
FPGA-Based Prototype of a PRAM-On-Chip Processor

Xingzhi Wen , Uzi Vishkin
University of Maryland Institute for Advanced Computer Studies (UMIACS)

Electrical and Computer Engineering, University of Maryland
College Park, Maryland, USA

hsmoon@umd.edu, vishkin@umd.edu

ABSTRACT
PRAM (Parallel Random Access Model) has been widely
regarded a desirable parallel machine model for many years,
but it is also believed to be “impossible in reality.” As
the new billion-transistor processor era begins, the eXplicit
Multi-Threading (XMT) PRAM-On-Chip project is attempt-
ing to design an on-chip parallel processor that efficiently
supports PRAM algorithms. This paper presents the first
prototype of the XMT architecture that incorporates 64 sim-
ple in-order processors operating at 75MHz. The micro-
architecture of the prototype is described and the perfor-
mance is studied with respect to some micro-benchmarks.
Using cycle accurate emulation, the projected performance
of an 800MHz XMT ASIC processor is compared with AMD
Opteron 2.6GHz, which uses similar area as would a 64-
processor ASIC version of the XMT prototype. The results
suggest that an only 800MHz XMT ASIC system outper-
forms AMD Opteron 2.6GHz, with speedups ranging be-
tween 1.57 and 8.56.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]

General Terms
Algorithms Design Performance

Keywords
Parallel Algorithms, PRAM, On-chip parallel processor, Ease-
of-programming, Explicit multi-threading, XMT

1. INTRODUCTION
The eXplicit Multi-Threading1 (XMT) on-chip general-

purpose computer architecture is aimed at the classic goal
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of reducing single task completion time. XMT is a paral-
lel algorithmic architecture in the sense that: (i) it seeks
to provide good performance for parallel programs derived
from Parallel Random Access Machine/Model (PRAM) al-
gorithms, and (ii) it offers methodology for advancing from
PRAM algorithms to XMT programs, along with a perfor-
mance metric and its empirical validation [27]. Ease of paral-
lel programming is now widely recognized as the main stum-
bling block for extending commodity computer performance
growth (e.g., using multi-cores). XMT provides a unique
answer to this challenge. A 64-processor, 75MHz computer
based on field-programmable gate array (FPGA) technology
was built at the University of Maryland (UMD). A brief an-
nouncement [29], which reported this first commitment to
silicon of XMT, was a preamble to the current paper. Six
additional kernel benchmarks are added to the test suite
and the performance of an 800MHz XMT ASIC version is
projected using cycle accurate emulation. The XMT con-
cept was introduced in [28]. An architecture simulator and
speed-up results on several kernels were reported in [21].
The new computer is a significant milestone for the broad
PRAM-On-Chip project at UMD. In fact, contributions in
the current paper include several stages since SPAA’01 [21]:
completion of the design using a hardware description lan-
guage (HDL), synthesis into gate level netlist, as well as
validation of the design in real hardware.

Discussion of the broader goals of XMT are deferred to the
closing section at the end of this article. These goals are to
address the current need for a general-purpose on-chip par-
allel computer architecture, which: (i) is easy to program;
(ii) gives good performance with any amount of parallelism
provided by the algorithm; namely, up-and down-scalability
including backwards compatibility on serial code; (iii) sup-
ports application programming (in standard application lan-
guages, such as VHDL/Verilog, OpenGL, MATLAB); and
(iv) fits current chip technology and scales with it.

PRAM
The PRAM virtual model of computation is a generaliza-
tion of the Random Access Machine (RAM) model, the ba-
sic sequential model exposed to programmers in traditional
programming languages, that assumes that any memory ac-
cess or any (logic, or arithmetic) operation takes unit time.
The PRAM assumes that any number of concurrent accesses
to a shared memory take the same time as a single ac-
cess. In the Arbitrary Concurrent-Read Concurrent-Write
(CRCW) PRAM concurrent access to the same memory lo-
cation for reads or writes are allowed. Reads are resolved



before writes and an arbitrary write unknown in advance
succeeds. Design of an efficient parallel algorithm for the
Arbitrary CRCW PRAM model would seek to optimize the
total number of operations the algorithms perform (“work”)
and its parallel time (“depth”) assuming unlimited hard-
ware. Given such an algorithm, an XMT program is writ-
ten in XMTC, which is a modest single-program multiple-
data (SPMD) multi-threaded extension of C that includes
3 commands: Spawn, Join and PS, for Prefix-Sum; PS is
a Fetch-and-Add/Increment-like command. The program
seeks to optimize: (i) the length of the (longest) sequence
of round trips to memory (LSRTM), (ii) queuing delay to
the same shared memory location (known as QRQW), and
(iii) work and depth (as per the PRAM model). Optimizing
these ingredients is a responsibility shared in a subtle way
between the architecture, the compiler, and the program-
mer/algorithm designer, where the latter (the role of the
programmer) is expected to decline as XMT matures. See
also [27]. For example, the XMT memory architecture re-
quires a separate round-trip to the first level of the memory
hierarchy (MH) over the interconnection network for each
and every memory access; this happens unless something
(e.g., prefetch) is done to avoid it; and our LSRTM metric
accounts for that.

The well-developed PRAM algorithmic theory is second
in magnitude only to its serial counterpart, well ahead of
any other parallel approach. Circa 1990 popular serial algo-
rithms textbooks already devoted a big chapter to PRAM
algorithms. For many years, theorists (UV included) also
claimed that the PRAM theory is useful. However, the
PRAM was generally deemed useless (e.g., see the 1993
LOGP paper [7]). From the mid-1990s, PRAM research was
reduced to a trickle and most researchers abandoned it, and
some later book editions discarded their PRAM chapters.
The 1998 state-of-the-art is reported in the parallel com-
puter architecture book by Culler and Singh [8] “.. break-
through may come from architecture if we can truly design
a machine that can look to the programmer like a PRAM”.
We are now a step closer as hardware replaces a simulator.
Advancing the PRAM implementability from impossible to
available, in practice as well as in perception, is a strategic
objective of our overall work. The new computer provides
freedom and opportunity to pursue PRAM-related research,
development and education without waiting for vendors to
make the first move. The new XMT computer is 11-12K
times faster than our XMT cycle-accurate simulator (46
minutes replace 1 year): heavier programs and applications
and larger inputs to study scalability can now be run.

