because creating ex-
cessively small amounts of parallel work is never profitable, regardless of the number
of cores, the input, or the context, because the overheads of task creation and synchro-
nization will negate any gain from parallelism. The static coarsening pass that picks
the ppt is described in Tzannes [2012a]. Because the ppt is independent of the number
of cores, the input, or the context, and because it only depends on the work per task and
the implementation-specific costs of creating parallelism, it can usually be easily deter-
mined by the compiler for each parallel loopwithout sacrificing performance portability.
The performance portability of DF-LS comes from the deque-is-empty check, which en-
sures that enough but not too much parallelism is created for good load balancing by
adapting to runtime conditions. Note that although the ppt is syntactically similar to
the sst used by EBS (SP & AP), its role is merely to prevent parallelism that is too
fine-grained, as opposed to also controlling the splitting of TDs. Essentially, the role of
the ppt is to amortize the scheduling overheads per task while letting lazy scheduling
prune parallelism at runtime, whereas sst must achieve both goals for EBS.

We now revisit the example of Section 2.3 to show how DF-LS overcomes the short-
comings of eager work stealers. When DF-LS is run, assuming processor A encounters
a parallel loop with 16 tasks and a threshold (ppt) of 1, it creates a TD with those 16
tasks and starts processing it (Figure 3): Since the TD has multiple tasks, it proceeds
to check if the deque is empty; assuming it is, it splits the TD and places half (tasks
9–16) on its deque. Then, seeing that its deque contains a TD, A starts working on
task 1. Note that, at this point, SP and AP would have continued splitting the TD and
pushing TDs with 4, 2, and 1 tasks before doing some actual work, likely incurring
unnecessary runtime and memory overheads. In the meantime, processor B steals the
TD in A’s deque and processes it: B’s deque is empty, or it would not have stolen a TD,
so B splits the TD and places half on its deque (tasks 13–16), and it starts working on
task 9. Then A finishes executing task 1 and, since its deque is empty because of B’s
theft, it splits its remaining TD (2–8), places half (5–8) on its deque, and starts working
on task 2. B finishes task 9, its deque is not empty, so it continues with the remaining
tasks in its TD (10–12), checking before each task to see if the deque is empty. Similarly,
A continues with its TD (3–4). When their TDs run out of tasks, A and B pop the TDs
off their deques, split them, push half back on their deque, and work on their half.

The example shows how DF-LS overcomes the serialized access or creation of TDs
by splitting them (like EBS, whether it be SP or AP) and how it also keeps the number
of splits to a minimum by checking the deque frequently, making DF-LS more per-
formance portable than EBS. The next section presents a detailed comparison of the
number of deque transactions and synchronizations for DF-LS, EBS with SP and AP,
and work-first and help-first work stealing. The comparison illustrates the benefits of
DF-LS’s runtime adaptivity to load conditions.

4. SYNCHRONIZATION AND DEQUE TRANSACTION SAVINGS OF LAZY SCHEDULING

Unlike existing work stealing variants (e.g. SP, AP, work-first, and help-first work
stealing), lazy scheduling is able to effectively combine tasks at runtime by postponing
pushing work while the local deque is not empty. This saves expensive deque trans-
actions that require memory fences. It is easy to appreciate the difference between
DF-LS and the other work stealers by analyzing the number of deque transactions
and parent-child synchronizations (the main sources of overhead for work stealing)
needed to schedule an N task parallel loop in the three scenarios described here. We
call these three scenarios worst, intermediate, and best because they require a de-
creasing number of deque transactions and synchronizations from all compared sched-
ulers and especially DF-LS. Loosely speaking, an execution can be approximated as a

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:14 A. Tzannes et al.

Table II. Transaction and Synchronization Costs

Deque Transactions

Worst Intermediate Best

DF-LS(gr) 2
�
N
gr

− 1
�

log N
gr

+ 1 0

SP(gr) 2
�
N
gr − 1

�
3N
2gr − 1 3N

2gr − 1

AP(K, V) 2(N − 1) 3K·P
2 − 1 3K·P

2 − 1

Work-First(gr) 2
�
N
gr − 1

�
N
gr

N
gr

Help-First(gr) 2
�
N
gr

− 1
�

2
�
N
gr

− 1
�

2
�
N
gr

− 1
�

Synchronization Points

Worst Intermediate Best

DF-LS(gr) N
gr log Ngr + 1 1

SP(gr) N
gr

N
gr

N
gr

AP(K, V) N K · P K · P

Work-First(gr) N
gr

N
gr

N
gr

Help-First(gr) N
gr

N
gr

N
gr

combination of these three scenarios, which is why it is important to understand how
the compared schedulers operate in these cases.

The results are summarized in Table II. In the analysis here, we treat the sst and ppt
thresholds (in SP and DF-LS, respectively) as parameter gr (for grain), and, without
loss of generality, we assume that N is divisible by gr and both are powers of 2 to avoid
cluttering the notation with floor and ceiling functions. We also assume that the gr
parameter of the parallel loop is honored by work-first and help-first work stealing. As
we see, both transactions and synchronizations are linear in N for SP, work-first, and
help-first, but the situation for DF-LS is much different: The metrics go from linear in
the worst case, to logarithmic in the intermediate case, to constant in the best case.
AP’s metrics go from linear in N in the worst case, to linear in P in the other two cases.

In our XMTC implementation [Tzannes et al. 2010], we implemented the sequence
of pop-split-push operations as a single pop-half operation in order to further reduce
deque transactions and, thus, runtime overheads. The pop-half operation occurs when
a worker runs out of work and its deque contains a TD with more than ppt tasks,10

in which case half of the TD is popped atomically.11 For work-first work stealing, the
pop-take-and-task-push sequence is also implemented as a single deque transaction in
XMTC. These optimizations are included in the analytical comparison of deque trans-
actions for the different work stealing approaches presented in the following section.

Worst Case. The worst case happens when a worker encounters a parallel loop cre-
ating N tasks, and there are enough idle workers (N ≤ P) to immediately steal all
TDs, effectively keeping all deques empty. This happens, for example, when parallelism
is first created by the original sequential task, and it is barely enough to make all

10Each task descriptor may store a different ppt value.
11We based our deque implementation for XMTC on the algorithm described in Almsasi and Gottlieb [1994]
“10.3.11 Case Study: Highly Parallel Queue Management Using Fetch-and-Add.” In our TBB implementation
of lazy scheduling (described later), we made use of TBB’s existing deque implementation, which only
provides the regular pop operation.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:15

workers active. In this case, SP and DF-LS behave identically: DF-LS always finds
an empty deque because of the thefts and keeps splitting and pushing TDs. Similarly,
the stolen TDs are split and stolen, so eventually N/ gr TDs are created. That means
that N/ gr parent-child synchronizations occur, one for each TD. Also 2(N/ gr−1) deque
transactions happen: The factor of 2 accounts for the push and steal transaction for
every task descriptor, and the −1 accounts for the fact that one of the N/ gr task descrip-
tors is never pushed on a deque but is locally executed by the worker that created it.
Similarly, for work-first and help-first, we have N/ gr synchronizations and 2(N/ gr−1)
deque transactions. For AP, N ≤ P implies N ≤ K · P, for K ≥ 1. This means that
AP will split the TD into N chunks, resulting in 2(N − 1) transactions and N synchro-
nizations. If a grain size is provided for AP, it will also appear in the denominator, but
we did not include it in Table II because AP’s main advantage over SP is relieving the
programmer from picking grain sizes.

Intermediate Case. The intermediate case happens when a worker encounters a
parallel loop creating N tasks, the local deque is empty, but no thefts occur during its
execution. This can happen when a worker encounters a nested parallel loop while the
outer parallelism was enough to feed all workers but not enough to fill the deques.
This is very common in the XMT implementation because the outer parallelism is
scheduled in hardware [Tzannes 2012a], and nested parallelism, which is scheduled
using software, always finds the local deque to be empty. In the intermediate case,
all N tasks will be executed on the worker creating them. For SP and work-first, the
difference of this intermediate case compared to the worst case is that some deque
transactions can be combined using the pop-half and pop-one transactions, bringing
their total number down. For SP N/ grain, TDs will be created over the course of this
execution, as in the worst case. One will never be pushed on the deque, but the rest will,
resulting in (N/ grain− 1) pushes and (N/ grain− 1) pops. This number can be reduced
if we use the pop-half transaction, which combines a pop and a subsequent push of
half of the popped TD. It is straightforward to show that the number of such pop-half
transactions is equal to the number of nodes in a perfect binary tree12 with N/ gr
leaves, excluding the leaves, which represent the execution of an indivisible amount
of work (gr tasks), and their parent nodes, which represent an indivisible TD at the
top of the deque that cannot benefit from the pop-half transaction. The number of the
remaining nodes is N

2gr −1, so the number of transactions becomes 3N
2gr −1. The number

of synchronizations remains N/ gr, as before. For AP, K · P TDs will be created, and,
by following the same reasoning, the number of transactions will be 3K·P

2
− 1, and the

number of synchronizations will be K · P. For work-first, the number of transactions
is N/ gr: One push of N − gr tasks initially, followed by N − 2 pop-grain operations
removing gr tasks each, and finally a pop of the remaining tasks. The number of
synchronizations is also N/ gr; one after every gr tasks. Help-first cannot benefit from
the pop-grain transaction since it begins by creating N/ gr TDs that cannot be split
further. For that reason, the number of transactions and synchronizations is the same
as in the worst case.

For DF-LS, the situation here is much different. Initially, half the tasks (N/ 2) are
pushed on the deque, and the other half are executed, checking the size of the deque
after every gr tasks but finding it full. Then, a pop-half operation reclaims half of the
pushed tasks (i.e., N/ 4) that will be executed. Then, a pop-half will reclaim N/ 8 tasks,
and so on, until the last N

2k
= gr tasks are popped and executed. This amounts to

log N
gr

+ 1 transactions. The number of synchronizations is also log N
gr

+ 1 because they

happen before every pop-half, before the last pop, and at the very end.

12A binary tree that has all leaf nodes at the same depth, and all internal nodes have exactly two children.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:16 A. Tzannes et al.

BestCase.The best case happenswhen aworker encounters a parallel loop creating N
tasks, no thefts occur, and the deque isnot empty. This happenswhen nested parallelism
is encountered and the outer parallelism was sufficient to fuel all workers and deques,
and it is particularly common for recursively nested parallelism.

For SP, AP, work-first, and help-first, nothing changes from the previous case because
these schedulers do not change their behavior based on the status of the deque. For
DF-LS, things are very simple: No transactions occur, and synchronization occurs only
once, after all tasks have executed. We call this the best case because DF-LS incurs
almost zero overhead in terms of deque transactions and synchronizations. In fact,
even that single synchronization can be optimized away by detecting that none of the
tasks was ever placed on the deque, but we have not implemented this optimization.

Synchronization Coalescing. In retrospect, another interesting optimization to
reduce the number of synchronizations for DF-LS from logarithmic to constant in the
intermediate case would be the following: Instead of directly returning and synchro-
nizing with the parent task after processing a TD (Figure 3), the scheduler will try to
consume the rest of the TD from the local deque through a series of pop-half and pop
transactions, if the TD was split. In the absence of thefts, this attempt will be success-
ful, and no synchronization will be needed. We did not implement this optimization
because we conceived it too late, and we are unconvinced that it would result in signifi-
cant cumulative improvements compared to those already achieved by lazy scheduling.
We mention it here, however, for completeness and for the benefit of anyone planning
to implement lazy scheduling.

4.1. Deque Checks

So far, we have focused on the overhead of deque transactions and synchronizations, but
there is one more source of overheads in DF-LS: the checks to the local deque to decide
whether to postpone pushing work or not. These checks are very lightweight and fast,
but they are linear in the number of tasks (N/ gr − 1) in all three cases just presented.
Thus, for very fine-grained tasks, they can become a significant source of overhead. Note
that SP, AP, work-first, and help-first also perform deque checks to determine if pushing
a TD will overflow the deque. In all three cases just described (best, intermediate, and
worst), DF-LS, SP, work-first, and help-first perform O(N/ gr) deque checks, whereas
AP performs O(K · P) checks. When tasks are very fine-grained, the linear overhead
of these checks can become more important than the logarithmic or constant overhead
of deque transactions and synchronizations of DF-LS. This motivates the need for a
profitable parallelism-threshold for DF-LS, as described in the next section.

4.2. Role of the Profitable Parallelism Threshold (ppt)

As outlined earlier, the function of the profitable ppt of DF-LS is to amortize schedul-
ing costs by reducing the frequency of deque checks. Conversely, the sst of SP focuses
mainly on pruning parallelism to control the number of deque transactions and syn-
chronizations by stopping the splitting. DF-LS achieves this goal without using the sst
(or the ppt), by postponing pushing work onto the work-pool based on the deque size,
which is our heuristic for inferring the system load. There is also a second source of
overheads associated with the deque checks: the scheduler executes a task by calling
its closure, and, to check the size of the deque, the execution must return to the sched-
uler code. So, for each deque check, DF-LS also pays the overhead of a function call.
Since these overheads are linear in the number of tasks, it is important to combine
fine-grained tasks by means of the profitable parallelism threshold (ppt). Recall that
the ppt, also referred to as grain size, is picked by the compiler for each parallel loop,
as described in Tzannes et al. [2010, 2012a], so it does not burden the programmer.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:17

Another thing to note from the analysis in Section 4 is that the ppt threshold (grain)
in the intermediate and best cases plays a minimal role in controlling the number of
transactions in DF-LS. The worst case, which is triggered by thefts, is rare enough, as
backed up by our results showing better performance for lazy scheduling (Section 7),
so that it is fair to say that ppt is not the primary factor controlling the number of
transactions and synchronizations in DF-LS. Conversely, sst is the only way these
overheads are controlled in SP, work-first, and help-first. In AP, the only way to control
the number of transactions and synchronizations is to also provide a grain, which
supersedes AP’s automatic coarsening. However, the grain parameter was not included
in the analysis because AP is typically used without a grain size—after all, this is AP’s
advantage over SP.

