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1.1 The purpose of this manual 

 

Immediate Concurrent Execution (ICE) is a new parallel programming model developed at the University 

of Maryland as part of a PRAM-on-chip vision. The ICE model is intended to facilitate easier programming 

of parallel systems, and PRAM-like algorithms while making minimal compromises on performance. The 

ICE model in its current form is an extension of the C language 

The ICE model relies on the concept of lock-step execution inside parallel regions, as opposed to threaded 

model in other parallel programming languages and extensions. In lock-step execution, an instruction in 

a parallel section will not be executed on any parallel context until all contexts have finished executing 

the previous one. This makes parallel programming easier since the programmer does not need to worry 

about issues related to synchronization. This is due to the fact that the compiler will take care of it. 

This document will provide instructions on how to operate the current version of the ICE compiler, a 

description of the new keywords and utilities, and their usage. It will also provide examples in relevant 

sections on how to use the new extensions. 

To be able to use this language effectively, the reader needs to have basic understanding of the PRAM 

and WD-Model, and basic command of the C/C++ language.  
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2.1 New ICE Statements 

 

The ICE language is a superset of the C programming language. Ideally, a serial program written in pure C 

would compile and run through the tool chain without any problems. This, however, is not the case due 

to limitations in the tool chain explained in this document and in the XMT Toolchain Manual. This section 

summarizes the single new statement of ICE language that allow parallel programming of PRAM 

algorithms as is. 

2.1.1 The Pardo Statement 

2.1.1.1 Usage 

 
Where:   

CID : an identifier to denote the parallel context ID 

LB: the Lower bound; The ID of the first parallel context 

UB: the Upper Bound; The ID of the last parallel context 

STEP: the step between one context ID and the next 

This statement will create as many as �(�� – �� � �)

���	 
  � concurrent parallel contexts, with the first having 

ID of LB, the last having an ID of UB, with a difference of STEP between the IDs of one parallel context 

and the next. 

The first part of the pardo statement consists of the variable name CID and LB. The variable name CID 

is an identifier for the parallel context ID that can be defined either as part of the pardo statement, or 

earlier, and can be any sequence of alphanumeric characters aside from keywords. CID denotes the 

ID of the current parallel context wherever it is used inside a pardo block. LB is the initializer of CID 

and can be any legal expression, identifier or constant integer, or can be absent if CID was initialized 

before the pardo.  

The second and third part of a pardo statement are LB and STEP consecutively. Both UB and STEP can 

be an expression, a predefined identifier or an unsigned constant number. ALL three parts of a pardo 

statement must be integers. A pardo requires all three parts to work, and will issue a syntax error if 

any one of those three is missing. 

Statements within a pardo block are executed in a lock-step fashion. Namely, every parallel context 

starting from context LB up to context UB will execute statement 1 first, before any context can start 

executing statement 2. Once all contexts finished executing statement 1, they will start executing 

statement 2. 

Variables declared inside of a pardo block are local to the parallel context, meaning that each context 

will have its own local copy of that local variable. 

  

pardo (int CID = LB; UB; STEP) { 

 //Body 

 Stm1; 

 Stm2; 

} 
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2.1.1.2 Usage Examples 

Example 1: example of legal pardo usage 

In the following code we create N parallel contexts with IDs ranging from 0 to N − 1. Then, we create 

an integer variable temp. Each virtual thread has its own copy of this variable. All N parallel contexts 

read the array C using an expression containing the identifier “i” simultaneously. Based on this value, 

we copy an element from array B to array A either as it is and then increment it, or the negative of it. 

This copying is done simultaneously at the same time for all parallel contexts. 

 

 

Remember that execution is done based on a lock-step model. So assuming C has the values [ 1, 3, -

5, -4, 6, -2, -7, 1] and N = 4, this is how the execution of the pardo block will proceed: 

 

Parallel context ID i = 0 i = 1 i = 2 i = 3 

(T)ime step = 1 temp0 = c[0] temp1 = c[2] temp2 = c[4] temp3 = c[6] 

T = 2 If (temp0 > 0) If (temp1 > 0) If (temp2 > 0) If (temp3 > 0) 

T = 3 A[0] = B[0] A[1] = -1 * B[1] A[2] = B[2] A[3] = -1 * B[3] 

T = 4 A[0]++ - A[2]++ - 

T = 5 The pardo block terminates for all parallel contexts 

 

Notice that when contexts i = 0 and i = 2 are executing A[i]++, contexts i = 1 and i = 3 were waiting 

for the other two contexts to complete. 