We finish this introduction with an interesting deploy-
ment example that enforces the magnitude of the adoption
promise of a PRAM-related machine.

Informal PRAM/XMT Pilot with High School Students
As PRAM algorithms are based on first principles that re-
quire relatively little background, a full day (300-minute)
PRAM/XMT tutorial was offered to a dozen high-school
students in September 2007. Followed up with only a weekly
office-hour by an undergraduate assistant, some strong stu-
dents have been able to complete 5 of 6 assignments given
in a graduate course on parallel algorithms. This informal
course was part of a computer club that met after 8 hours of
regular classes (i.e., no academic credit). This success story
suggests that since high school students from more diverse
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Figure 1: Serial and parallel execution modes

technical backgrounds and abilities can study this material,
hopefully everybody who can study standard serial program-
ming, should be able to study this material if taught in a
regular for-credit class by a K-12 teaching professional.

In section 2, background on XMT is briefly reviewed. In
section 3, the basic microarchitecture of the prototype as
well as 3 enhancements are presented. In section 4, Some
performance results are presented and discussed. Related
work is discussed in section 5 and section 6 concludes the
paper.

2. BACKGROUND ON THE XMT FRAME-
WORK

As space limitations prevent us from reviewing both the
broad concepts of the XMT and our contribution, we must
refer the readers to [21, 28]. However, a brief review of some
basic concepts are presented in this section to make this
paper as self contained as possible.

2.1 XMT Programming Model
The programming model underlying the XMT framework

is an arbitrary CRCW (concurrent read concurrent write)
SPMD (single program multiple data) programming model
that has two executing modes: serial and parallel. The two
instructions, spawn and join, specify the beginning and end
of a parallel section (executed in parallel), respectively. See
Fig 1. An arbitrary number of virtual threads, initiated by
a spawn and terminated by a join, share the same code [25].
The arbitrary CRCW aspect dictates that concurrent writes
to the same memory location result in an arbitrary one com-
mitting. No assumption needs to be made beforehand about
which will succeed. An algorithm designed with this prop-
erty in mind permits each thread to progress at its own speed
from its initiating spawn to its terminating join, without ever
having to wait for other threads; that is, no thread busy-
waits for another thread. The implied “independence of or-
der semantics” (IOS) allows XMT to have a shared memory
with a relatively weak coherence model. An advantage of
using this easier to implement SPMD model is that it is also
an extension of the classical PRAM model, for which a vast
body of parallel algorithms is available in the literature. The
programming model also incorporates the prefix-sum state-
ment. The prefix-sum operates on a base variable, B, and
an increment variable, R. The result of a prefix-sum (simi-
lar to an atomic fetch-and-increment [11]) is that B gets the
value B + R, while the return value is the initial value of
B. The primitive is especially useful when several threads si-
multaneously perform a prefix-sum against a common base,
because multiple prefix-sum operations can be combined by
the hardware to form a very fast multi-operand prefix-sum
operation. Because each prefix-sum is atomic, each thread
will receive a different return value. This way, the parallel
prefix-sum command can be used for implementing efficient
and scalable inter-thread synchronization, by arbitrating an
ordering between the threads. The XMTC high-level lan-
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Figure 2: XMT execution model

guage is an extension of standard C. The extensions are
described individually in [3]. A parallel region is delineated
by spawn and join statements. Synchronization is achieved
through the prefix-sum and join commands. Every thread
executing the parallel code is assigned a unique thread ID,
designated $. The spawn statement takes as arguments the
number of threads to spawn and the ID of the first thread.
Consider the following example of a small XMTC program.
Suppose we have an array of n integers, A, and wish to ‘com-
pact’ the array by copying all non-zero values to another
array, B, in an arbitrary order. The code below spawns a
thread for each element in A. If its element is non-zero, a
thread performs a prefix-sum (ps in XMTC) to get a unique
index into B where it can place its value.

psBaseReg x =0;

spawn(0,n-1){

int e;

e = 1;

if(A[$]) != 0){

ps(e,x);

B[e] = A[$];

}

}

2.2 The XMT architecture
Perhaps the most important distinguishing characteristics

of an XMT architecture are low-overhead mechanisms for
the management of parallelism. New elements not present in
standard microprocessor design are introduced for the pur-
pose of supporting the parallel programming model. The
XMT programming model allows programmers to specify
an arbitrary degree of parallelism in their code. Clearly,
real hardware has finite execution resources, so in general
all threads cannot execute simultaneously. In an XMT ma-
chine, a thread control unit (TCU) executes an individual
virtual thread. Upon termination of a virtual thread, the

TCU performs a prefix-sum operation in order to receive a
new (virtual) thread ID. The TCU will then emulate the
thread with that new ID. All TCUs repeat the process un-
til all the virtual threads have been completed. A master
thread control units (MTCU) orchestrates the TCUs. Fig-
ure 2 illustrates this: (i) through a comparison with the
von-Neumann stored program and program counter appara-
tus (2 (a)), and (ii) through a snippet of the program of a
TCU (2 (b)).

We begin with Figure 2 (a). Its upper part, entitled “von-
Neumann (1946–??),” illustrates the program counter ap-
paratus in serial machines, which has dominated general-
purpose computing since 1946; it is not yet clear whether,
and if yes when, its reign will end. The right hand side (of
the upper part of Figure 2 (a)) depicts the hardware ap-
paratus, where one command at a time is brought to the
program counter. The left hand side (of the upper part of
Figure 2 (a)) demonstrates how the programmer is often ed-
ucated to think about this apparatus–“the virtual outlook”.
Here the program counter is the one to move; it moves from
one location of the memory to another, perhaps like a “book
analogy”, where the finger of a reader advances from one line
of the book to another. The fact that this von-Neumann ap-
paratus has survived orders of magnitude improvements in
speed since the 1940s makes it a remarkable “Darwinistic
success story”. For this reason we sought to upgrade, rather
than replace in a disruptive manner, this successful appara-
tus.