As an aside, a grain (ppt or sst) larger than 1 for a parallel loop is semantically very
similar to loop strip-mining with a parallel outer loop and a sequential inner loop of
grain iterations. A compiler can perform all the classic textbook loop transformations
on this sequential inner loop.

5. SCALABILITY ISSUES OF DEPTH-FIRST LAZY SCHEDULING (DF-LS)

In the interest of reducing duplication, we will not reproduce the experimental result
of Tzannes et al. [2010]. In summary, we showed that DF-LS (a.k.a. LBS) outperformed
the default configuration of AP by 38.9% over a set of benchmarks on our experimental
XMT architecture [Wen and Vishkin 2008] (not Cray XMT). DF-LS also outperformed
SP without tuning (i.e., sst = 1) by 56.7%. These two comparisons represent the per-
formance benefits of DF-LS without programmer tuning of the grain size. Moreover,
the self-relative speedup results (Table 4 in Tzannes et al. [2010]) do not indicate scal-
ability issues for DF-LS on XMT. Similarly, the results in Bergstrom et al. [2010] seem
to suggest the same on commercial multicores for Lazy-Tree Splitting, a derivation of
DF-LS for a functional language with arrays represented as trees. Nevertheless, in this
section, we show that DF-LS has serious scalability issues on multicores for codes with
extremely fine-grained tasks.

The deviation of DF-LS from breadth-first thefts is reason for concern because it can
greatly increase the number of thefts by pushing work from the TD being processed
(i.e., describing the innermost nested parallel construct at the point of execution) when
the deque is found empty, instead of the oldest postponed TD (i.e., from the outermost
parallel construct). The number of thefts can increase because deeply nested tasks
often contain less work (in their computation subtree) than shallower tasks, and DF-LS
makes smaller chunks of work available to hungry workers by pushing the innermost
postponed tasks instead of the oldest postponed task.

Thefts are more expensive on multicores than on XMT, in part because their memory
hierarchy includes private caches. First, stealing a TD involves acquiring exclusive
write permission to a cache-line that is typically owned by the victim worker. Further-
more, the activation frame for that task typically also resides in the private cache of the
victim worker. Think of the theft as a lightweight context switch in which parts of the
private cache of the victim worker are transferred to the thief. On XMT, because it does
not have private caches, a theft only involves stealing a task descriptor, an operation
that is almost as cheap (or as expensive) as popping a TD from the local deque.

To show that DF-LS has scaling issues on traditional multicores, we implemented
it in Intel’s TBB library (v3.0). TBB implements work stealing and provides the pro-
grammer with an API that implements parallel loops, reducers, and other operations.
We chose TBB because parallel TBB code achieved good speedups versus serial imple-
mentations, indicating that TBB is implemented efficiently, and because TBB supports
various target platforms, which allowed us to run experiments on a variety of machines.
Furthermore, we are very thankful that the TBB team and Intel chose to release their

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:18 A. Tzannes et al.

code under the open source GPL license, allowing us and others to experiment and
contribute to the state of the art. We made our modified TBB implementation publicly
available [Tzannes 2013b], as well as the implementation of all our benchmarks in this
article [Tzannes 2013a].

Our original intention was to implement our lazy schedulers in one of the Cilk lan-
guages (Cilk, Cilk++, or the new Cilk Plus). We excluded Cilk due to its lack of parallel
loop support and Cilk++ because it was not open source for us tomodify. Cilk Plus [Cilk-
Plus 2011] was not publicly available when this work was done, and, even as these lines
are written, the open-source version of Cilk Plus is not mature enough to support the
simple benchmarks presented later [Tzannes 2012b]. Even though the scheduling over-
heads of the Cilk languages are lower than those of TBB, thanks in part to the parallel
constructs being integrated in the language rather than being library functionality,
our lazy scheduling would still benefit them by significantly reducing the scheduling
overhead per task, thus enabling more fine-grained parallelism to be profitable. As
we have argued, support of the finest possible grain of parallelism improves ease of
programming and performance portability, both important issues for general-purpose
parallel programming.

ALGORITHM 2: NQueens(N, partialSolution, depth)

Input: The size of the board N, a partialSolution c1c2 . . . ck, where 1 ≤ ci ≤ N is the column
position of the queen on the ith row, and depth the depth of the recursion (and size of the
partial solution), where 1 ≤ k ≤ N.

Result: The number of solutions to placing N queens on a N × N board is added to the global
variable solutionCount.

NQueens(N, partialSolution, depth)begin
forall the i ∈ {1, 2, . . . , N} do

if OkToAdd(i, partialSolution, depth) then // ok to add queen on column i at row

depth
partialSolution′

← partialSolution ∪ (i, depth); // Append (i, depth) to partialSolution
if depth < N then // Recursion

NQueens(N, partialSolution′, depth +1)
else // Found a Solution

atomic{solutionCount += 1 }
end

end

end

end

To demonstrate the lack of scalability of DF-LS, we use NQUEENS (with N =

14) for its recursively nested parallelism but without parallelism cutoff, as shown in
Algorithm 2, to intensify the repercussions of choosing the innermost task. Because one
of our goals is to set the foundations of efficient support for declarative parallel program-
ming, it is important to ensure good scalability in the absence of manual coarsening.

Algorithm 2 shows thatNQUEENS recursively calls itself up to depth= N. At the ith

recursive invocation, NQUEENS tries to place a queen on each column of the ith row of
the chessboard and checks if adding a queen does not attack the queens already placed
on rows 1 to i − 1. Parallelism is introduced by trying to place each of the N queens
at each row in parallel. Each time the Nth queen has been placed successfully, the
counter of solutions is incremented atomically. Note that the OkToAdd check prunes the
search space at every level of the recursion, resulting in an unbalanced and irregular
execution tree.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:19

Table III. Platform Descriptions

Name i7 Xeon T2

Threads 8 24 64
Cores 4 24 8
CPU i7 CPU 920 4 Intel Xeon E7450 UltraSPARC-T2
Clock 2.67GHz 2.4GHz 1.2GHz
L3 cache 8MB 4×12MB 4MB
RAM 24GB DDR3 48GB DDR2 32GB DDR2
kernel linux 3.2.0 linux 2.6.18 Solaris 5.10
g++ 4.6.3 4.1.2 3.4.3
libc 2.15 2.5 N/A

Fig. 4. Performance scaling of schedulers on i7 (nQueens).

Fig. 5. Performance scaling of schedulers on Xeon (nQueens).

We used three commercial multicores for our evaluation, summarized in Table III.
The three machines are very different and include a multicore desktop (i7) with
hyperthreading, an SMP multicore (Xeon), and a Niagara2 multithreaded multicore
(T2). Figures 4, 5, and 6 show the performance scaling of DF-LS on NQUEENS on
these three machines. The performance of AP, TBB’s default scheduler, is also shown
for reference. We also collected numbers for TBB’s SP, but AP always performed at
least as well as SP for the benchmarks presented in this article, so we only present

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:20 A. Tzannes et al.

Fig. 6. Performance scaling of schedulers on T2 (nQueens).

the results for AP. Each data point is computed as the average of 10 executions. The
standard deviations can be found in Table XX in the appendix. The standard deviations
for AP are below 2%, and most of those for DF-LS are below 4%. The few data points
with higher standard deviation for DF-LS reveal the greater degree of randomness in
DF-LS, which pushes tasks from the TD currently being processed at the time when
a deque is found empty, as opposed to always pushing the oldest postponed tasks.
Nevertheless, this higher variability does not negate the conclusion that DF-LS has
scalability issues on multicores.

On the small i7 machine (Figure 4), DF-LS scales well and greatly outperforms AP.
The sublinear performance scaling of DF-LS is attributed to the fact that, for worker
counts larger than the number of cores (4), hyperthreading kicks in and the workers
compete for shared core resources.

On the two larger machines, Xeon (Figure 5) and T2 (Figure 6), DF-LS fails to scale.
It scales well up to 8 workers, which shows the promise of lazy scheduling, but then
flattens out and even decreases in performance as more workers are used. DF-LS’s
performance degrades because workers push their innermost postponed tasks, which
can contain an exponentially smaller amount of work than their outermost postponed
tasks. This greatly increases the number of thefts (the most expensive scheduling op-
eration) and prevents DF-LS from scaling to larger numbers of workers. In Section 7.1,
we show that we can fix the scaling problem of DF-LS and allow it to scale to larger
machines. We also count the thefts for the compared approaches and show that DF-LS
incurs by far the most thefts. In the next section, we present two ways to make lazy
scheduling scale on multicores by reducing the frequency of thefts it incurs.

6. LAZY SCHEDULING FOR DECLARATIVE CODE

We describe two approaches for solving the scalability issues that DF-LS has with
declarative code. The first (BF-LS) is more robust but a bit harder to implement and
involves pushing the outermost postponed tasks instead of the innermost ones. The
second (DF2-LS) is less robust but trivial to implement and actually achieves compa-
rable performance to the first one on our set of benchmarks and may be a reasonable
alternative for mid-size machines (between 10 and 60 hardware threads). It involves
increasing the deque size threshold of DF-LS from 1 to 2. This simple change has
deeper effects on the scheduling algorithm than is immediately apparent; these are
described in Section 6.2.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:21

6.1. Breadth-First Lazy Scheduling (BF-LS)

In eager scheduling, a worker always pushes tasks on its deque as soon as it encounters
them. Conversely, in lazy scheduling, if the system has enough parallelism, a worker
postpones pushing tasks on its deque. Later, during the execution, the worker may infer
that other workers are hungry and decide to push work onto the shared work-pool (e.g.,
its deque). At that point, the worker may have many postponed TDs to choose from if
the code has nested parallelism.

From an implementation standpoint, the simplest solution is to push the innermost
postponed task—the TD being processed at the time of the decision to push work onto
the work-pool. We called this approach DF-LS, and it is the approach taken by our
earlier work [Tzannes et al. 2010] and by Lazy Tree Splitting [Bergstrom et al. 2010].
Although, in our experience, DF-LS works well on XMT for the benchmarks we tried,
using it on commercial multicores may not scale because it pushes deeply nested tasks
that are likely to contain less work than shallower tasks, leading to more thefts and
deque transactions (pushes and pops), which we are trying to reduce by lazy scheduling
in the first place. In fact, in Section 5, we showed experimentally that DF-LS fails to
scale to large numbers of threads on multicores for a recursively nested declarative
parallel code. On the other hand, the depth-first approach may reduce the memory
footprint in practice, although it is unlikely that a better theoretical bound can be
proven.

The dual approach to DF-LS is to push onto the deque the oldest postponed task,
which also has the shallowest nesting depth. This approach honors the principle of
breadth-first thefts, so we call it BF-LS. This approach is a bit trickier to implement
because we must keep track of the postponed tasks and be able to push them on the
deque, for which we use an additional deque data structure per worker. Because of this
added bookkeeping, BF-LS has a slightly higher scheduling overhead per task than
DF-LS.

A third approach could push postponed tasks that are somewhere between the outer-
most and the innermost ones. Froman implementation standpoint, thatwould incur the
same (or more) bookkeeping overhead as BF-LS. The only apparent advantage of this
approach is that it might reduce the memory footprint without dramatically increasing
the number of thefts. However, it would still violate the principle of breadth-first thefts.
Such an approach did not seem promising, so we did not investigate it.

Algorithm 3 presents a high-level description of one possible implementation of BF-
LS. For simplicity, we only show TDs that represent 1D iteration ranges, but our TBB
implementation also supports 2D and 3D ranges. A TD has an integer index for the
first iteration to execute (id), and one for the number of iterations in the TD (nrt),
as well as a minimum grain size (grain). It also maintains a function pointer to the
code to be executed and a pointer to the data accessible on the task’s parent frame
(these pointers are identical for all tasks of a dynamic instance of a loop). Each worker
now maintains a private deque for postponed TDs in addition to its shared deque for
shared TDs. The private deque can be implemented as a doubly linked list. Readers
interested in possible implementations of shared deques are referred to existing work
[Frigo et al. 1998; Arora et al. 1998]. TDs are pushed onto the private deque before
processing (line 1) and are popped upon completion (line 5). If the shared deque size
is below the threshold and the oldest TD in the private deque is not splittable, it
may be dequeued by a nested invocation of Algorithm 3 (line 2). For that reason, it is
necessary to check if the private deque is empty before popping the processed TD on
line 5.

Having replaced the original shared deque of work stealing with a shared deque with
a size threshold, a private deque for postponed tasks may seem counterproductive, but

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:22 A. Tzannes et al.