  

Int main() { 

    …. 

    Int N; 

    …. 

   pardo (int i = 0; N-1; 1) { 

 int temp = C[i*2]; 

 if (temp > 0) { 

     A[i] = B[i]; 

     A[i]++; 

 } else {  

     A[i] = -1 * B[i]; 

 } 

   } 
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Example 2:  WD summation 

In this example, we find the sum of the elements in array A. First we copy in parallel the array A into 

level 0 of array B. Then, we add every two adjacent elements, in parallel. We repeat that for all levels 

of B until in the end we have the summation in B[logN+1][1] 

 

  

#define N 8 

#define logN 3 

 

unsigned exp (int expon);  //calculates and return 2exp 

int A[N]; 

int B[logN+1][N]; 

 

int main() { 

 

   pardo (int i=0; N-1; 1) { 

 B[0][i] = A[i] 

   } 

 

   for (int h = 1; h < LOGN; h++) { 

pardo (int i = 0;  (N/exp(h)) - 1; 1) { 

       B[h][i] = B[h-1][2i+1] + B[h-1][2i]; 

} 

   } 

 

   Printf (“sum is %d”, B[logN+1][1]; 

} 
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2.1.1.3  Limitations 

Currently the ICE compiler is still in its initial stage and as such, there are certain limitations that will 

be addressed as the compiler matures. It is important for the reader to be aware of these limitations 

since that will save them time and effort while writing their programs. These limitations are: 

1- Function calls inside a parallel section are not supported. You will not be expected to use such 

function calls and if you do it would be at your own risk. 

2- Structures and pointers are not supported. Again: use at your own risk. 

3- Nested parallel sections are not supported. 

4- Nested loops inside a parallel sections are not supported. However, you can safely use as many 

none nested loops as you want. 

5- switch case statements inside Parallel sections are not supported. Use multiple if - else if - else 

statements instead. 

6- If your step and/or upper bound are expressions (i.e. a+b*c), you should first perform the 

operation and store the result in a temporary variable and then use that in the pardo command. 

For example: 

 

 
 

7- The compiler does not support a loop block nested under an if-else statement inside a pardo (i.e. 

the following is not supported 

 

 

However, inside a loop you can nest if-else statements freely. 

 

 

tmp = a+b*c;     //use tmp in pardo for step/UB 

pardo (...;...;tmp){} 

or 

pardo (...;tmp;...){} 

pardo (...;...;...) { 

 if (....) { 

      while (...) { ///not supported 

  ... 

      } 

 } 

} 

pardo (...;...;...) { 

 while (...) {   // supported 

  if (....) { 

    ... 

  } 

 } 

} 
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8- Don't use any of the following identifiers (or any variances of them) for variables or functions 

names: 

ICE__PARDO__BARRIER 

ICE__Pardo__START 

ICE__Pardo__END 

OUTLINE__PARDO 

Ice__Depth 

Ice__Work 

___Total_finished 

gk 

 

9- Currently the ICE compiler does not have a built-in way to implement arbitrary concurrent writes. 

Instead, we created the specialized utility described in section 2.2.2 to perform concurrent writes 

to scalars and single memory locations. Please refer to section 2.2.2 in this document for more 

details.  

10- Currently, the ICE compiler have a problem with using memory efficiently. This may cause 

problems with large datasets to give wrong answers upon execution, or give no answers at all. 

The dataset size that will work correctly depends on many factors, and as such varies from one 

problem to the next. When doing your projects, start with the smallest dataset that will be 

provided to you. If that works move on to larger data sets. 

11- All limitations mentioned in the XMTC compiler documentation apply here as well, since, as part 

of the compilation process, the ICE compiler uses the XMTC compiler. 
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2.2 The ICE Library 

 

The ICE language features a library of utilities and functions commonly used by parallel programmers and 

parallel programming learners alike. In this section, we will discuss those libraries. 