The lower part of Figure 2 (a), entitled“XMT”, illustrates
the new apparatus. The left hand side (of the lower part of
Figure 2 (a)) depicts the virtual description. There is still
one computer program as in the von-Neumann apparatus.
In the above book analogy, one finger (marked as PC, for
program counter) moves from one line of the book to an-
other, until it reaches a special command called Spawn. The
Spawn command specifies a number of “threads” which can



be performed in parallel. Since we discuss now the virtual
side, any number of threads can be specified. Figure 2 (a)
mentions 1000000 threads. The virtual threads, initiated by
a Spawn and terminated by a Join, share the same code.
At run-time, different threads may have different lengths,
based on individual control flow decisions. The program-
mer’s understanding will be that each of the threads can
progress (guided by one finger per thread) from the Spawn
command to a subsequent Join command at its own speed.
At the Join, the thread expires. Once all the virtual threads
expire, finger marked PC continues. The main difference in
the hardware description on the right hand side (of the lower
part of Figure 2 (a)), is that the number of program coun-
ters is fixed (the figure mentions 1000), and does not change
as a function of the Spawn command at hand. The program
counter of the MTCU (denoted MPC) executes the serial
code, prior to the Spawn command. The program counter
of the MTCU executes a Spawn command and then broad-
casts the following instructions until a Join instruction to
the other program counters. The program counters start
by executing the first 1000 among the 1000000 threads, one
thread each. When a program counter completes its thread,
it starts executing one of the yet-to-be-executed threads.
This is done until all of the 1000000 threads finish.

Figure 2 (b) illustrates the program of a TCU. Suppose
that n = 1000000 threads are to be executed as a result of a
Spawn command. The figure assumes that n, and the SPMD
code, were broadcast to all TCUs. TCU i starts by executing
the respective virtual thread i, but only if i is not larger
than n. Upon finishing the execution of a virtual thread,
the TCU uses a prefix-sum computation to obtain the ID of
the next virtual thread it should execute, and proceeds to
execute it if that ID is not larger than n. Note that the only
communication among TCUs above was through the prefix-
sum computation. An extension of the architecture that
allows some nesting of spawn commands (using an sspawn
command, noted later) is not reviewed here.

3. MICROARCHITECTURE OF THE PRO-
TOTYPE

3.1 Overview of the prototype
The prototype includes a master thread control unit (MTCU),

4 clusters comprising TCUs and functional units, an inter-
connection network, 8 on-chip cache modules, a memory
controller (MC), a global register file (GRF) and a prefix-
sum unit. Figure 3 depicts the block diagram of the XMT
FPGA prototype as well as the partitioning for 3 FPGA
chips.

The master TCU (MTCU) executes the serial portion of
the program and handles the special XMT instructions such
as spawn and join instruction. The MTCU broadcasts the
instructions in a parallel section to all clusters where they
are copied to a local instruction buffer (see figure 4) and
later fetched by TCUs inside clusters. The Master TCU has
its own cache, L0, that is only active during serial mode and
applies write through. When the XMT processor enters the
parallel mode, the Master TCU discards its local cache. The
overhead of the flushing L0 cache is trivial since the write
through mechanism is chosen. When XMT operates in serial
mode, L0 cache is the first level cache of the MTCU and par-
allel memory modules provide the next level of the memory

cluster

0 

interconnection network 

prefix-sum unit GRF 

MTCU

MC 0 

…  cache 7cache 0

cluster

1 

cluster

3 

cluster

2 

P 

C 

I 

I 

F 

FPGA C 

FPGA B 

FPGA A 

FPGA A,B Virtex-4 LX200 

FPGA C Virtex-4 FX100 (smaller than LX200)* 

*Constrained by the availability of the development board. 

Figure 3: Block diagram of the prototype

hierarchy, which is similar to a multilevel cache hierarchy in
an advanced uniprocessor.

A cluster is a group of 16 TCUs and accompanying func-
tional units. The block diagram of a cluster is shown on
figure 4. A TCU can execute a thread in the parallel mode.
TCUs have their own local registers and they are simple
in-order pipelines including fetch, decode execute/memory
access and write back stages. The TCUs have a very sim-
ple structure and do not aggressively pursue optimal perfor-
mance. Given the limited chip area, the overall performance
of the XMT is likely better when it has a larger number of
simple TCUs than fewer but more advanced TCUs, because
of the well known diminishing return of many instruction
level parallelism (ILP) techniques. However, the XMT con-
cept does not prevent TCUs from introducing any advanced
techniques, since the thread level parallelism (TLP) that
XMT is taking advantage of is orthogonal to ILP. Similar to
a simultaneous multithreaded (SMT) processor, TCUs share
some functional units: Multiplication/Division (M/D) unit,
read-only buffer and interconnection network port. If several
TCUs assigned to a functional unit seek to use it, proper ar-
bitration is used to queue all requests. The read-only buffers
in the clusters are hardware/software co-managed temporal
storage for TCUs and we will discuss this in the next section.
The cluster has one load/store port to the interconnection
network, which is shared by all TCUs inside the cluster.
The store counter is used to flush the store operations by
counting the number of pending stores.

As a key feature of the XMT processor, prefix-sum oper-
ations must be executed very efficiently. The hardware im-
plementation of the prefix-sum unit [26] can accept binary
input from multiple TCUs and the execution time does not
depend on the number of TCUs that are sending requests
to it. PS TCU module in the cluster combines all requests
from TCUs and sends one request to the global prefix-sum
unit. It is also responsible for distributing the results from
the prefix-sum unit to the individual TCUs.

There are 8 independent shared cache modules and they
are connected to clusters by an interconnection network.
The address space is evenly divided among these cache mod-
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ules. To avoid an unbalanced load in different cache mod-
ules for certain patterns of memory access, hashing is used
in mapping between memory address and cache modules.
The parallel caches are used primarily for data, since the in-
structions for regular TCUs are broadcasted by the MTCU
and stored in the instruction buffer.