ALGORITHM 3: BF-LS Processing of a TD representing a parallel loop

struct TD { int id, nrt, grain; void (* f unc) (); void *args,};
Input: TD: a Task Descriptor Representing a Range of Tasks
Input: worker: a data-structure maintaining references to the local shared and private

deques
Result: totalExec: The number of tasks executed (for synchronizing with the parent task)

totalExec ← 0 ; // Number of Tasks executed

1 push TD on worker.privateDeque.top ;
while TD.nrt > TD.grain do // number of tasks > grain (=ppt)

if worker.sharedDeque.size < T HRESHOLD then // push work on shared deque

oldestTD = worker.privateDeque.bottom;
if oldestTD.nrt > oldestTD.grain then // can split oldestTD

split oldestTD and push half on top of worker.sharedDeque
else // cannot split oldestTD

2 remove oldestTD from bottom of worker.privateDeque ;
push oldestTD on top of worker.sharedDeque ;

end

else // postpone pushing work while executing TD.grain tasks

id ← TD.id;
3 TD.id← TD.id+ TD.grain;
4 TD.nrt← TD.nrt − TD.grain;

TD. f unc(id, TD.grain, TD.args) ; // Execute grain tasks

totalExec ← totalExec + TD.grain;
end

end
if worker.privateDeque is not empty then

5 pop worker.privateDeque.top

end
if TD.nrt > 0 then // execute any remaining tasks

TD. f unc(TD.id, TD.nrt, TD.args) ;
totalExec ← totalExec + TD.nrt

end
return totalExec ; // Used to decr. continuation’s pending tasks

there are several advantages in doing that. (1) The shared deques can be statically
allocated because of their constant size, this avoiding expensive dynamic memory al-
location. (2) Operations on the private deque, which greatly outnumber those on the
shared deque, do not need any synchronization since the private deque is not shared.
(3) Postponed TDs are not recursively split (logN times) but are placed whole in the
private deque. (4) The construction and consumption of TDs in the private deque
(mostly) follows the depth-first execution order; in conjunction with the previous point
of placing postponed TDs unsplit in the private deque, this allows us to allocate the
private deque on the worker’s stack and avoid expensive dynamic memory allocation
for the private deque as well. In fact, the allocation and deallocation of the private
deque comes free by being embedded in the existing stack allocation and dealloca-
tion. The only management overhead comes by maintaining the forward and backward
pointers.

One subtle point of this algorithm is that, on lines 3 and 4, the worker must remove
the tasks from the TD before executing them. This is because executing them may
create additional tasks TD′, at which point the worker may push the rest of TD on
its deque, potentially resulting in executing those tasks twice, which is generally not
correct if the tasks have side effects. Relaxing the requirement of unique execution

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:23

can lead to less strict synchronization requirements and improved performance, even
though some work is duplicated [Michael et al. 2009; Leijen et al. 2009]. In our case,
however, duplicate execution violates correctness.

6.2. DF-LS with a Deque-Check Delay (DF2-LS)

Simply increasing the deque size threshold of DF-LS from 1 to 2 can dramatically
improve its performance scaling by introducing a delay between pushing work onto an
empty deque and deciding to postpone exposing more parallelism. We call this variant
DF2-LS to distinguish it from DF-LS, which has a threshold of 1.

The fundamental difference between the two is most noticeable when the machine
is starving for parallel work (i.e., when many workers are trying to steal, and most
deques are empty), as occurs when switching from sequential to parallel execution for
example. During that initial period, a few workers have tasks to push onto their empty
deques. If the deque threshold is 1, a busy worker will push a TD with half its tasks
onto its deque, immediately check its size, and find it equal to the threshold because
thieves have not had time to steal the work. Consequently, the worker will falsely
conclude that other workers are not hungry and will start executing a task. If nested
parallelism is encountered, the worker will discover that its deque is empty and push
some of the inner tasks onto its deque, instead of the outer ones. Conversely, with a
threshold of 2, the worker pushes a TD with half its tasks onto its empty deque, then
pushes another TD with half of its remaining tasks. This second push of a TD gives
thieves some time13 to steal the first TD the worker pushed. The worker will notice that
theft and subsequently keep pushing outer tasks until thefts become less frequent and
the system is no longer starving for work. Therefore, having a threshold of 2 effectively
creates a delay between pushing work onto an empty deque and concluding that other
processors are not hungry, thus making the heuristic of checking the size of the deque
a more accurate indicator of the system load.

We also experimented with adding an artificial delay between pushing work on a
deque and the subsequent size check of that deque, instead of increasing the threshold
to 2. We invoked usleep with arguments ranging from 1 to 25, but always noticed a
performance degradation compared to DF-LS.We did not try to implement the artificial
delay as a shorter busy wait (e.g., a loop of 100 iterations that do nothing) because we
do not believe that wasting power to simply wait is a good strategy, especially since
power is already one of the factors limiting performance.

Despite the good scalability results that we present in Section 7.1, DF2-LS remains
a depth-first approach, with the same problem of pushing the innermost tasks and
incurring an increased number of thefts.Moreover, in the absence of nested parallelism,
the higher deque threshold of DF2-LS causes more deque transactions (pushes and
pops) without any additional benefit since all tasks are outer tasks. In those scenarios,
DF2-LS is a bit slower than DF-LS, but its superior scalability generally justifies its
use over it.

Table IV presents a high-level view of the four schedulers we compare in the next
section, including TBB’s SP, which is also used by Cilk++ and CilkPlus. We used a
bold font to highlight the good qualities of each scheduler. The number of thefts and
the number of pops (reclaiming work from one’s own deque) are a measure of wasted
overheads and should be minimized.

The table shows that BF-LS is the best approach, but it incurs slightly more over-
head per push by accessing the oldest postponed task in the private deque, instead
of pushing the current task like all the other compared schedulers do. Nevertheless,
BF-LS is the only scheduler that minimizes both the number of thefts and the number

13Depending on the relative speed of splits versus steals, a threshold higher than 2 might be needed.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:24 A. Tzannes et al.

Table IV. Comparison of Schedulers

BF-LS DF2-LS DF-LS AP SP

BF-Thefts Yes No No Yes Yes

Lazy Yes Yes Yes No No
Cost/Push Low+� Low Low Low Low

#Thefts Low Medium Very High Low Low

#Pops Low Medium Low High Very High

Fig. 7. Performance scaling of schedulers on T2 (nQueens).

of pop operations, so it is likely to be the best choice for performance and performance
portability, in particular for codes with fine-grained tasks. The experimental results in
the next section support this hypothesis.

7. EXPERIMENTAL EVALUATION OF LAZY WORK STEALING ON MULTICORES

In this section, we start by showing that our proposed solutions, BF-LS and DF2-LS,
amend the scalability issues of DF-LS on the NQUEENS benchmark presented in
Section 5, and we count the number of thefts incurred by the different schedulers to
show that our hypothesis was correct and that DF-LSs do indeed cause significantly
more thefts. Then, we evaluate BF-LS and DF2-LS on a set of benchmarks on three
significantly different multicore platforms and show their performance improvement
over DF-LS and TBB’s default scheduler, the AP. We also collected performance num-
bers for TBB’s SP, but we are not presenting those because they were equal to or worse
than those of AP. Furthermore, we compare the software performance optimality ratio
[Tzannes 2012a] (software optimality for short) of the compared schedulers on declar-
ative code and on code that has been statically coarsened (manually or otherwise) to
amortize scheduling overheads. This comparison demonstrates the performance and
programmability advantages of lazy scheduling for fine-grained tasks.

7.1. Scaling of Lazy Scheduling on Multicores

Figures 7, 8, and 9 augment Figures 6, 5, and 4 with the results for BF-LS and DF2-LS
to show how they overcome the scaling issues of DF-LS. To do that, we implemented
those two alternative schedulers within TBB. Given DF-LS, the additional effort to
implement DF2-LS was trivial, and the effort for BF-LS was relatively modest. As
before, we timed 10 executions of each data point and took the average. Speedups are
computed versus the execution time of a sequential version of the program, as opposed

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:25

Fig. 8. Performance scaling of schedulers on Xeon (nQueens).

Fig. 9. Performance scaling of schedulers on i7 (nQueens).

to the execution of the parallel code on one worker. The standard deviations are shown
in Table XX in the appendix.

On T2, our largest platform, the improvement is very substantial (Figure 7): BF-LS
and DF2-LS achieve speedups of 10.8× and 10.5× compared to the speedup of 2.1× for
DF-LS and 3.0 for AP. Another interesting trend is that DF2-LS performs marginally
better than BF-LS up to 56 workers, and BF-LS comes ahead for larger worker counts.
This illustrates two things: (1) that BF-LS has a higher overhead per task because it
keeps track of postponed TDs in private deques, which causes it to fall slightly behind
for smaller worker counts, and (2) that for a large number of workers, DF2-LS starts
suffering from the same scaling issues as DF-LS because it pushes work from the
innermost postponed TD.14 On Xeon (Figure 8), we observe the same trends. BF-LS
and DF2-LS achieve speedups of 12.4× and 12.6×, whereas DF-LS and AP only reach
3.0×.

On the small i7 (Figure 9), BF-LS and DF2-LS achieve similar performance to DF-LS.
This supports our hypothesis that, for small machines, the DF-LS strategy of pushing

14Increasing the deque threshold from 2 (e.g., to 3 or 4) would improve scaling at the cost of more deque
transactions. However, DFk-LS would still suffer scalability issues on larger machines due to its deviation
from the breadth-first thefts principle. For that reason, we favor using BF-LS over the DF variants.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:26 A. Tzannes et al.

Table V. Number of Thefts (Average over 10 Runs)

Platform DF-LS DF2-LS BF-LS AP

T2(64) 55,593,973.2 1,045,072.0 3,130.5 3,303.2
Xeon(24) 4,161,559.1 10,562.9 791.9 906.6
i7(8) 316,337.6 973.8 228.1 274.1

the innermost tasks does not cause thefts to become excessively frequent to the point
of hurting performance. The same observation can be made by looking at the scaling
of DF-LS on the larger machines for small numbers of workers (Figures 7 and 8 for 1–
8 workers).

On all three platforms, all three of TBB’s available EBS schedulers (i.e., SP, AP,
and affinity-partitioner) fall significantly behind BF-LS on the declarative version of
NQUEENS. Of the three TBB schedulers, only AP is shown because it consistently
achieved better performance.

7.2. Counting Thefts

As argued earlier, the limited scalability of DF-LS is caused by the choice of pushing
the innermost postponed tasks, resulting in a greater number of thefts. We measure
the number of thefts incurred by the four competing approaches on our three platforms
(Table V); displayed is the cumulative number of thefts performed by all workers,
averaged over 10 runs. The number of thefts with DF-LS is orders of magnitude larger
than with any other approach, whereas with DF2-LS, it is orders of magnitude smaller
than with DF-LS but much larger than with BF-LS or AP. Finally, the number with
BF-LS roughly matches that of AP. We believe that AP incurs slightly more thefts than
BF-LS in this example because it runs much longer, wasting time pushing and popping
tasks from the local deque. In an effort to load balance over this longer execution
time, some additional thefts occur. The added instrumentation to count thefts did not
significantly affect the running time of the benchmark because it only requires some
bookkeeping local to each worker and no communication, so we believe the results
accurately reflect the number of thefts of uninstrumented executions.

7.3. Evaluation on a Set of Benchmarks

NQUEENS was a useful toy example to experimentally demonstrate how DF-LS fails
to scale up to a large number of workers but grants us little confidence that using
BF-LS as the default scheduler instead of AP (or SP) is a good idea. To address
this, we compare the different approaches over the set of benchmarks summarized in
Table VI. These benchmarks were selected because they exhibit a variety of computa-
tion and communication patterns [Asanovic et al. 2006], which is important because we
want to support general-purpose parallel code. Moreover, we needed benchmarks with
nested parallelism to ensure scaling under composition of parallelism and to expose
the limitations of AP.

The benchmarks in Table VI are described as follows: TSP is the traveling salesman
problem on a dense graph, NQUEENS finds all possible solutions to placing N queens
on an N by N chessboard, BFS is a breadth-first search over a sparse graph, and
we used the DIMACS10/rgg_n_2_24_s0 dataset from the University of Florida sparse
matrix collection [Davis and Hu 2011], SpMV is a sparse matrix by (dense) vector
multiplication, FW is the Floyd-Warshall all-pairs shortest path on a dense graph,MM
is the naive (N3) dense matrix multiplication, and CONV is an image-by-filter convo-
lution. Moreover, TSP(cut) and NQUEENS(cut) are coarsened versions with manual
parallelism cut off after depth N/ 2, whereas TSP(decl) and NQUEENS(decl) are the
declarative versions with parallelism exposed all the way down to the leaves of the
recursion. Finally, SpMV(coarse) computes each row of the sparse array sequentially,

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:27

Table VI. Benchmark Summary

Declarative Dataset Grain

NQUEENS N = 14 Nodes 1

TSP N = 12 Nodes 1

SpMV 80Kx5K (N × M), 40M nonzero (V) 77

BFS 16.8M Nodes, 132.5M Edges 53

FW N = 2048 Nodes 91

Coarsened Dataset Grain

NQUEENS N = 14 Nodes 1

TSP N = 12 Nodes 1

SpMV 80Kx5K (N × M), 40M nonzero (V) 1

MM 1024x1024 (N2) 1

CONV 4Kx4K (N2) image, 16x16 (M2) filter 1

Declarative Nesting Parallelism Work/Task Description

NQUEENS(decl) N O(N!) O(1) fine/irregular

TSP(decl) N O(N!) O(1) fine/irregular

SpMV(decl) 2 40M O(1) fine/irregular

BFS 2 O(|E|

Diameter
) O(1) fine/rregular

FW 1 (2D) N2 O(1) fine/regular

Coarsened Nesting Parallelism Work/Task Description

NQUEENS(cut) N/ 2 = 7 O
�
N!

(N/ 2)!