 

Note: To be able to use any of the following ICE utilities, make sure to include the header file “ice.h”, and 

then initialize them using INIT  

 

2.2.1 Work and Depth Counters 

Since one of the goals of the ICE language is to be an educational tool targeted at PRAM and the Work 

Depth Algorithmic Models (WD-Model), we decided that learners would benefit from the ability to 

experiment and see the effects of their experimentation in terms of work and depth. 

We define three utilities for the accounting of work-depth for the various ICE programs, these utilities are: 

 

 

2.2.1.1 Usage 

To use these utilities the programmer needs to insert them at every step they would like to account 

the work and/or depth for in their program.  

Both of WORK() and DEPTH() are useful in situations where the user would like to see the contribution 

of a certain step to the whole work/depth complexity of the entire program. In both cases, the user 

needs to provide the variable s/he wants to be used for collecting the statistic. The DEPTH utility will 

increment the variable by 1. The WORK utility will increment the variable by the number of parallel 

contexts executing that step. To get the result, the programmer needs to either print it out to STDOUT, 

or access the data in any other way they like1. 

WORKDEPTH provides a simple way for collecting both the work and depth statistics for the whole 

program. Hidden work and depth counters will be incremented each time the step is executed. At the 

end of the execution of the program, the work and depth will be printed to STDOUT. Note that this will 

happen without any further instructions from the user. 

  

                                                           
1 Look-up the different ways to look at the contents of memory location discussed in section 10.6 in the XMTC 

Toolchain Manual 

WORKDEPTH 

WORK(unsigned &); 

DEPTH(unsigned &); 
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2.2.1.2 Usage example 

Example 3: For this example, we will use example 2 from earlier. Find the total work and depth, and 

find the contribution of each pardo to the total work and depth statistic. 

 

 

 

#include “ice.h” //must include this to be able to use ICE utilities 

INIT; // must run before using any of the ICE utilities 

#define N 8 

#define LOGN 3 

 

unsigned exp (int expn);  //calculates and return 2expn 

int A[N]; 

int B[LOGN+1][N]; 

 

int main() { 

   int CopyDepth1 = 0; // the depth for copying A 

   int CopyWork1 = 0; // the work for copying A 

   int SumDepth2 = 0; // the depth for copying A 

   int SumWork2 = 0; // the work for copying A 

 

   pardo (int i=0; N-1; 1) { 

 B[0][i] = A[i] 

DEPTH(CopyDepth1); 

WORK(CopyWork1); 

WORKDEPTH; 

   } 

 

   for (int h = 1; h < LOGN; h++) { 

pardo (int i = 0;  (N/exp(h)) - 1; 1) { 

       B[h][i] = B[h-1][2i+1] + B[h-1][2i]; 

       WORK(SumWork2); 

       DEPTH(SumDepth2); 

      WORKDEPTH; 

} 

   } 

 

   printf (“sum is %d”, B[LOGN+1][1]; 

   WORKDEPTH; 

 

  printf(“the depth for copying is %d , and the work is %d” 

                , CopyDepth1, CopyWork1 ); // depth will be 1, work will be 8 

  printf(“the depth for summation step is %d , and the work is %d”  

                , SumDepth1, SumWork1 ); // depth will be 3, work will be 7 

} 

/// total depth will be (logN + 2) = 5, and total work will be 2N = 16 
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Example 4: finding work and depth in situations of an unbalanced depth of different parallel context 

In this example, find A[i] =∑ �

�� , and find the total depth and work, and the depth of the summation 

process. (Note: this example “does not make sense” as an efficient parallel algorithm; its only purpose 

is as an example of unbalanced depth.)   

 

 

Notice that the for loop in this example will have different number of iterations per different parallel 

context. (i.e. context 0 will have 1 iteration, while context 1023 will have 1024 iterations). In this case, 

notice how the depth is counted along the longest path. 

Note: Keep in mind that the sum is not written to A[i] until all contexts finish their loop iterations. 