The interconnection network is a very important com-
ponent of the XMT processor and needs to provide high
bandwidth low latency communication between clusters and
cache modules. In this work, we incorporated a behavioral
model of the interconnection network presented in [5]. (A re-
cent refinement of the interconnection network that provides
improved scalability is presented in [6].) For the prototype,
since the number of ports is quite small(4×8), FPGA tools
were able to generate an acceptable physical network from
the RTL description.

3.2 Features of the memory hierarchy in XMT
We chose not to deploy private caches in TCUs/clusters

because of the following reasons. Scalable cache coherence
protocols are very complicated for hardware implementa-
tion[8] and inefficient for certain types of memory access
patterns, typically from fine-grained parallelism. For exam-
ple, false cache line sharing, which occurs when processors
write to a shared cache line but not at the same location,
is very inefficient in a cache coherent multiprocessor sys-
tem. For the fine-grained parallelism, the cache coherent
private cache is also not efficient in terms of power, due to
the large granularity of the data movement between caches,
extra cache coherence message exchange and complicated
hardware. The con of our approach is the relative long la-
tency in memory accesses that require round trip to shared
parallel cache through an interconnection network. The con-
cept of the length of the sequence of round trips to memory
(LSRTM) [27] accounts for the long memory access latency
for the performance of an algorithm. The task of optimiz-
ing the LSRTM is shared by the programmer, compiler and
XMT hardware architecture. In this section, we will present
the architecture part of optimization that helps in improv-
ing LSRTM. The optimization is based on the observation
that the hardware/software co-managed prefetch buffer and
the read-only buffer can also take advantage of spatial and
temporal locality in a way similar to a local private cache.

Value broadcasting
Consider the following implementation problem in a parallel
algorithm. Suppose that all, or nearly all, parallel threads
of an XMT program use a certain variable. Without giving
special attention to this case, each thread (or at least the
first thread in each cluster) will need to read the variable
through the interconnection network. Furthermore, the read
requests will be queued at the memory module and handled
one at a time, thus significantly increasing the implemen-
tation overhead of a parallel algorithm. A value broadcast-
ing mechanism is introduced to reduce the implementation
time of such concurrent reads. For value broadcasting, the
MTCU reads the value from memory in serial mode and
stores it to a register, then the value is broadcasted to the
TCUs in the form of a load-immediate instruction during
instruction broadcasting. Each TCUs can now derive the
value from the load-immediate instruction, as opposed to
issuing a read request to the shared cache.

Prefetching
In the XMT FPGA prototype, there is no local private cache
for TCUs/clusters, but each TCU has 4 prefetch buffers that
are controlled by prefetch instructions. A prefetch instruc-
tion is essentially a non-blocking read instruction, which will
bring the data to one of the prefetch buffers in the TCU.
The following read operation for the same memory location
will get the value from the prefetch buffer. When a pro-
gram exhibits a certain memory access pattern that can be
determined in compiling time, proper prefetch instruction
can be inserted and memory access operation will be over-
lapped with the execution of other instructions. Therefore,
the XMT system can also take advantage of spatial locality
in the memory access as a local cache can do. Compared
to the conventional cache, a prefetch instruction adds extra
overhead to the processor, but it can be more effective in
using crucial interconnection bandwidth, because it brings
in only necessary data.

Read-only buffer
The TCUs in the same cluster share one interconnection
port. When multiple TCUs try to read the same memory
location, it is desirable to send one combined request from a
cluster to the cache module to reduce load on both the net-
work and cache module. Broadcasting may help solving this
problem, but because the broadcasting is done through reg-
isters, the number of values that can be broadcasted is lim-
ited. Read-only buffer is a hardware/software co-managed
storage in the cluster, which provides request combination as
well as limited temporal locality. The compiler is supposed
to use two different kinds of read instructions, depending on
whether the data is safe to be stored in the read-only buffer.
In general, any memory locations not written in a particu-
lar spawn-join block, which may be referenced multiple times
from TCUs, are good candidates for storing in the read-only
buffer. The read-only buffer stores the value as well as the
address and the following read operations that reference the
same address will get the value from the read-only buffer.

3.3 Specifications of the XMT FPGA proto-
type

The XMT FPGA prototype system consists of 3 FPGA
chips: 2 Virtex-4 LX200 and 1 Virtex-4 FX100. PCI is
used as the interface. The FPGA board is purchased from a



Table 1: specifications of the XMT FPGA prototype
Clock rate 75MHz Number of TCU cluster 4
Memory size 1GB DDR2 Number of TCU per cluster 16
DRAM. data rate 2.4GB/s Number of shared cache modules 8
MTCU local cache 8KB Size of each shared cache module 32KB
Shared cache miss penalty 26∼ cycles MTCU mem. access local miss, shared

cache hit
25 cycle

TCU shared cache access hit 31 cycles MTCU mem. access local hit 1 cycle
TCU ps operation 10∼25 cycles MTCU,TCU ALU operation 1 cycles
MTCU,TCU SHIFT operation 2 cycles MTCU,TCU BRANCH penalty 4 cycles
MTCU multiplication 6 cycles MTCU division 36 cycles
TCU multiplication, division sharing
overhead

4 cycles Number of multiplication/division unit
per cluster

1

Number of ALU,BRANCH,SHIFT unit
per cluster

16 Size of each instruction buffer in TCUs 4KB

third party company and our selection is constrained by the
availability of development board that can be used for XMT
prototyping. Detailed specifications of the XMT FPGA pro-
totype system are listed in table 1.

3.4 Envisioned XMT processor
The XMT FPGA prototype is a scaled-down version of

an envisioned XMT processor, which is shown in figure 5.
We aspire to have in the not-too-far future a XMT processor
that has 1024 TCUs grouped into 64 clusters and 64 on-chip
memory modules. Each memory module consists of two lev-
els of caches and multiple memory access ports shared by
multiple L2 cache modules. The MTCU has local instruc-
tion and data caches for better backwards compatibility with
serial programs.
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Figure 5: An envisioned XMT processor

The XMT FPGA prototype supports a subset of MIPS
I ISA as well as a few XMT specific instructions. Most
of MIPS I instructions, except for floating point, byte and
halfword load-store instructions, are supported. The XMT
specific instructions include spawn, join, sspawn (for sin-
gle spawn: generate an additional thread while in parallel

mode), ps, psm, and instructions for broadcasting, prefetch-
ing, and read-only buffers.