�

O
�
N
2 !
�

coarse/irregular

TSP(cut) N/ 2 = 6 O
�
N!

(N/ 2)!

�

O
�
N
2 !
�

coarse/irregular

SpMV(coarse) 1 80K O(V / N) medium/irregular

MM 1 (2D) N2 O(N) coarse/regular

CONV 1 (2D) N2 O(M2) coarse/regular

whereas SpMV(decl) uses TBB’s parallel-reduce construct to expose all the parallelism
(one task per nonzero element of the sparse array) and to efficiently aggregate the
results. To that end, we modified TBB’s reduction operation to support the DF-LS,
DF2-LS, and BF-LS schedulers.

In our PPoPP paper [Tzannes et al. 2010], we had also benchmarked Quicksort
in order to demonstrate that the partition procedure could also be easily parallelized
using XMT’s novel hardware prefix-sum unit. On the commercial multicores we used in
this article, we did not find an easy (declarative) way to profitably parallelizeQuicksort’s
partitionprocedure, and implementing itwith a sequentialpartitionwould classify it
as a coarse-grained benchmark, of which we already had enough and better candidates.
For those reasons, we decided to exclude it from this evaluation.

Table VI divides our benchmarks into declarative, in which all the parallelism has
been exposed, and coarsened, in which either some of the parallelismwasmanually hid-
den (TSP(cut) andNQUEENS(cut)), or not all parallelism was exposed (SPMV(coarse),
MM, and CONV).

All the coarsened benchmarks can be rewritten as declarative ones with O
�

1
�

work
per task. For example, MM and CONV can be further parallelized using a parallel
reduce operation, but, due to their more regular nature, it is unlikely that the addi-
tional parallelism would improve performance in most realistic scenarios. Because this
parallelization could be viewed as unnatural and unnecessary, we opted against it.
However, in extreme cases where, for example, the multiplied arrays are vectors and
the result is a single value, using the parallel reduce operation may be the only way to
achieve a speedup.

The grain column shows the profitable parallelism threshold (ppt) automatically
picked by the XMTC compiler [Tzannes et al. 2010; Tzannes 2012a], the nesting column

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:28 A. Tzannes et al.

Fig. 10. Benchmarks on the i7 using all eight workers.

Fig. 11. Benchmarks on the Xeon using only six workers.

is the nesting depth of parallelism, and parallelism is the degree of parallelism (i.e.,
the maximum number of tasks that can be executed in parallel); or, in other words,
the maximum width of the computation Directed Acyclic Graph (DAG). For BFS, it
is on average in the order of the number of edges divided by the graph diameter.
For our dataset, the diameter is 4. The next column represents the work per task,
which happens to be constant for our declarative benchmarks and nonconstant for our
coarsened benchmarks.

In addition to1D iteration ranges, TBB also provides range objects that describe 2D
and 3D iteration spaces, which can be used to effectively flatten nested parallelism for
dense, affine matrix computations. This allows us to expose a multi-dimensional range
of parallelism while avoiding the explicit use of nested parallelism, something that AP
and SP are not very good for. We used multidimensional ranges wherever possible (FW,
MM, and CONV).

Comparisons. Figures 10, 11, 12, 13, and 14 show the results on our three ma-
chines, grouped into declarative and coarsened benchmarks. We used the average of
10 runs for the plots, and the standard deviations are shown in Tables XXI, XXII, and
XXIII in the Appendix. We used the geometric mean to compute the averages since we
are averaging percentages (scaled values for the execution time). Our main goal is to
demonstrate the superior performance of BF-LS and DF2-LS compared to DF-LS, so we

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:29

Fig. 12. Benchmarks on the T2 using only eight workers.

Fig. 13. Benchmarks on the Xeon using all 24 workers.

Fig. 14. Benchmarks on the T2 using all 64 workers.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:30 A. Tzannes et al.

normalized the execution time versus DF-LS, but since DF-LS has not been compared
to AP, neither on declarative code nor on multicores, we also included AP in our perfor-
mance evaluation. Compared to AP (TBB’s default scheduler), all three lazy approaches
are faster on declarative code and competitive on coarsened code. We also measured
the performance of TBB’s SP and affinity-partitioner, but because AP was consistently
the best choice, we only present those results.

On small-size machines, such as the 4-core/8-thread i7 (Figure 10), the additional
overheads of BF-LS and DF2-LS match the benefits of incurring fewer thefts, and
DF-LS is marginally faster. We also run the same comparison on the Xeon machine
using six workers (Figure 11) and on the 8-core T2 using eight workers (Figure 12).
These represent small multicore platforms. The conclusion is the same for all three
small platforms: the three lazy approaches perform similarly; therefore, BF-LS is
preferable because it scales better.

Notice that the six-worker Xeon configuration has higher standard deviations
(Table XXII in the Appendix). We believe the reason for this high variability is that
workers are not pinned to cores, and the operating system naivelymigrates them across
chips, causing them to lose their cached values. Whatever the reason, the results in
Figure 11 are unreliable, but the ones in Figures 10 and 12 have low variability and
are reliable.

On the larger machines, the situation is much different. On the 24-core Xeon
(Figure 13), DF-LS fails to scale on the recursively nested declarative benchmarks
TSP(decl) and NQUEENS(decl) and falls behind on NQUEENS(cut). BF-LS and DF2-
LS perform equally well, outperforming the other two approaches on average both on
declarative (by 48% vs. DF-LS) and on coarsened benchmarks (by 5.5% vs. DF-LS).
On the 64-thread T2 (Figure 14), DF2-LS and BF-LS are also comparable, with BF-LS
being marginally better. BF-LS is 45.2% faster than DF-LS on declarative code and
3.2% on coarsened. Compared to AP, BF-LS and DF2-LS achieve significant speedups
on declarative codes, while being competitive on coarsened codes.

Scaling up. Our hypothesis is that, on larger platforms, DF2-LS will suffer from a
similar lack of scalability as DF-LS because they both violate the breadth-first theft
principle of work stealing. Because we do not have access to larger machines, in order
to test our assumption, we use a synthetic code with extremely fine-grained recursively
nested tasks, which stresses the scheduler as much as possible. The synthetic code is
computing the 36th Fibonnaci by exposing all the available parallelism, and Figure 15
shows the performance scaling of the three lazy schedulers on T2. We are not showing
results on the smaller machines because they have too few processors to expose the
scalability problems of DF2-LS. As usual, we plotted the average of 10 runs, and the
standard deviations are shown in Table XXIV in the Appendix.

As expected, DF-LS does not scale well, and, similarly, DF2-LS gradually stops
scaling for larger numbers of workers. With more than 32 workers, BF-LS becomes the
best approach because it scales better, but for fewer workers, its higher overhead per
task makes it fall behind DF2-LS. Although this single experiment is insufficient to
conclusively prove or challenge our hypothesis that DF2-LS will not scale, it serves as
a means to highlight the issue and offers some insight.

The low speedup numbers in Figure 15 are not surprising because we did not imple-
ment any manual cutoff and because TBB’s overheads for creating a TD are relatively
high. This is in part due to TBB being implemented as a library and having to create
several objects to call the scheduler for each new task. However, the goal here is to
show how the performance of the different schedulers scales under extreme stress to
try and emulate the stress of running on a larger machine. To that effect, we think that
these results provide some insight.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:31

Fig. 15. Performance scaling of schedulers on T2 (Fib(36)).

Given the above numbers, our recommendation would be to always use BF-LS because
its performance is more robust than the depth-first lazy approaches (DF2-LS and DF-
LS) and because it does not fall significantly behind the best alternative when it is
not itself the best scheduler. This gives us greater confidence that, if used on other
benchmarks and applications than those presented here, BF-LS will not surprise with
lower than expected performance. Moreover, if one wants to create a binary of his
parallel application to be executed on platforms of varying sizes, BF-LS is the best
choice. Alternatively, it may be attractive to recompile a parallel application to use a
different scheduler depending on the target platform, to improve performance. This
work has outlined trends to help select the best scheduler.

7.4. Software Optimality of Declarative Code

One of the claims we have made is that our work on lazy scheduling brings us one step
closer to efficient execution of declarative code.We substantiate this claim by comparing
the performance of declarative code to that of its coarsened counterpart. We use the
definition of software optimality fromTzannes [2012a, Section 3.4]. Intuitively, given an
input environment (the input data, the execution platform, and the subset of available
workers), the software optimality of a code is the ratio of the performance15 it achieves
over the best achievable performance by changing programmer-tuned variables, such
as the coarsening, the algorithm used, or the choice of runtime. In other words, software
optimality shows how close or far from optimal a choice of user variables is for a given
input environment.

To properly define software optimality, we should take the minimum over all possible
coarsenings, but, given that the coarsenings we used were selected to maximize per-
formance, the effort of trying all possible coarsenings to get a slightly more accurate
lower bound for execution time was not justified.

In Tables VII, VIII, and IX, we present, for each of our three platforms, the software
optimalities of the four compared schedulers for the three benchmarks for which we
had both a declarative and a coarsened version. The results show that DF-LS achieves
significantly better software optimality that AP on small platforms (i7), but fails to

15Performance = 1
Execution Time

.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:32 A. Tzannes et al.

Table VII. Software Optimality (%) of Declarative Code on i7

i7 BF-LS DF2-LS DF-LS AP
NQUEENS 56.2 59.2 55.7 14.4
TSP 43.1 46.2 45.0 12.0
SpMV 97.6 97.5 97.8 27.1

Table VIII. Software Optimality (%) of Declarative Code on Xeon

Xeon BF-LS DF2-LS DF-LS AP
NQUEENS 55.3 56.0 13.7 12.4
TSP 45.5 46.2 17.4 14.4
SpMV 99.7 99.5 98.7 67.8

Table IX. Software Optimality (%) of Declarative Code on T2

T2 BF-LS DF2-LS DF-LS AP
NQUEENS 38.5 37.5 7.5 10.8
TSP 25.2 26.0 6.6 6.5
SpMV 86.2 82.2 84.0 4.3

deliver on larger platforms. On the other hand, BF-LS and DF2-LS achieve several
times better software optimality than AP on all platforms.

When the compiler is able to perform coarsening to amortize the overheads per task,
such as for SpMV, the software optimality of declarative code scheduled with BF-LS
(and DF2-LS) becomes competitive with that of manually coarsened code, but without
compromising the performance portability. This is an indication that, using BF-LS,
programmers will no longer need to prune the exposed parallelism, which is tedious
and hurts performance portability. Instead, they will only be responsible for amortizing
the overheads per task, which is easier and more performance portable, as the next
section shows.

On the other hand, when the compiler is unable to perform coarsening to amortize
the overheads per task, such as for TSP and NQUEENS, the software optimality is not
close to optimal. Even so, novice programmers will not be discouraged because their
first parallel implementations will achieve significant speedups with BF-LS compared
to AP.

7.5. Software Optimality of Code with Amortizing Coarsening

In this section, we ask how much software optimality can be achieved by using the lazy
schedulers, assuming that the compiler or the programmer have performed coarsening
to amortize scheduling overheads. To that effect, we repeat the previous experiment,
but this time, we add a cutoff depth forNQUEENS and TSP and use the ppt, computed
for the lazy schedulers, with AP as well. The amortizing cutoff depth is such that, if the
subproblem would not benefit from parallelization, it is solved sequentially. In other
words, we find the ppt as a cutoff depth.

To find the cutoff depth forNQUEENS, we run increasing input sizes n ∈ {1, 2, 3, . . .}

and measure the parallel execution on two workers with the cutoff depth equal to 1
(only the outermost parallel loop stays exposed), comparing it to the time taken by the
sequential execution. Let k be the the minimum n for which ParTime(n) < SerTime(n).
Then, the cutoff function will be N− (k− 1); in other words, k− 1 recursive levels from
the bottom of the recursion. We repeat this process on each target platform to get the
platform-specific value of k for each of them. We repeat the same procedure for TSP
and find the amortizing cutoff depths for each of our multicore platforms.

Table X shows the values of k− 1 for each of the platforms and benchmarks. There
is little variation of the profitable parallelism cutoff depth between platforms because

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:33

Table X. Amortizing Cut-Off Depths for NQUEENS and TSP

T2 Xeon i7
NQUEENS 5 5 5
TSP 5 5 4

Table XI. Software Optimality (%) of Amortized Code on i7

i7 BF-LS DF2-LS DF-LS AP
NQUEENS 92.7 93.8 92.0 58.8
TSP 99.2 96.3 96.3 96.1
SpMV 97.6 97.5 97.8 67.5

Table XII. Software Optimality (%) of Amortized Code on Xeon

Xeon BF-LS DF2-LS DF-LS AP
NQUEENS 85.6 81.4 33.1 51.0
TSP 100.0 98.8 98.0 98.9
SpMV 99.7 99.5 98.7 81.3

only the cutoff for TSP on the i7 is lower. This is because, due to its smaller scale, the
i7 can profit from smaller granularity of parallelism.

Tables XI, XII, and XIII show the software optimality results of the different sched-
ulers compared to amortized code. BF-LS is the clear winner in this comparison, achiev-
ing above 85% on all three machines for all benchmarks, with DF2-LS following closely.
DF-LS performs well on the small i7 but fails on the bigger ones, with worst- case soft-
ware optimality below 50%, and AP has software optimality below 60% on at least one
of the three benchmarks on all three machines.