  

#include "ice.h" 

INIT 

 

#define N 1024 

unsigned A[N]; 

 

int main() { 

        unsigned D = 0; 

 

        pardo (int i = 0; N-1; 1) { 

                unsigned sum =0; 

   WORKDEPTH; 

                for (int j = 0; j < i + 1; j++) { 

                        sum += j; 

                        DEPTH(D); 

                        WORKDEPTH; 

                } 

                A[i] = sum; 

   WORKDEPTH; 

        } 

 

        printf("D= %d\n", D); /// prints 1024 

        return 0; 

} 

/// total depth will be (N + 2) = 1026 

/// and total work will be 
�×(���)

�
+ 2� = 525824 

 



14 

 

2.2.2  Concurrent write 

The ICE language is meant to provide an arbitrary Concurrent Read Concurrent Write (CRCW) PRAM 

model. However currently the ICE compiler does not have a built-in way to implement that. We define 

this utility instead to allow programs to use that feature: 

 

 

2.2.2.1 Usage 

This utility is handy for whenever there are multiple values to be written to a certain variable. Simply 

use it to perform the write by supplying a value to be written and the var to be written to.  

2.2.2.2 Usage example 

Example 4: assume that your program requires that in a certain step, there are going to be multiple 

writes to variable X 

 

 

Please remember that in arbitrary CRCW, you cannot make assumptions on which context managed to 

do the write successfully.  

void CWrite(int value, int &var); 

#include “ice.h” //must include this to be able to use ICE utilities 

INIT; // must run before using any of the ICE utilities 

 

int main() { 

     Int x; 

     …. 

     pardo (int I = 0; 100; 1) { 

 …. 

CWRITE (I,x); // legal 

…. 

     } 

     … 

     Printf(“value of x is %d“, x);  // prints the ID of the context that wrote to x successfully  

} 
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 ICE programs 
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3.1 The ICE Compiler  

The ICE compiler translates the program written in the ICE language into its equivalent implementation 

in XMTCC. As such many of the procedures used in compiling and executing the ICE program is very 

similar to the process discussed in the XMTCC manual and tutorial. 

For the programmers’ convenience, ICE.py is a one stop script that will facilitate the procedure of 

compiling the ICE program and the resultant XMTC program, and produce XMT binary that can be run on 

either the XMT FPGA, or the XMT simulator.  

3.1.1 Usage 

We start first by examining the Script Command Line 

ICE.py [options] -i <inputfile> -o <outputfile> 

-h --help Display this help message. 

-w Terminate compilation on warnings 

-g Produce a serial debug-able version of the original ICE program 

-I --Include Specify file or path to include 

-V --Verbose Verbose mode – Display all commands executed 

-D --Dirty Keep all Intermediary files 

--XBO specify Data file 

--SIM # Produce a binary to be used with the simulator with # TCUs 

 

This script requires the user to supply both an input source, and the name of the output file. The inputs 

are files with the extension .cpp. The outputs are files <filename>.sim and <filename>.b. When specifying 

the output all the user needs is to supply <filename> without any extensions. 

Therefore, if you have a file called example2.cpp, the command to compile this would be: 

 

This will produce two files ex2.b and ex2.sim, which you can use to execute them using the xmtfpga. It is 

worth noting that the script tells xmtc to dump a map of the global variables in GlobalMap.txt2. 

3.1.2 Including header and .xbo files 

To include header files, use the --Include option along with the path to the files to include. To link an XMT 

binary object (.xbo), use the --XBO flag and specify the files to include. 

 

3.1.3 Compiling for use with the XMT Simulator 

The ICE.py script will compile the ICE program for the FPGA by default. To compile an ICE source code 

into an XMT binary that can work with the simulator, you have to issue the --SIM option and then 

specify the number of TCUs you want to simulate. 

 

                                                           
2 Refer to the in section 10.6 in the XMTC toochain manual 

ICE.py –i example2.cpp –o ex2 

ICE.py –i example2.cpp –o ex2 --Include ICE.h --XBO example2.xbo 

ICE.py –i example2.cpp –o ex2 --SIM 1024 
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3.1.4 Debugging your ICE program 

To debug your ICE program, use the –g option. This option will produce a serial version of your program 

compiled using GCC with –g flag. This file can be executed on your machine and can be debugged using 

GDB (or its graphical frontend DDD). In this mode, the output filename that you provide will be the 

name of the executable produced by GCC. It simply goes like this: 

 

You can also use printf(“custom messages”) to debug your code, if you are not comfortable with GDB. 

ICE.py –i example2.cpp –o ex2 -g 