4. PERFORMANCE EVALUATION OF THE
XMT FPGA PROTOTYPE

4.1 Kernel benchmarks
The prototype is not a full system and the applications

we can test on it are quite limited. First, it does not sup-
port floating point operations. This puts many real appli-
cations and benchmarks, such as SPLASH, out of consider-
ation. Another limitation of the current prototype is that
the parallel section cannot have any function call, because
TCUs do not have an instruction cache and the size of the
instruction buffer is quite limited. A third and more im-
portant limitation is that, the prototype is not ready for an
OS. These limitations are only for this prototype and will
be eliminated in the future. Then we will be able to test
the system with broader applications. With the above lim-
itations, the following 8 kernel applications are chosen to
benchmark the performance of the prototype. Fortunately,
with integer programs, we are able to test the performance
of the memory system, which is the interesting part of the
XMT architecture. The input sizes are listed in table 2. For
each kernel, we tested 2 input sizes, “large” and“small”. The
memory size used by each program is also listed.

The 8 kernel benchmarks are matrix multiplication(mmul),
quicksort(qsort), breadth-first search(BFS), finding longest
path in a directed acyclic graph(DAG), array summation(add),
array compaction(comp), key search in binary search tree
(BST) and convolution(conv). mmul is to calculate the
product of two dense integer matrices. A known parallel
quicksort method [15] was used for XMT. BFS and DAG
are representative graph applications and the memory access
pattern is irregular and known to be difficult to parallelize.
Array summation is calculating the sum of an integer array
and array compaction is described in Section 2.1. The BST
problem is searching for a set of keys in a balanced binary
search tree. In conv, a two dimensional image array of X ,
and another filter array of F are given and a filtered array
Y is calculated with the dot product of F and sub-array of
X.

As explained above, the compiler is responsible for taking



Table 2: input size of the benchmarks
App. Large size Small size

input size memory usage input size memory usage
parallel serial parallel serial

mmul 2000x2000 48MB 48MB 128x128 192KB 192KB
qsort 20 million 360MB 200MB 100 thousand 1.8MB 1MB
BFS V=1M, E=10M 220MB 100MB V=100K, E=1M 21.6MB 9.6MB
DAG V=1M, E=17M 368MB 160MB V=50K, E=600K 13.4MB 6.0MB
add 50 million 200MB 200MB 3 million 12MB 12MB
comp 20 million 208MB 208MB 2 million 20.8MB 20.8MB
BST 16.8M nodes, 512K keys 205MB 205MB 2.1M nodes, 16K keys 25.3MB 25.3MB
conv image:1000x1000 8MB 8MB image:200x200 320KB 320KB

filter:32x32 filter:16x16

advantage of the 3 features of the XMT FPGA prototype:
value broadcasting, hardware/software co-managed prefetch
buffer, and read-only buffer. Our compiler is under develop-
ment and is not yet mature enough to effectively use these
features, especially the last two. To test XMT FPGA proto-
type properly, we manually optimized the compiler produced
assembly code. (i) For read operations in a loop, a prefetch
instruction for the next iteration is inserted for each read
operation. (ii)For other read operations, prefetch instruc-
tions are inserted as soon as the address is available. (iii)
Normal read instructions are replaced with XMT-specific
read instructions that make use of the read-only buffers,
if the value could be guaranteed not to change during the
current parallel mode. These manual optimizations will be
integrated into the XMTC compiler soon.

4.2 Performance evaluation
In this section, we will report some data collected from

the XMT FPGA prototype.

Speedup of parallel program in XMT
Both serial and parallel versions of the 8 benchmarks are ex-
ecuted on the FPGA system. The speedups of parallel over
serial programs are shown in table 3. Generally, speedup is
upper bounded by 64, since at most 64 threads are active in
the parallel programs.

Two computational benchmarks, mmul and conv, achieved
the highest speedups. This is because the program is highly
CPU-bound and both have very regular memory access pat-
terns, which makes it easy to take advantage of the software
prefetch command. On the other hand, quicksort, addition
and compaction problems are memory-bound programs and
provided lower speedups. Note that, while the FPGA com-
puter has 64 TCUs, they are grouped in 4 clusters and all 16
TCUs inside a cluster share one load/store port of the clus-
ter. On the cache side, there are 8 parallel cache modules,
so on average, 8 TCUs share one cache module. More im-
portantly, the FPGA computer has only one off-chip DRAM
channel shared by all 8 on-chip cache modules. For memory
bound applications, these shared resource can become a bot-
tleneck and limits the speedup numbers. The two graph re-
lated applications, BFS and DAG, are fine-grained and their
memory access patterns are irregular. The XMT FPGA has
speedups of 15.7∼22.0 for these two benchmarks. Note that
these two programs are known to be very difficult to paral-
lelize for traditional coarse grain parallel computers.

The BST program showed relatively low speedup of 7.00
in the large input set and 10.0 in the small input set. Recall
that the BST is a balanced binary tree and a search proceeds
from the root of the tree and advances towards leaves until
the key is found or a leaf is reached. The upper part of the
tree, especially the root, is repeatedly accessed by all threads
and this will add queuing delay to the TCUs. Unlike the
local cache in the MTCU, which is used only by one thread,
the read-only buffer is shared by all 16 TCUs in a cluster,
meaning 512 bytes per thread, which is extremely small to
take advantage of temporal locality. The increased speedup
in the small input set confirms the above explanation. In the
program data structure the pointer to the left child is always
following the parent node. In the serial program, the local
cache in MTCU is taking advantage of this spatial locality
automatically. However, in the parallel program, explicit
prefetch commands need to be inserted, but we did not do
it, because we are not sure yet that the compiler can figure
out this locality.