These results show two things. First, lazy scheduling constitutes a significant step
toward supporting declarative code because it achieves very high software performance
optimality ratios on irregular codes that have been coarsened just enough to amortize
scheduling overheads. Second, pruning parallelism is often necessary to achieve a good
software optimality ratio with AP and other eager schedulers, even when coarsening
to amortize scheduling overheads has been performed. Pruning parallelism, however,
is tedious for programmers and likely to compromise performance portability by over-
constraining parallelism.

Finally, Table XIV shows the number of tasks that NQUEENS on a 14-by-14 board
exposes to the runtime with the different cutoff depths used. It shows that, despite
the fact that amortized NQUEENS exposes an order of magnitude more tasks than
its coarsened counterpart, lazy scheduling achieves 85% or more of the performance
achievable with the coarsened code (Tables XI, XII, and XIII).

8. LAZY SCHEDULING FOR NONLOOP PARALLELISM – AN EXAMPLE

In this section, we apply the concepts of lazy scheduling to a custom scheduler imple-
mented for the Unbalanced Tree Search (UTS) benchmark [Olivier et al. 2007]. Our
goal is to reinforce our claim that lazy scheduling can be applied to algorithms other
than work stealing and also that it can improve the performance of task parallelism
introduced one at a time, not through parallel loops. Later in this section, we also exper-
iment with our own TBB implementation of UTS, which obviates the need for custom
scheduling. We used parallel for-loops in our TBB implementation because they fit best
the type of parallelism present in UTS and because we have not added support to TBB
for lazy parallel-invoke (TBB’s version of task parallelism). Adding support for lazy
scheduling of parallel-invoke task parallelism in TBB would be straightforward but
tedious, and it would not grant us further insights, so we opted against it. Overall,

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:34 A. Tzannes et al.

Table XIII. Software Optimality (%) of Amortized Code on T2

T2 BF-LS DF2-LS DF-LS AP
NQUEENS 85.6 84.6 47.6 53.3
TSP 100.0 96.0 97.1 93.3
SpMV 86.2 82.2 84.0 54.9

Table XIV. Parallelism of NQUEENS (14x14) for
Different Cutoffs

Kind cut-off # Tasks

Declarative none 377,901,398
Amortized N − 5 46,951,002
Coarsened N/ 2 4,294,066

we aim to illustrate that the principles and benefits of lazy scheduling extend to task
parallelism and to custom schedulers, and they do not only apply to parallel loops.

UTS fully visits an unbalanced (irregular) tree, and the challenge is that the size of
each subtree (and therefore the granularity of each task) is unknown until the entire
subtree is visited. Two types of random trees are considered, geometric and binomial:
A node in a binomial tree has m children with probability q and no children with
probability 1 − q, and a node in a geometric tree has a branching factor that follows
a geometric distribution with an expected value specified by a parameter b0 > 1.
Geometric trees have larger subtrees closer to the root (and require a cutoff depth in
order to be finite); whereas binomial trees are finite when qm < 1, and each subtree
has the same expected number of nodes regardless of its depth in the tree. Olivier
et al. implemented a UTS in UPC, in OpenMP, and in Pthreads. Because our work
targets UMA platforms, we only describe and modify their shared memory Pthreads
implementation (their UPC and OpenMP implementations are primarily targeting
NUMA clusters).

UTS implements a custom scheduler, which is eager. Each time a node is visited, its
children are discovered and added, one at a time, to a shared data structure that is
very similar to a deque. The difference is that the top of the deque is thread-private,
and nodes pushed in that private segment can subsequently become shared through a
separate operation. To avoid excessive overheads, a parameter chunk-size can be set
on the command line (chunk-size = 1by default) that controls the number of nodes to
move from the private to the shared segments and vice versa; whenever a deque has at
least 2 · chunk-size nodes in its private segment, it makes chunk-size of them shared
by updating a pointer that delimits the private from the shared segment. Similarly,
when a worker has exhausted the private segment of its deque, it reclaims chunk-size
nodes from its shared segment or attempts to steal chunk-size nodes if its deque is
empty.

Having a deque with a shared and a private segment deviates from the traditional
work-stealing algorithm, which only has the former. It also differs from our proposed
lazy approach because the decision to share work does not depend on (inferred) runtime
load conditions. Olivier et al. showed that performance is significantly sensitive to the
choice of chunk-size, even for shared memory machines, which is a serious drawback
for performance portability.

To make their UTS chunky work stealing approach lazy, we modify the condition
when nodes (tasks) are moved from the private to the shared segment: in addition to
requiring the private segment to have at least 2 · chunk-size nodes, we also require
the shared segment to be empty. Furthermore, when both those conditions are met,
we share half of the private segment (instead of only chunk-size nodes), and thefts
steal the entire shared segment (instead of only chunk-sizenodes) because the private

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:35

Table XV. Datasets for UTS

Tree Type Depth MNodes MLeaves

T1L Geometric (fixed) 13 102.181 81.746 (80.00%)
T2L Geometric (cyclic) 67 96.794 53.791 (55.57%)
T3L Binomial 17844 111.346 89.077 (80.00%)

segment is expected to hold approximately as many nodes. These modifications follow
in spirit the recursive splitting of task descriptors created by loops. Finally, when a
worker runs out of work in its private deque segment, it reacquires half of its shared
segment if it contains at least 2 · chunk-size nodes or all of it otherwise. We call this
scheduler Lazy Splitter and the original UTS scheduler Eager Chunker.

The decision to share half of the private segment whenever the shared segment
is empty and to steal all of the shared segment is similar to the steal-half approach
[Hendler and Shavit 2002], although it is just a best-effort heuristic; the scheduler
does not constantly keep rebalancing the private and shared segments to keep them
approximately equal as tasks (nodes) are locally produced or consumed.

In an effort to separately evaluate the performance gains of lazily moving nodes
to the shared segment and those of our best-effort steal-half optimization, we also
implemented a Naive Lazy scheduler and an Eager Steal Half one. Naive lazy simply
shares chunk-size nodes whenever the shared segment is empty. Steal-half is eager,
so it shares nodes as they are produced, chunk-size at a time, but it steals half of the
available nodes from any given victim and immediately shares all but chunk-size of
them on the thief ’s deque.

Table XV briefly describes the most important features of the datasets used in our
evaluation. The datasets are taken as-is from the UTS project [UTSproject]. We refer
the interested reader to their website for additional details.

Figure 16 shows that, for all three trees, lazy scheduling is superior (as before, we
plot the average of 10 runs). On T2, the gap between lazy and eager schedulers is
small (< 25%), whereas on the Xeon it is at least 4×. Overall, Eager Chunker has
high overheads because of constantly moving nodes between the shared and the pri-
vate segments and because of frequent thefts of small numbers of nodes. Eager Split
Half significantly reduces thefts, but apparently they account for a small fraction of
the overhead and thus result in negligible performance gains.16 Naive Lazy minimizes
moving nodes to and from the shared segment, which results in significant performance
benefits, but it does not minimize thefts, which causes it to fall behind Lazy Splitter on
Xeon, where thefts are more expensive due to the potential of cross-chip communica-
tion. Finally, Lazy Splitter minimizes both thefts and moving nodes locally to and from
the shared segment thereby achieving the best performance. It is also worth noticing
that the biggest performance gap between Lazy Splitter and Naive Lazy (on Xeon)
occurs with the binomial tree dataset (T3L). This is expected because, unlike geometric
trees where shallower nodes are more likely to have larger subtrees, binomial trees do
not, thus leading to a smaller probability that a theft will result in significant work
being stolen without the use of a higher chunk-size. Luckily, the best-effort steal-half
heuristic of Lazy Splitter is apparently sufficient to approximate the ideal chunk-size,
as we will see below. We omit the results on i7 for brevity and because they do not offer
any additional insights.

Next, we show the difference in sensitivity to the chunk-size parameter between
the eager and lazy schedulers. Figure 17 shows that the performance with Lazy Split-
ter only degrades when the chunk size is too large, therefore limiting parallelism

16This negative result for the eager steal half concept on UTS is not sufficient to make any general claims
for its benefits to other computations, schedulers, or platforms.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:36 A. Tzannes et al.

Fig. 16. UTS speedup results on Xeon and T2 (original PThreads implementation).

excessively; but, even when the chunk size is equal to 1 (i.e., as small as possi-
ble), the performance does not degrade. This is not the case for the eager approach
originally used for UTS and our custom eager steal half scheduler: The choice of
chunk size is crucial to achieve good performance, especially when the memory hi-
erarchy is deeper, as in the case of the Xeon. If the chunk size is too small, schedul-
ing overheads stifle performance, whereas if the chunk size is too large, the lack of
parallelism prevents performance scalability. Moreover, the optimal chunk size

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:37

Fig. 17. UTS sensitivity results on Xeon and T2 (original PThreads implementation).

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:38 A. Tzannes et al.

Fig. 18. UTS Speedup results on Xeon and T2 (TBB Implementation).

depends on the type of the tree (geometric vs. binomial) and possibly on the size of
the tree as well [Olivier et al. 2007]. Finally, the Naive Lazy scheduler is somewhat
sensitive to the choice of chunk-sizeonXeon, but to amuch lesser degree than the eager
alternatives.

8.1. TBB Implementation of UTS

In this section, we present and evaluate the performance of the lazy schedulers (BF-LS,
DF2-LS, DF-LS) on our implementation of UTS in TBB. We made minimal changes
to the UTS code to replace PThreads parallelism and the custom scheduling code
with TBB parallelism, and we used parallel for-loops because they were the best fit
for UTS. We ran UTS on the two large geometric trees (T1L, and T2L), but the bi-
nomial tree (T3L) was too deep, causing the TBB execution to run out of memory,
both with the existing eager schedulers and with our lazy ones. Unsurprisingly, TBB
has a larger memory footprint than the custom schedulers presented in the previous
section.

Figure 18 plots the speedup results for the TBB implementation with the schedulers
examined throughout this article. BF-LS and DF2-LS give the best performance, AP is
gives somewhat slower performance, and DF-LS only scales well up to a small number
of workers, trailing AP for larger worker counts. We also ran UTS with SP, whose
performance matched that of AP, so we excluded it from the plot. The gap between
BF-LS and AP is smaller than for TSP or nQueens because the work per task for
UTS is significantly larger. AP is performing significantly better than the eager custom

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:39

schedulers (without manual tuning of chunk-size) because it recursively pushes half of
the children of each node instead of pushing them one at a time, effectively resulting in
larger chunk sizes. Finally, notice that, on the Xeon, BF-LS is achieving 22× speedup,
marginally lower than the speedup of the custom lazy splitter scheduler and very
close to perfect linear speedup (24×), thus indicating that our TBB implementation
is performing well. (The speedups are not self-relative but relative to an optimized
sequential implementation.)

9. TIME AND SPACE BOUNDS FOR LAZY AND EAGER WORK STEALERS

In this section, we revisit the question of time and space bounds for the different
work stealing schedulers that we discussed. As we mentioned, the theoretical bounds
that were shown in Blumofe and Leiserson [1999] apply to computations with parallel
function calls but not to parallel loops or other constructs that introduce multiple tasks
at once. The bounds rely on the fact that tasks are created one at a time and need to
be amended for parallel loops. We start with the space bounds for different variants of
work stealing, then discuss the time bounds. We show that AP and lazy work stealing
have time bounds without additional linear or logarithmic overheads in N, but this
improved common-case performance comes at the cost of poorer worst-case behavior,
as demonstrated by synthetic examples in Sections 9.3 and 9.4. For lazy scheduling, it is
important to poll the work-pool frequently in order to maintain enough tasks available
for hungry workers, which is practically always the case with declarative codes.17 For
AP, there is no good way to mitigate its worst-case behavior.

9.1. Space Bounds

Remember that the bound for stack space for vanilla work stealing (work stealing
without parallel loops) is P · S1, where P is the number of workers and S1 the stack
space needed by the sequential (depth-first) execution. It is important to note that the
bound is a function of the sequential space as we proceed to generalize the result in
the presence of parallel loops.

ALGORITHM 4: Generic Parallel Loop

forall the i ∈ {1, . . . , N} do

CODE(i) ; // Performs O
�

k
�

work sequentially

end

Let us assume a generic parallel loop with N iterations (tasks), such as the one shown
in Algorithm 4. Work-first work stealing creates a single TD per loop and therefore the
P ·S1 bound still holds, ignoring O(1) terms. Help-first work stealing starts by creating
N TDs, one for each iteration. Thus, the space needed is P · S1 + O(N). EBS with
SP will recursively split the iteration range, creating log N TDs, some of which will
be stolen and further split, so the space will be P · (S1 + O(logN/ P)). AP will only
create K · P chunks initially instead of N for SP; thefts can induce further splits into
V chunks, so the space requirement is P · (S1 + O(logmax(K, V))). Finally, all the lazy
scheduling approaches have a constant upper bound Bon the number of TDs per deque
(e.g., one TD per deque: B = 1); therefore, the original bound of P · S1 holds (with an
additional O(B · P) term). Table XVI summarizes these results, as well as the time

17In other words, long-running tasks may harm load balancing by preventing postponed tasks from becoming
available unless the work-pool is polled mid-task.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:40 A. Tzannes et al.

Table XVI. Space and Time Bounds for Generic Parallel Loop

Scheduler Space Time

Work-First P · S1 T1/ P + T∞ + O(N)
Help-First P · S1 + O(N) T1/ P + T∞ + O(N)
Simple-Partitioner P · S1 + P · O(log N/ P) T1/ P + T∞ + O(logN)
Auto-Partitioner P · S1 T1/ P + T∞ + O(log P)
Lazy Scheduling (starved) P · S1 T1/ P + T∞ + O(log P)
Lazy Scheduling (busy) P · S1 T1/ P + T∞

bounds discussed hereafter. For AP and lazy scheduling, we have dropped the K, V ,
and B terms since they are typically small constants.

9.2. Time Bounds

The time bound for vanilla work stealing is T1/ P + O(T∞), where T1 is the work (i.e.,
the time taken by sequential execution of the parallel code) and T∞ is the depth (i.e.,
length of the critical path). For the generic loop of Algorithm 4, for example, T∞ is the
length of the longest of its N tasks.

Table XVI shows the time bounds aswell.Work-first work stealing has to sequentially
remove the N tasks from the single TD (which is never split), so the time bound has an
additional O(N) term. Help-first work stealing starts by creating N TDs before even
executing the first task, so it also incurs an added O(N) on the critical path. SP has a
logarithmic overhead for the same reason. AP also has a logarithmic overhead but in
K · P instead of N. The behavior of lazy scheduling depends on whether the system is
starved or full. In the first case, lazy scheduling stops creating TDs as soon as thefts
stop and the deque is above a threshold size; in other words, after at most O(B+ log P)
time, to account for distributing in-parallel TDs to all P workers in log P rounds and for
filling the B slots of the deque thereafter. In the second case, where thefts do not occur
(e.g., for a nested parallel loop when parallelism from outer scopes provided workers
with enough work), lazy scheduling does not incur any overhead on the critical path.
These two cases appear as distinct rows of Table XVI.

Overall, lazy scheduling has the best bounds, both for space and for time, whereas
the EBS approaches (SP and AP) are the next best.

Note that the time bounds for AP and lazy scheduling hold only if the work of all
tasks in the parallel loop is of the same order of magnitude. In the worst case, if an
adversary picked the computational cost of each task in the loop, the time bounds for
AP and lazy scheduler degrade, as discussed next.

9.3. Worst-Case Scenario for Auto-Partitioner

For AP, imagine that the first chunk of tasks (N
KP

tasks) of a parallel loop contains O(W)
work per task, whereas all of the other tasks have practically no work (i.e., O(1)). The
depth will be T∞ = W, and, because the first chunk will contain N/ KP tasks, the total
work will be:

T1 = W ·
N

KP
+

�

N −
N

KP

�

= (W + KP − 1)
N

KP
.

However, since AP will execute all N/ KP tasks as a single chunk, its critical path
will be W ·N/ KP, which is N/ KP times longer than the critical path of the given code.

9.4. Worst-Case Scenarios for Lazy Scheduling

In this section, we show how the running time of very long tasks may, if not prop-
erly handled, reduce the amount of parallelism accessible by idle workers, resulting in

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:41

longer critical paths (and execution times). For lazy scheduling, we present two scenar-
ios: a flat one with a single parallel loop and a nested one with recursive parallelism and
a parallel loop at the leaf of the recursion. For the flat one, the critical path increases
by a logarithmic factor, and, for the nested one, it increases by an arbitrary factor g(N)
under specific conditions. In both cases, long-running tasks prevent postponed tasks
from becoming available to idle workers in a timely manner. There are several possible
solutions:

—The scheduler could share all postponed tasks before executing a long task. Long
tasks can be identified either naively (e.g., tasks with loops, I/O, etc.), by using
an interprocedural cost estimation pass, or by manual user annotations. In TBB,
for example, it is possible to select a different scheduler per loop, allowing us to
schedule coarse-grained loops using eager scheduling and fine-grained ones using
lazy scheduling.

—A compiler could inject work-pool polling in long tasks.
—Lightweight interrupts or hardware support for core-to-core signaling (e.g., Sanchez

et al. [2010]) could trigger a remote function call to request that more postponed
tasks be shared.

Flat Scenario. Assume worker A starts executing a parallel loop with N tasks
whose first logN tasks have W (N) work, and the rest have O(1). Also, assume that we
stop pushing work onto a deque if it is not empty (the size threshold is one) and that
thefts happen more slowly than checking the deque size after pushing a TD. Worker A
will push a TD with half the tasks onto its deque and start executing the first of the
“thick” W(N) tasks. In the meantime, all of the N/ 2 “thin” O(1) tasks are split among
the remaining workers and executed before worker A completes its first thick task.
This means that W(N) ∈ �(N).18 After executing its thick task, worker Awill find its
deque empty, push a TD with half of the remaining tasks, and start executing the next
thick task. Once again, the N/ 4 thin tasks are split and executed by the remaining
workers, and so on for logN rounds. Therefore, worker A will execute O(W (N)) logN
work, which is log N times longer than the critical path of the original parallel loop.

Lazy scheduling is better than AP in the worst-case flat scenarios because its critical
path increases by a logarithmic factor, instead of a linear one.

Nested Scenario. Algorithm 5 shows a synthetic code that forces all N tasks of
a parallel loop to execute on a single worker with BF-LS, while all other workers are
practically idle. Assume we call function barwith depth=0on worker A. While depth <

N, it spawns off in a new task function foo, which does nothing (i.e., foo(x) ∈ O(1)),
and it calls itself recursively with a depth incremented by one.19 When depth = N,
bar finally executes the parallel loop. Assume no thefts have occurred until worker
A starts executing the first of the N iterations.20 At that point, worker A has task
foo(1) on its deque, and tasks foo(2), . . . ,foo(N)are postponed. While Aexecutes that
first iteration, worker B steals foo(1) and executes it. Worker A notices the theft and
pushes foo(2) before executing the second iteration, and so on. Eventually, worker
A has executed all N iterations of the parallel loop while worker B has executed N
dummy tasks, and all other workers have remained idle.

18More precisely, W (N) ∈ �(log P + N
2P), which for N ≫ P gives W (N) ∈ �(N).

19Here, we assume a help-first scheduling order for parallel function calls, which means that the worker
that calls barwill fork off the computation of foo and execute the recursive bar invocation. With work-first,
we would have to first spawn bar then call foo to get the same effect.
20Alternatively, assume that a recursive call of bar is faster than a theft; then, for some constant c > 1 at
recursive depth c · N worker Awill have N postponed tasks.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:42 A. Tzannes et al.

ALGORITHM 5: Recursive Synthetic Scenario

foo (depth) begin
does nothing

end

bar(depth)
begin

if depth < N then
spawn foo (depth +1);
bar (depth +1);
sync ;

else
forall the i ∈ {1, . . . , N} do

CODE(i) ; // Performs O(f (N)) work sequentially

end

end

end

Assuming each parallel iteration is sequential and has f (N) work, the critical path of
bar(0) is T∞ = N+ f (N), and its work is T1 = 2N+N · f (N). The BF-LS schedule takes
N + N · f (N) time. For any function f (N) ∈ �(N), the critical path of the computation
is in O(f (N)) but that of BF-LS is in O(N · f (N)).

We can further generalize this example by having g(N) iterations (and recursive
depth) instead of N. The critical path becomes T∞ = g(N) + f (N), and the work
T1 = 2g(N) + g(N) · f (N). The BF-LS schedule takes g(N) + g(N) · f (N) time, and, for
any function f (N) ∈ �(g(N)), the critical path of the computation is O(f (N)), but that
of BF-LS is O(g(N) · f (N)).

This says that the critical path of a lazy schedule may asymptotically increase if the
complexity of tasks (f (N)) is at least of the same order of magnitude as the number
of tasks (g(N)). In other words, to avoid this situation, the time between two deque-
checks (the inverse of the polling frequency) should be small relative to the available
parallelism. In our implementation, the time between two deque checks is the same as
the task granularity, so the task granularity should be small relative to the number of
tasks. This is a good guideline, and it has been the case in all codeswe have encountered.
For matrix multiplication, for example, where each cell of the result array is evaluated
in parallel, we have N2 parallelism and �(N) task granularity. If we only had one task
per row of the result array, we would have N parallelism and �(N2) granularity, which
would cross into the danger zone for lazy scheduling. In this example, however, because
all tasks have the same granularity, lazy scheduling is unlikely to suffer imbalance
penalties.

One optimization that lazy schedulers could implement is to push half of their post-
poned tasks, which may originate from different (dynamic) spawn sites and therefore
be stored in multiple TDs. This follows in spirit our lazy scheduling implementation for
the UTS benchmark and also the steal-half approach proposed by Hendler and Shavit
[2002].

10. RELATED WORK

In this section, we present previous work on two types of schedulers: (1) schedulers
that support parallel function calls or futures but not parallel loops and (2) schedulers
that explicitly support parallel loops. Then, we present work on throttling parallelism,

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:43

coarsening parallelism at runtime to minimize overheads, and more related work on
scheduling.

10.1. Schedulers without Parallel Loop Support

These approaches do not explicitly support parallel loops; instead, they introduce par-
allelism through function calls or futures, one task at a time. Handling of parallel loops
explicitly opens optimization opportunities not available to parallel function calls be-
cause loops create many tasks simultaneously, instead of one at a time. Multiple tasks
can be packaged into a single TD, thus greatly reducing the number of deque trans-
actions and leading to much better performance. Work stealers that do not explicitly
support parallel loops miss these optimization opportunities and deliver inferior per-
formance. This explains why EBS (AP and SP) is our primary competitor because it
explicitly supports parallel loops. Nevertheless, methods for parallel function calls are
outlined here because they were the first results on work stealing and made it popular.

Work stealing has become popular in part because of its efficient implementation
in the Cilk programming language [Frigo et al. 1998]. The Cilk compiler creates two
clones of functions, a fast and a slow one. The fast one simply skips the synchronization
of a task with its continuation if they both execute on the same worker (i.e., the
continuation is not stolen). The slow clone is executed if the task is stolen andmay have,
therefore, executed concurrently with one of its siblings or children. This optimization
is orthogonal to our proposed lazy scheduling, and the two should be combined for
optimal performance. Cilk [Frigo et al. 1998] was designed for parallel function calls
(i.e., relatively coarse-grained parallelism), however, and it is not optimized for parallel
loops. Other approaches that focus on coarser parallelism, such as parallel function calls
and futures [Kranz et al. 1989; Mohr et al. 1990; Goldstein et al. 1996; Taura et al.
1999], have the same limitations.

Arora et al. [1998] propose a nonblocking implementation of work stealing that is
well suited for multiprogrammed systems. Their approach suffers from deque over-
flows, which can cause the program to crash. Two other approaches [Chase and Lev
2005; Hendler et al. 2006] propose complicated solutions to the overflow problem. Lazy
scheduling sidesteps the problem of overflowing the deques since it will stop push-
ing task descriptors on a deque that exceeds a threshold size. Therefore, deques are
implemented as constant-size circular arrays, and overflow is not an issue.

Acar et al. [2000] describe a method to improve the locality of work stealing. This
approach is implemented in TBB [Robison et al. 2008] and called Affinity-Partitioner
(AfP). We also compared our solutions to AfP and found it to be slower than AP on av-
erage, which is why we excluded it from the presentation. In fact, we also implemented
a lazy version of AP and AfP, but they were also slower than our proposed solution,
BF-LS. We believe the reason is that lazy scheduling relies on frequent deque checks
to push work for hungry workers, as we argued in Section 9.4, but AP and AfP coarsen
tasks into large chunks, which prevents frequent checks.

Hendler and Shavit [2002] propose stealing half the TDs of a deque instead of just one
in order to better spread the work across the system, and they prove good theoretical
bounds for load balance. Their approach is not applicable to lazy scheduling because,
unless a higher size threshold is selected, each deque will have at most one (or two) TDs
at all times. In our experience, picking a higher threshold is detrimental to performance.
However, in the case of parallel loops, in which binary splitting (lazy or eager) starts by
pushing a TD with half the tasks on the deque, one could say that Hendler’s advice to
steal half of the remaining tasks is heeded. The lazy aspect of scheduling is an added
benefit in addition to the binary splitting.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:44 A. Tzannes et al.

10.2. Schedulers with Parallel Loop Support

When we began this work, the only work stealing schedulers that explicitly supported
parallel loops were TBB’s SP) and AP [Robison et al. 2008], which is why they were
the focus of our comparisons. To use SP, the programmer is expected to determine a
good value for the sst of each parallel loop by trying out various values. Moreover, this
fixed threshold limits the performance portability of the code to a different number
of cores, datasets, and contexts. Lazy scheduling frees the programmer from choosing
a threshold manually and adapts to runtime conditions to avoid excessive splitting,
without falling behind on performance. AP does not require programmer tuning, but it
still falls behind lazy scheduling because it lacks context portability because it does not
perform runtime adaptive coarsening; this can result in exposing excessive parallelism
to the runtime in the presence of nested parallelism.

Cilk++ [Leiserson 2009] implements EBS using the SP approach with a default
sst of one. This approach falls significantly behind lazy scheduling on code with fine-
grained parallelism due to scheduling overheads. CilkPlus is the latest reincarnation
of the Cilk language and follows the same approach as Cilk++ for parallel loops. Other
implementations of EBS SP for loops include Microsoft’s TPL [Leijen et al. 2009] and
Java ForkJoin [Lea 2000].

Guo et al. [2010] present a scheduler that adaptively chooses between two work
stealing approaches: work-first and help-first. In work-first, the worker picks the child
task and places its continuation on the deque, whereas in help-first, it places the child
task on the deque and executes the continuation. In the absence of parallel loops,
choosing between the two approaches is orthogonal to lazy scheduling. If parallel loops
are introduced, both approaches serialize parallelism creation and fork off work grain
tasks at a time. On the contrary, binary splitting approaches (eager or lazy) overcome
this serialization and create TDs with more tasks, thus improving the load-balancing
effect of thefts.