Cache hit rate
The size of the cache in the prototype is small, 8KB local
cache for the MTCU and a total of 256KB parallel cache for
the TCUs or only 4KB per TCU. This is due to the limited
“block RAMs”, the built-in memory in Xilinx FPGAs. The
cache hit rates of the large input size are listed in table 4.
Cache hit rate is calculated for read operation only(write is
ignored). In serial execution, cache hit rate of local cache
is reported while that of parallel shared cache is reported
for parallel execution. Table 4 shows that the hit rate in
parallel execution is lower than that of serial execution in
general and it is very low for BFS, DAG, qsort and BST.
This suggests that the cache size may need to be increased
in future XMT processors.

Throughputs of the load/store unit and interconnection
network
XMT is a shared memory architecture and all TCUs access
the shared memory space through the interconnection net-
work. It is interesting to study how the interconnection net-
work is used in these benchmarks. Grouping 16 TCUs into
a cluster and assigning one interconnection network port to
a cluster lead to efficient utilization of the interconnection
network. Note that the cost of the interconnection network
in terms of area, and to a lesser extent delay, is increasing
significantly as the number of ports increases. For all bench-



Table 3: Speedups of the benchmarks (parallel Vs. serial in XMT)
Input mmul qsort BFS DAG add comp BST conv

Large 35.7 20.8 15.7 19.6 26.0 15.3 7.00 38.9
Small 45.9 16.8 18.1 22.0 24.0 23.8 10.0 36.9

Table 4: Cache hit rate
execution mmul qsort BFS DAG add comp BST conv
serial 0.688 0.953 0.681 0.587 0.874 0.993 0.794 0.918
parallel 0.75 0.57 0.31 0.50 0.88 0.78 0.43 0.99

marks, we calculated the total number of packets delivered
by the interconnection network as well as the number of
requests processed by the load store (LS) units inside the
clusters. Two factors cause the LS unit and interconnection
network to have different utilization rates. The LS unit will
generate two packets for a write/PSM and thus results in
a higher load in the interconnection network. On the other
hand, some requests from TCUs can be processed by the
read-only buffer without ever sending a packet over the in-
terconnection network; this would reduce the relative load
of the interconnection network. The number of packets that
will be sent and received through the interconnection net-
work is listed in table 5. A DRAM prefetch instruction from
a TCU brings the data from DRAM to the shared cache, but
the TCU will not receive any response.

Table 5: Number of packets per request
Request send receive
Read 1 1
Write/PSM 2 1
DRAM prefetch 1 0

The bandwidth utilization of the interconnection network
and normalized throughput of the LS unit are shown in Fig-
ure 6. The number of total requests processed by the LS
units is divided by the total number of the parallel cycles
and the number of LS units in the XMT processor, which is
4 in this prototype. The total number of packets transferred
from clusters to the cache modules are divided by the num-
ber of cycles in parallel mode and the number of clusters,
4.

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

mmul qsort BFS DAG add comp BST conv

load/store unit interconnection network

Figure 6: Normalized throughput

Four benchmarks: mmul, qsort, add and comp showed a
high utilization rate of LS unit or interconnection network
usage. For mmul and conv, where the read-only buffer is
extensively used, the LS unit is almost fully loaded but the
network has much less traffic. For other benchmarks, where
the read-only buffer is not used extensively, the interconnec-
tion network is more crowded than the LS units, because an
LS unit uses one cycle to process a write operation that will
then require two packets(address and data), and, therefore
two cycles in the interconnection network. The 3 bench-
marks BFS, DAG and BST used a very small portion of the
bandwidth available. This is because of the long latency in
cache accesses due to the low hit rate and extensively long
queue in the cache module (BST).

4.3 Performance of an envisioned XMT ASIC
processor

In previous sections, various aspects of the performance of
the XMT FPGA computer are measured and evaluated, but
we are not ready to compare the wall clock execution time
of the benchmarks between XMT FPGA prototype and any
existing processors because the clock rate of the XMT FPGA
prototype is too low. It is clear that XMT processor with
ASIC implementation can operate at a much higher clock
rate, and thus achieve much better performance in terms of
wall clock time. In this section, performance of an arbitrary
XMT ASIC processor with a higher, yet quite modest, clock
rate is projected and compared against an AMD Opteron
processor.

An arbitrary XMT processor with 800MHz internal clock,
and 400MHz DDR2 DRAM memory is chosen for the per-
formance evaluation of a XMT ASIC processor. Both clock
rates are reasonable and are in fact a bit conservative, con-
sidering the fact that 400MHz DDR2 DRAM (PC2-6400) is

commercially available and MIPS32 r© 74K
TM family cores

operate at 1GHz.
If all components of the XMT FPGA computer are accel-

erated in the same ratio, the cycle count will not change and
the wall clock time will decrease at the same ratio and we can
easily project the performance of the XMT processor with a
higher clock rate. However, due to the dynamic behavior of
the DRAMs and some timing requirements, the cycle count
of the DRAM operations will change dramatically in differ-
ent clock rate thus this simple projection method cannot be
used.

To enable the projection, we need to design a low clock
rate system that behaves exactly as in the high clock rate
system in terms of cycle count. In other words, if the low
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clock rate system is cycle accurate for the high clock system,
the cycle count can be used for evaluating the high clock rate
system. The following 3 limitations are applied to get a cycle
accurate system: (i) The timing constraints are converted
to the number of cycles in 800MHz and proper delays are
added. (ii) The data transfer bandwidth is constrained to
one burst transfer per four cycles as in the 800Mhz DDR2
DRAM chip. (iii) The DDR2 command rate is also limited
to one command per two cycles as in the 800Mhz DDR2
DRAM chip. Table 6 shows what is modified to emulate
800MHz XMT ASIC properly.