Bergstrom et al. [2010] combined lazy scheduling with zippers, an approach for
splitting trees, which is how arrays are represented in their functional programming
language. Their lazy tree splitting approach shows improved performance robustness
across their benchmark suite, compared to EBS with SP.

The rest of the schedulers in this subsection support parallel loops but not work
stealing. OpenMP starting with version 3.0 [OpenMPArchitecture Review Board 2008]
recognizes the need for nested parallelism by providing primitives, but whether nesting
is truly supported is often implementation specific. Frequently, OpenMP implementa-
tions serialize inner parallelism, which has serious performance limitations [Ayguade
et al. 1999; Bücker et al. 2004; Tzannes et al. 2010; Tzannes 2012a].

The nano-threads library supports nested parallelism [Martorell et al. 1999] and
can be used for OpenMP, but uses a ready queue or a hierarchical ready queue
[Nikolopoulos et al. 1998] for scheduling, both of which can have an arbitrarily higher
memory footprint than work stealing. Additionally, access to the head or tail of a queue
must be synchronized among all threads (i.e., workers), and a hierarchical ready queue
(a tree of queues) has a single enqueue point—the root—and it requires multiple oper-
ations to get work to the leaves, where it is dequeued. This makes them unsuitable for
our goal of supporting declarative fine-grained parallelism.

Duran et al. [2005] propose a system that assigns processors to tasks by instrument-
ing the code and getting runtime statistics to refine the distribution. They assume,
however, that the programmer has coarsened the outer parallelism into ngroups (sim-
ilar to setting the sst) and has also defined the grain size (sst) of the inner parallelism.
Lazy scheduling does not need to collect runtime statistics and does not place the
burden of coarsening on the programmer.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:45

NESL [Blelloch et al. 1993] employs complex compiler transformations to support
nested parallelism by flattening [Blelloch and Sabot 1990]. NESL is an interpreted
functional language without side effects, which limits its scope. Moreover, it is unclear
if good performance can be achieved since only three benchmarks are evaluated (only
one with nested parallelism) on three architectures, and, in most cases, their approach
falls behind native code for these machines. The claim is that much better performance
will be achieved if the language is compiled instead of interpreted, but we are unaware
of a study quantifying this claim. The approach of flattening nested parallelism seems
less fit formultithreaded platforms, such as the ones that work stealing targets, because
it effectively tries to make some of the runtime scheduling choices at compile-time, with
the limited information it has available, so as to partition the computation as evenly as
possible among the processing units. Flattened code is, however, particularly important
for the vector machines that were the basis of most supercomputers throughout the
1980s and into the ’90s, when this work was published.

10.3. Parallelism Throttling

Kranz et al. [1989] and Certner et al. [2008] have also used runtime conditions to
decide between creating more parallelism or executing work serially, but they rely on
maintaining extra state (e.g., a global counter), which creates a memory hot-spot and
does not scalewell.Moreover, these approachesmake irrevocable serialization decisions
that may hurt load balancing. Lazy scheduling only postpones exposing parallelism to
other workers and runs one or ppt tasks before checking the system load again.

Duran et al. [2008] propose an interesting way to limit the creation of excessive
parallelism, which is not related to scheduling. In fact, they experiment with several
schedulers to show that their method works well with all of them. They inject code
that collects statistics about the amount of work of different procedures as a function
of the depth (of the call-stack) at which they are called. When enough statistics have
been collected, they turn off this profiling and use the information to decide which
procedures to serialize and at what depth. Given a recursive parallel procedure such
as quicksort, their approach will decide at which depth of the recursion to start calling
a serial version of quicksort. This approach is orthogonal to lazy scheduling because
it does not solve the need to schedule the work, and it can be applied on top of it. In
fact, our coarsened recursively nested benchmarks (TSP and NQUEENS) have coarse
versions with manual parallelism cutoff that achieves the same performance benefits
as Duran’s scheme. As our results show, even for these benchmarks, lazy scheduling
(BF-LS) was able to match or exceed the performance achieved with eager schedulers.
It is important to note, however, that parallelism cutoff is only applicable to certain
programs.

Acar et al. [2011] propose oracle scheduling, a combination of static and dynamic
techniques for managing the granularity of parallelism to minimize the scheduling
overheads of work stealing without adversely reducing parallelism. Oracle scheduling
relies on annotating every function with its asymptotic complexity, and it estimates
its constant factors by means of runtime profiling. Using this information, it achieves
significant performance improvements by deciding at runtime whether to serialize a
task (and all of its subtasks). Combining their approach with ours to create lazy oracle
scheduling would achieve the best of both approaches: lazy scheduling would reduce
the annotation burden on the programmer21 by efficiently executing more fine-grained
tasks, and it would allow programmers to enable the dynamic coarsening of oracle
scheduling on fine-grained recursive functions simply by annotating them.

21We assume that functions that are not annotated do not benefit from oracle scheduling but do benefit from
lazy scheduling.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:46 A. Tzannes et al.

10.4. Other Schedulers

Vandierendonck et al. [2011] present a unified scheduler for both fork-join and dataflow
parallelism, which simplifies programming of pipeline parallelism, which is not al-
ways natural or efficient with most platforms using work stealing. Sanchez et at.
[2011] present an adaptation of work stealing for fine-grained and irregular pipeline
parallelism.

Wen et al. [Wen and Vishkin 2008; Wen 2008] propose the eXplicit Multi-Threading
(XMT) architecture as a programmable parallel platform aimed at single-task comple-
tion time. XMT offers hardware primitives that allow fast, constant-time scheduling
of outer parallelism. The hardware prefix-sum unit combines and serves simultane-
ous work requests from workers in unit time, and a special instruction helps detect the
global termination of a parallel section, which triggers a return to sequential execution.
XMT does not provide a one-size-fits-all hardware scheduler but rather primitives that
the compiler can harness creatively. For example, we implemented a hybrid hardware-
software scheduler using the XMT hardware for outer parallelism and detecting global
termination and software for scheduling inner parallelism lazily [Tzannes et al. 2010;
Tzannes 2012a].

Kumar et al. [2007] propose a hardware implementation of work stealing with a fall-
back on software when the hardware deques overflow.We agree that some architectural
support for scheduling or synchronization will be needed, but the proposed approach
relies on a central unit, which does not scale. Sanchez et al. [2010] seem to share our
opinion and propose Asynchronous Direct Messages (ADM), a lightweight core-to-core
messaging hardware mechanism that is fully virtualizable. Their scheduling algorithm
is super-eager because it tries to preemptively balance work among queues that are
not empty, thus requiring some cores to act solely as scheduling managers. ADMs can
cause a User-Level interrupt (ULI) to invoke a handler to receive or send a message.
Such a mechanism could be used in conjunction with lazy scheduling to remove the
need to poll the size of the work-pool: Theft attempts would use an ADM, which would
trigger an immediate response from the victim worker via ULI.

Acar et al. [2013] investigate two implementations of work stealing using private
deques and prove time bounds. Deques are not shared but private, leading to similar
savings in expensive shared queue transactions as with BF-LS. Instead, the victim is
responsible to answer theft requests (or to push work to hungry workers in the second
version of their algorithm), so their approach has the same sensitivity to long-running
tasks as lazy scheduling. Both could benefit from the ADMs described earlier, and both
have significant flexibility in how to share work (e.g., by sharing the oldest or newest
created tasks or by sharing half of the tasks in the private deque). Their approach
is still eager, incurring a log N overhead on the critical path, and hungry processors
always have to wait for a busy processor to send them work, but it avoids the log N
deque transactions incurred by lazy scheduling in the intermediate case discussed in
Section 4. Ideally, we think the scheduler should have private deques, be lazy (not
eagerly split ranges in the private deque into logN TDs), and use ADMs or compiler-
inserted deque polling to prevent long-running tasks from starving other workers.

Li et al. [2010] also propose a hardware scheduler, but not a work stealing one. It
assumes a mesh interconnect with a bounded-size task queue at each port. Tasks are
pushed away from the worker creating them “like a gas expands in space,” and tasks
are parallelized conditionally based on load conditions that are approximated by the
occupancy (size) of the local task queue. This is very similar in spirit to our approach
but requires hardware support and a point-to-point interconnect. Furthermore, their
approach may cause depth (priority) inversion, where a task of shallower nesting level
takes precedence over a task of deeper nesting created locally (i.e., depth-first execution

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:47

is not always followed). This inversion happens because tasks being migrated are
taken from the head (oldest) of the local queue and pushed onto the tail of the remote
queue. In addition to potentially affecting temporal locality, this may also lead to an
unbounded memory footprint by having a “mostly depth-first but sometimes breadth-
first” execution.

Shirako et al. [2009] present parallel loop transformations for statically chunking
parallel loops that contain synchronizations (e.g., barriers) that are illegal in the exe-
cution models of the languages we are focusing on, such as Cilk++, TBB, XMTC, and
others. This style of coding (i.e., parallel for-loop with barriers) is common in OpenMP
code, which traditionally targets clusters. On those parallel machines, locality of data
is muchmore important, and barriers allow the same workers to work on the same data
after synchronizing on a barrier. To achieve the same synchronization, we would use
consecutive parallel loops, but then tasks could dynamically map to different proces-
sors, thus losing the locality benefits of barriers. TBBactually has an affinity partitioner
that is a best-effort approach for mapping the same iteration subspace of consecutive
parallel loops to the same workers [Robison et al. 2008]. Shirako et al. do not make
clear the motivation of using unintuitive barriers in parallel loops and do not compare
to TBB’s AfP, but their use of well-known static transformations (strip mining, loop
interchange, loop unswitching, and loop distribution) to achieve static coarsening in
their complex execution model is nonetheless interesting.

Kumar et al. [2012] propose a series of dynamic (just-in-time) optimizations that
attempt to move as much of the work stealing overhead from the critical path of busy
workers to that of thieves. They rely on the stack-walk capabilities of the managed run-
time of Java (and X10) and achieve impressive results. Unfortunately, their techniques
are unlikely to transfer in some form to languages closer to the metal, like C/C++.

Finally, work stealing is starting to cross into distributed memory platforms with
several tweaks, such as hierarchies of deques to improve locality and reduce random-
ized cross-node thefts [Quintin and Wagner 2010; Min et al. 2011] or asynchronous
thefts [Li et al. 2013].

11. CONCLUSION

In this article, we presented lazy scheduling, a scheduling technique that adapts to
runtime load conditions in order to minimize scheduling overheads. We combined lazy
scheduling with work stealing, the most popular dynamic scheduling algorithm cur-
rently used for general-purpose shared-memory task-parallel programs, and we pre-
sented three variants of this lazy work stealing, BF-LS, DF-LS, and DF2-LS. We exper-
imented with these three variants, as well as with TBB’s AP on a set of benchmarks
on three different commercial multicores and showed that BF-LS has distinct perfor-
mance advantages on codes with fine-grained nested parallelism over AP, TBB’s default
scheduler. We also showed that DF-LS fails to scale to larger numbers of workers on
multicores and demonstrated that BF-LS is the most scalable of the three variants. In
terms of software performance optimality ratio, we found that BF-LS is significantly
better than AP, both on declarative and amortized codes. This allows programmers
to expose parallelism more liberally since finer task granularity can be efficiently ex-
ecuted, thus enhancing ease of programming and performance portability. We also
implemented a lazy variant of a custom scheduler for the UTS benchmark to demon-
strate how the principles of lazy scheduling can be applied to nonloop parallelism and
that they are successful in reducing scheduling overheads in that case as well. Finally,
we presented the time and space bounds of work-stealing variants (lazy and eager) for
parallel loops and constructed artificial scenarios to expose the worst-case behaviors

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:48 A. Tzannes et al.

of lazy scheduling and AP. The insight gained is that the frequency of deque checks
should be large relative to the program parallelism in order to avoid increasing the
critical path of lazy schedules.

REFERENCES

2008. Intel Threading Building Blocks Reference Manual, Rev. 1.9. (2008).

Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2000. The data locality of work stealing. In Proceed-
ings of the 12th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’00). ACM,
New York, NY, 1–12. DOI:http://dx.doi.org/10.1145/341800.341801

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2011. Oracle scheduling: Controlling granularity
in implicitly parallel languages. In Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA’11). ACM, New York, NY, 499–
518. DOI:http://dx.doi.org/10.1145/2048066.2048106

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2013. Scheduling parallel programs by work stealing
with private deques. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. ACM, New York, NY, 219–228.

George S. Almsasi and Allan Gottlieb. 1994. Highly Parallel Computing (2nd ed.). Benjamin/Cummings.

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 1998. Thread scheduling for multiprogrammed
multiprocessors. In Proceedings of the 10th Annual ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA’98). ACM, New York, NY, 119–129. DOI:http://dx.doi.org/10.1145/277651.277678

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands, Kurt
Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams, and
Katherine A. Yelick. 2006. The Landscape of Parallel Computing Research: A View from Berkeley.
Technical Report UCB/EECS-2006-183. EECS Department, Berkeley. Available at http://www.eecs.
berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.

Eduard Ayguade, Xavier Martorell, Jesus Labarta, Marc Gonzalez, and Nacho Navarro. 1999. Exploiting
multiple levels of parallelism in OpenMP: A case study. In Proceedings of the 1999 International Confer-
ence on Parallel Processing (ICPP’99). IEEE Computer Society, Washington, DC.

Lars Bergstrom, Mike Rainey, John Reppy, Adam Shaw, and Matthew Fluet. 2010. Lazy tree splitting. In
Proceedings of the 15th International Conference on Functional Programming (ICFP’10).