Table 6: Modifications for performance projec-
tion

Item 75MHz 75MHz 800MHz
emulating emulated
800MHz

Read latency a (cy-
cle)

3.5 b 24.5 24.5

Maximum DRAM
command per cycle

2 0.5 0.5

Peak bandwidth 2.4GB/s 0.6GB/s 6.4GB/s

aLatency of DRAM access depends on many factors.
We only noted latency of a read operation, under some
DRAM assumptions. For those familiar with DRAMs
and DRAM terminology, the assumptions are that the
reading is done from a closed bank and there are no ac-
tivities in other banks.
bThe DRAM controller operates at 150MHz and one cy-
cle in 150MHz is converted to half a cycle in 75MHz

The execution time is calculated by converting the cycle
count with the period of the 800MHz clock or dividing the
wall clock time by ratio of 800/75=10.67. Figure 7 shows
normalized wall clock time of the 8 kernel benchmarks in an
AMD Opteron 2.6GHz, XMT FPGA 75MHz and envisioned
XMT ASIC 800MHz. All wall clock time is normalized to
the execution time of an AMD Opteron 2.6GHz. The exe-
cution time measured in seconds are listed in the Table 7.
The AMD Opteron processor is operating at 2.6GHz and has
64KB+64KB L1, 1MB L2 cache. The system used for test-
ing had dual channel PC-3200 DDR DRAM, which provides
a bandwidth of 6.4GB/s. A 64-TCU XMT processor has
been implemented in a 10mm × 10mm chip in 90nm tech-
nology. As this was an academic project by a team of only

four students and with rather limited optimization, this area
usage should be interpreted as an upper bound on the area
needed. Unfortunately, we were not able to find the area
information about the tested 2.6GHz AMD Opteron, but a
similar configuration(same cache size) AMD Opteron used
189 mm

2 in 130nm technology[12]. Although it is not fair
to compare the two numbers directly, it is reasonable to be-
lieve that the XMT ASIC uses no more silicon area than the
AMD Opteron processor tested. The envisioned XMT ASIC
800MHz system outperforms an AMD Opteron for all of 8
kernel benchmarks and speedup ranges from 1.57 to 8.56. It
is quite significant considering that the XMT ASIC 800MHz
processor has only a total of 256 KB shared cache and oper-
ating at a much lower clock rate. The envisioned XMT ASIC
800MHz system showed significant advantage over the AMD
Opteron in two CPU-bound benchmarks, mmul and conv.

5. RELATED WORK
The aspiration to approximate the theoretical performance

of the PRAM is not new. Multi-chip multi-processor designs
such as the NYU-Ultracomputer[11], CRAY/Tera MTA[1]
and the SB-PRAM [2, 9] are representative examples. Al-
though XMT shares some features with these 3 architec-
tures, XMT is different from them as it is a single chip
architecture. The Tera MTA and SB-PRAM execute mul-
tiple threads on a processor, but they accomplish that by
switching among many threads, rather than executing mul-
tiple threads concurrently. The fetch-and-add feature in the
NYU-Ultracomputer and SB-PRAM is integrated into the
network, while the prefix-sum operation in XMT is a dedi-
cated fast single functional unit.

CMP (chip multiprocessors) [14], where multiple proces-
sor cores are placed on a single die, is a popular form of on-
chip parallel architecture. IBM introduced dual core Power
4 processor in 2001, now both Intel and AMD offer mul-
ticore processor products. These multicore processors [14,
19] are good for coarse-grain parallelism, such as multitask-
ing. However, they are limited in supporting extremely fine-
grained programs, like PRAM algorithms, efficiently because
of the private cache in each core.

The CELL processor [17], jointly developed by Sony, Toshiba
and IBM, is another interesting form of multicore processor.
The explicit software-controlled memory architecture in the
CELL processor poses significant challenges for program-
mers for both correctness and performance. The XMT pro-
cessor seeks a middle ground by introducing hardware/software
co-managed read-only buffer and prefetch buffer. The Ni-
agara processor from SUN[10] and XMT share some fea-
tures, like using simple in-order processor for better power
and area efficiency, but Niagara is trying to achieve better
overall throughput from a single chip, while XMT seeks the
classic goal of shortening single task completion time using
parallel computing.

Tile-based architectures, such as MIT’s Raw, Stanford’s
Smart Memories and UT-Austin’s TRIPS [22], also expect
to scale to high levels of parallelism. XMT, unlike Raw,
Smart Memories and TRIPS, provides hardware support for
efficient load balancing, and better support for a shared-
memory model, both of which are critical for many irregular
applications. Last, but not least, none of these approaches,
as well as transactional memories and general purpose use
of GPUs (with their remarkable progress), can currently
provide evidence that a general-purpose parallel algorith-



Table 7: Execution time in seconds
processor mmul qsort BFS DAG add comp BST conv
Opteron 117.4 2.644 0.659 2.594 0.143 0.105 0.479 1.776
XMT FPGA 64.74 6.483 0.604 3.101 0.193 0.267 1.469 6.884
XMT ASIC 13.71 1.634 0.351 1.494 0.067 0.051 0.305 0.647

mic knowledge base exists to support them, while XMT was
engineered to support the PRAM.

6. CONCLUSION AND DISCUSSION

First commitment to silicon of XMT
In this paper, we presented the first commitment to sili-
con of the XMT architecture. This is a significant mile-
stone and we are one step closer to a practical PRAM-on-
chip processor. In addition to the brief description of the
micro-architecture of the prototype, 3 features: value broad-
casting, hardware/software co-managed prefetch buffer and
read-only buffer are discussed. The performance of the XMT
FPGA prototype is evaluated and performance of an en-
visioned XMT ASIC processor is projected based on cycle
accurate emulation. With the same or less area budget,
the 800MHz XMT ASIC processor outperforms the 2.6GHz
AMD Opteron. Overall, the XMT processor is not only easy
to program, but also provides very good performance in ad-
dition to very high area efficiency.

Timely Case for the Education Enterprise
We believe the education enterprise should have a special
interest in our approach. As explained throughout [8], other
parallel programming approaches tend to require understand-
ing that does not only comprise the PRAM level of under-
standing (or cognition), but in fact, significantly exceeds
it. This means that the PRAM provides a useful com-
mon denominator among the variety of current approaches.
Our impression is that most computer science undergradu-
ate programs maintain the old status quo, where they do
not teach parallel programming and algorithms partly be-
cause the jury is still out on which approaches will emerge
as winners. The unfortunate outcome is that the sole train-
ing that a 22-year graduate receives, heading for a 50 year
career that is likely to be dominated by parallelism, is for
programming the computers of the past. Each year that
goes by without change, yet another generation gets out of
school and into the market place underprepared, or perhaps
even mis-prepared; the reason is that, for some, the biggest
challenge in parallel algorithms and programming education
is overcoming bad habits. If it were possible to widely dis-
tribute affordable PRAM-On-Chip machines, the education
enterprise would be able to make significant progress to-
wards mitigating the problem. As explained earlier, we be-
lieve that the change should also encompass high schools,
and eventually even middle schools, or wherever young peo-
ple learn their first programming language. The fact that
PRAM is based on first principles makes this possible.