Guy Blelloch and Gary W. Sabot. 1990. Compiling collection-oriented languages onto massively parallel
computers. Journal of Parallel and Distributed Computing 8 (1990), 119–134.

Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee, Jay Sipelstein, and Marco Zagha. 1993.
Implementation of a portable nested data-parallel language. In Proceedings of the 4th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPOPP’93). ACM, New York, NY,
102–111. DOI:http://dx.doi.org/10.1145/155332.155343

Robert D. Blumofe and Charles E. Leiserson. 1999. Schedulingmultithreaded computations by work stealing.
Journal of the ACM 46, 5 (Sept. 1999), 720–748. DOI:http://dx.doi.org/10.1145/324133.324234

H. Martin Bücker, Arno Rasch, and Andreas Wolf. 2004. A class of OpenMP applications involving nested
parallelism. In Proceedings of the 2004 ACM Symposium on Applied Computing (SAC’04). ACM,
New York, NY, USA, 220–224. DOI:http://dx.doi.org/10.1145/967900.967948

F.Warren Burton andM. Ronan Sleep. 1981. Executing functional programs on a virtual tree of processors. In
Proceedings of the 1981 Conference on Functional Programming Languages and Computer Architecture
(FPCA’81). ACM, New York, NY, 187–194. DOI:http://dx.doi.org/10.1145/800223.806778

Olivier Certner, Zheng Li, Pierre Palatin, Olivier Temam, Frederic Arzel, and Nathalie Drach. 2008.
A practical approach for reconciling high and predictable performance in non-regular parallel programs.
In Proceedings of the Conference on Design, Automation and Test in Europe (DATE’08). ACM, New York,
NY, 740–745. DOI:http://dx.doi.org/10.1145/1403375.1403555

David Chase and Yossi Lev. 2005. Dynamic circular work-stealing deque. In Proceedings of the 17th Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’05). ACM, New York, NY, 21–
28.

CilkPlus. 2011. Homepage. Available at http://software.intel.com/en-us/articles/intel-cilk-plus/.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to
Algorithms (3rd ed.). The MIT Press.

Timothy A. Davis and Yifan Hu. 2011. The University of Florida sparse matrix collection. ACM Transac-
tions on Mathematical Software 38, 1, Article 1 (Dec. 2011), 25 pages. DOI:http://dx.doi.org/10.1145/
2049662.2049663

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:49

Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. 2008. An adaptive cut-off for task parallelism. In
SC’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. IEEE Press, 36:1–36:11.

Alejandro Duran, Marc Gonzàlez, and Julita Corbalán. 2005. Automatic thread distribution for nested
parallelism in OpenMP. In Proceedings of the 19th Annual International Conference on Supercomputing
(ICS’05), 121–130.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The implementation of the Cilk-5 multi-
threaded language. In Proceedings of the Conference on Programming Language Design and Implemen-
tation (PLDI’98), 212–223.

Seth Copen Goldstein, Klaus Erik Schauser, and David E. Culler. 1996. Lazy threads: Implementing a fast
parallel call. Journal of Parallel and Distributed Computing 37, 1 (1996), 5–20. http://www.cs.cmu.edu/
∼seth/papers/goldstein96-jpdc.pdf

Yi Guo, Jisheng Zhao, V. Cave, and V. Sarkar. 2010. SLAW: A scalable locality-aware adaptive work-stealing
scheduler. In Proceedings of the 2010 IEEE International Symposium Parallel Distributed Processing.
1–12. DOI:http://dx.doi.org/10.1109/IPDPS.2010.5470425

Robert H. Halstead, Jr. 1984. Implementation of multilisp: Lisp on a multiprocessor. In Proceedings of the
1984 ACM Symposium on LISP and Functional Programming (LFP’84). ACM, New York, NY, 9–17.
DOI:http://dx.doi.org/10.1145/800055.802017

Danny Hendler, Yossi Lev, Mark Moir, and Nir Shavit. 2006. A dynamic-sized nonblocking work steal-
ing deque. Distributed Computing 18, 3 (February 2006), 189–207. DOI:http://dx.doi.org/10.1007/
s00446-005-0144-5

Danny Hendler and Nir Shavit. 2002. Non-blocking steal-half work queues. In Proceedings of the 21st
Annual Symposium on Principles of Distributed Computing (PODC’02). ACM, New York, NY, 280–289.
DOI:http://dx.doi.org/10.1145/571825.571876

D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. 1989. Mul-T: A high-performance parallel Lisp. In Proceed-
ings of the ACM SIGPLAN 1989 Conference on Programming Language Design and Implementation
(PLDI’89). ACM, New York, NY, 81–90. DOI:http://dx.doi.org/10.1145/73141.74825

Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. 2007. Carbon: Architectural support for
ed parallelism on chip multiprocessors. In Proceedings of the 34th Annual International Symposium
on Computer Architecture (ISCA’07). ACM, New York, NY, 162–173. DOI:http://dx.doi.org/10.1145/
1250662.1250683

Vivek Kumar, Daniel Frampton, Stephen M. Blackburn, David Grove, and Olivier Tardieu. 2012. Work-
stealing without the baggage. In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA’12). ACM, New York, NY, USA, 297–314.
DOI:http://dx.doi.org/10.1145/2384616.2384639

Doug Lea. 2000. A Java fork/join framework. In Proceedings of the ACM 2000 Conference on Java Grande
(JAVA’00). ACM, New York, NY, 36–43. DOI:http://dx.doi.org/10.1145/337449.337465

Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. 2009. The design of a task parallel library. In
Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Lan-
guages and Applications (OOPSLA’09). ACM, New York, NY, 227–242. DOI:http://dx.doi.org/10.1145/
1640089.1640106

Charles E. Leiserson. 2009. The Cilk++ concurrency platform. In Proceedings of the 46th Annual De-
sign Automation Conference (DAC’09). ACM, New York, NY, 522–527. DOI:http://dx.doi.org/10.1145/
1629911.1630048

Shigang Li, Jingyuan Hu, Xin Cheng, and Chongchong Zhao. 2013. Asynchronous work stealing on dis-
tributed memory systems. In Proceedings of the 2013 21st Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP’13). 198–202. DOI:http://dx.doi.org/10.1109/
PDP.2013.35

Zheng Li, Olivier Certner, Jose Duato, and Olivier Temam. 2010. Scalable hardware support for condi-
tional parallelization. In Proceedings of the 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT’10). ACM, New York, NY, 157–168. DOI:http://dx.doi.org/10.1145/
1854273.1854297

Xavier Martorell, Eduard Ayguadé, Nacho Navarro, Julita Corbalán, Marc González, and Jesús Labarta.
1999. Thread fork/join techniques for multi-level parallelism exploitation in NUMA multiprocessors. In
Proceedings of the 13th International Conference on Supercomputing (ICS’99). 294–301.

Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. 2009. Idempotent work stealing. In Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’09).
ACM, New York, NY, USA, 45–54. DOI:http://dx.doi.org/10.1145/1504176.1504186

S. Min, C. Iancu, and K. Yelick. 2011. Hierarchical work stealing on manycore clusters. In 5th Conference on
Partitioned Global Address Space Programming Models.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

10:50 A. Tzannes et al.

Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. 1990. Lazy task creation: A technique for increasing
the granularity of parallel programs. InProceedings of the 1990 ACMConference on LISP and Functional
Programming (LFP’90). ACM, New York, NY, 185–197. DOI:http://dx.doi.org/10.1145/91556.91631

Dorit Naishlos, Joseph Nuzman, Chau-Wen Tseng, and Uzi Vishkin. 2001. Towards a first vertical proto-
typing of an extremely fine-grained parallel programming approach. In Proceedings of the 13th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA’01). ACM, New York, NY, USA, 93–
102. DOI:http://dx.doi.org/10.1145/378580.378597

Dorit Naishlos, Joseph Nuzman, Chau-Wen Tseng, and Uzi Vishkin. 2003. Towards a first vertical prototyp-
ing of an extremely fine-grained parallel programming approach. Theory of Computing Systems 36, 5
(2003), 521–552. DOI:http://dx.doi.org/10.1007/s00224-003-1086-6

Dimitrios S. Nikolopoulos, Eleftherios D. Polychronopoulos, and Theodore S. Papatheodorou. 1998. Efficient
runtime thread management for the nano-threads programming model. In Proceedings of the 2nd IEEE
IPPS/SPDP Workshop on Runtime Systems for Parallel Programming, LNCS. 183–194.

Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sadayappan, and Chau-Wen Tseng. 2007.
UTS: An unbalanced tree search benchmark. In Proceedings of the 19th International Conference on
Languages and Compilers for Parallel Computing (LCPC’06). Springer-Verlag, Berlin, 235–250.

OpenMP Architecture Review Board. 2008. OpenMP Application Program Interface, Ver. 3.0 May 2008.
Available at http://www.openmp.org.

Jean-Noël Quintin and Frédéric Wagner. 2010. Hierarchical work-stealing. In Proceedings of the 16th In-
ternational Euro-Par Conference on Parallel Processing: Part I (EuroPar’10). Springer-Verlag, Berlin,
217–229.

A. Robison, M. Voss, and A. Kukanov. 2008. Optimization via reflection on work stealing in TBB.
In Proceedings of the IEEE International Symposium on Parallel and Distributed Processing. 1–8.
DOI:http://dx.doi.org/10.1109/IPDPS.2008.4536188

Daniel Sanchez, David Lo, Richard M. Yoo, Jeremy Sugerman, and Christos Kozyrakis. 2011. Dynamic fine-
Grain scheduling of pipeline parallelism. In Proceedings of the 2011 International Conference on Parallel
Architectures and Compilation Techniques (PACT’11). IEEE Computer Society, Washington, DC, 22–32.
DOI:http://dx.doi.org/10.1109/PACT.2011.9

Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis. 2010. Flexible architectural support for fine-
grain scheduling. In Proceedings of the 15th Edition of ASPLOS on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’10). ACM, New York, NY, 311–322.
DOI:http://dx.doi.org/10.1145/1736020.1736055

Jun Shirako, Jisheng M. Zhao, V. Krishna Nandivada, and Vivek N. Sarkar. 2009. Chunking parallel loops in
the presence of synchronization. In Proceedings of the 23rd International Conference on Supercomputing
(ICS’09). ACM, New York, NY, 181–192. DOI:http://dx.doi.org/10.1145/1542275.1542304

Kenjiro Taura, Kunio Tabata, and Akinori Yonezawa. 1999. StackThreads/MP: Integrating futures into call-
ing standards. InProceedings of the 7thACMSIGPLANSymposium on Principles and Practice of Parallel
Programming (PPoPP’99). ACM, New York, NY, 60–71. DOI:http://dx.doi.org/10.1145/301104.301110

Alexandros Tzannes. 2012a.Enhancing Productivity andPerformance Portability of General-Purpose Parallel
Programming. Ph.D. Dissertation. University of Maryland, College Park.

Alexandros Tzannes. 2012b. Segmentation fault with recursively nested parallelism (gcc snapshot). Intel
Cilk Plus User Forum. Available at http://software.intel.com/en-us/forums/intel-cilk-plus/.

Alexandros Tzannes. 2013a. Code and datasets for all benchmarks presented in this article (TBB & UTS).
Available at https://github.com/atzannes/TBBBenchmarks.

Alexandros Tzannes. 2013b. Implementation of Lazy TBB. https://github.com/atzannes/LazyTBB-v3.0.
(2013).

Alexandros Tzannes, G. C. Caragea, R. Barua, and U. Vishkin. 2010. Lazy binary-splitting: A run-time
adaptive work-stealing scheduler. In Proceedings of the Symposium on Principles and Practice of Parallel
Programming. ACM, 179–190.

UTSproject. 2007. The Unbalanced Tree Search Benchmark. Available at http://sourceforge.net/p/uts-
benchmark/wiki/Home/.

Hans Vandierendonck, George Tzenakis, and Dimitrios S. Nikolopoulos. 2011. A unified scheduler for re-
cursive and task dataflow parallelism. In Proceedings of the 2011 International Conference on Parallel
Architectures and Compilation Techniques (PACT’11). IEEE Computer Society, Washington, DC, 1–11.
DOI:http://dx.doi.org/10.1109/PACT.2011.7

Uzi Vishkin. 2011. Using simple abstraction to reinvent computing for parallelism. Communications of the
ACM 54 (Jan. 2011), 75–85. Issue 1. DOI:http://dx.doi.org/10.1145/1866739.1866757

Uzi Vishkin, Shlomit Dascal, Efraim Berkovich, and Joseph Nuzman. 1998. Explicit multi-threading (XMT)
bridging models for instruction parallelism (extended abstract). In Proceedings of the 10th Annual ACM

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative Parallelism 10:51

Symposium on Parallel algorithms and architectures (SPAA’98). ACM, New York, NY, USA, 140–151.
DOI:http://dx.doi.org/10.1145/277651.277680

Xingzhi Wen. 2008. Hardware Design, Prototyping and Studies of the Explicit Multi-Threading (XMT)
Paradigm. Ph.D. Dissertation. University of Maryland, College Park.

Xingzhi Wen and Uzi Vishkin. 2008. FPGA-based prototype of a PRAM-on-chip processor. In Proceedings of
the 2008 Conference on Computing Frontiers (CF’08). 55. DOI:http://dx.doi.org/10.1145/1366230.1366240

Received October 2012; revised December 2013; accepted January 2014

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 3, Article 10, Publication date: August 2014.