XMT is a Candidate for the Processor-of-the-Future
Based on the roadmap of all vendors, the processor of the
future will have to be based on a general-purpose on-chip
parallel computer architecture. There are some crucial prop-
erties that any candidate architecture must have. Below, we

highlight several such properties, and explain, or provide ev-
idence that XMT meets them. As noted earlier, our focus
is on the market niche that aims at single-task completion
time. Property 1: ease of programming. With few excep-
tions, novel parallel computer systems started with an ar-
chitecture, and this led to methodologies for programming
them. XMT did not follow this build-first figure-out-how-to-
program-later approach, as its starting point was the simple
PRAM parallel algorithmic thinking. In PRAM algorith-
mic model, the algorithm designer (programmer) is free to
assume that the hardware resources (number of hardware
threads) are not limited; and can create an arbitrary number
of concurrent virtual threads. This provides a highly sought
freedom for the programmer, as hardware specifics are ab-
stracted away. This can be done since the hardware em-
ploys an efficient mechanism of dynamically allocating these
virtual threads to available hardware threads. This free-
dom to express concurrency and its automatic translation
to hardware provide ease of programming, and high perfor-
mance. Coupled with the unmatched theoretical strength of
the PRAM, this gives XMT a significant advantage. The
2005 NSF Blue-Ribbon Panel on Cyberinfrastructure re-
ported that to many users programming existing parallel
computers is as intimidating and time-consuming as pro-
gramming in assembly language. To complete our discus-
sion of ease-of-programming, we note some recent empirical
evidence. Experimental validation of ease-of-programming
claims requires a big investment, or otherwise it will not
meet academic publication standards. The DARPA-HPCS
program provided such an investment. The study reported
in the journal paper [16] compared two similar groups of stu-
dents solving the same problem. One group used MPI. The
second group that used XMTC was able to complete the
job in about half the development time of the MPI group.
Property 2: good performance with any amount, or grain, of
parallelism provided by the algorithm; namely, up-and down-
scalability including backwards compatibility on serial code,
and fine-grained or coarse-grained parallelism. The only
issue not emphasized previously is compatibility on serial
code, as provided by the MTCU and its local cache. The
importance of backwards compatibility on serial code can-
not be overstated, as this allows use of existing code. Prop-
erty 3: support application programming (in standard appli-
cation languages, such as VHDL/Verilog, OpenGL, MAT-
LAB). Since code in such application languages tend to re-
flect parallelism allowed in the application, it is often possi-
ble to translate this parallelism into significant speedups on
XMT. The paper [13] demonstrated that XMT can provide
speedups of 100X given for gate-level logic simulation using
VHDL. Property 4: fit current chip technology and scales
with it. Tape-out of a 9mm by 5mm chip in 90nm compris-
ing the interconnection network component of a 128-TCU
XMT was reported in [4]. We aspire to have in the not-too-
far future an XMT processor that has 1024 TCUs grouped
into 64 clusters and 64 on-chip memory modules.



What one needs to learn about the XMT approach in
order to start using it
We see several levels of use. The entry (or literacy) level re-
quires some minimal background in C or Java programming
and reading the tutorial and manual of XMT [3]. The next
level, which we call fluency level, needs to recognize, though
to a rather a limited extent, that the original intellectual ba-
sis for XMT was the PRAM theory of parallel algorithms.
Below, we explain the relationship between that theory and
XMT programming.

We will make the point that one does not need to learn
the PRAM theory in order to use XMT. In fact, as noted
earlier, we have demonstrated that most XMT programmers
can generally detour the PRAM theory.

The first thing that one needs to learn is how the PRAM
teaches to think algorithmically in parallel. This is the only
PRAM-related thing one really needs to understand. PRAM
algorithm description requires almost a computer-program-
like level-of-detail. Having to deal upfront with lower level
details is not only tedious; it often becomes an obstacle to
concentrating on the big picture. To overcome that, a de-
scription methodology that allows drastic reduction in level-
of-detail is needed. This methodology guides thinking about
a parallel algorithm in terms of two basic features: its total
number of operations (called work), and the shortest time
(called depth) in which these operations could be completed,
hypothetically assuming unlimited amount of hardware. In-
troduced by Shiloach and Vishkin in 1982 [23], what makes
the methodology work is that it is a matter of skill to later
fill in the details that the Work-Depth description teaches to
initially suppress. Furthermore, limited training is sufficient
to provide the needed skill. (It is worth noting that this
work-depth methodology provides the description platform
for several parallel algorithms books that appeared since the
early 1990s, such as [20, 18].)

The second thing is how to turn this parallel algorithmic
thinking into XMTC programming. One of our more re-
cent innovations (demonstrated with high school students
and through a university course offered to Freshmen that do
not major in computer science) is that people can proceed
from this high-level parallel algorithmic thinking directly to
XMTC programming.

For most users, these two things are all they need to know.
One quick way to learn this material is through the on-
line tutorial featured on [31]. The items featured include:
recorded video of a 300-minute tutorial (originally given to
high-school students) along with slides, class notes, as well
as a tutorial and manual for XMTC. The basic methodology,
from parallel algorithmic thinking to XMTC programming,
outlined above is also reviewed in [27].

Expert users (such as performance programmers), or (say
compiler) researchers, may then follow-up with an in-depth
study of the current paper, or other XMT papers and of
course the full PRAM theory.

Postscript
A naming contest for the XMT FPGA prototype held by the
University of Maryland got nearly 6000 submissions. The
name Paraleap was selected. See [30].
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