
HW4: Graph Connectivity and Spanning Forests

Course: ENEE651/CMSC751
Title: Graph Connectivity and Spanning Forests
Date Assigned: April 11, 2014
Date Due: Part A – ICE: April 23, 2014, 11:59pm

Part B – XMTC: April 25, 2014, 11:59pm
Contact: ICE: Fady Ghanim - fghanim@umd.edu

XMTC: James Edwards - jedward5@umd.edu

1 Assignment Goal

Identify the connected components and a (not necessarily minimal) spanning forest for an undirected graph
G = (E,V) using the second connectivity algorithm described in section 11.2 of the class notes.

2 Problem Statement

Given an undirected graph G = (V,E), the second connectivity algorithm identifies the connected com-
ponents of G using log(n)-proportional iterations. Implement an algorithm to derive a (not necessarily
minimal) spanning forest from this algorithm.

Brief algorithm description. The definition of a spanning forest is given in Section 11.3 of the class
notes. To derive a (not necessarily minimal) spanning forest, you can record all the edges which are used
in the hooking steps of the Connectivity algorithm. More specifically, in the second connectivity algorithm,
you will need to record the edges used in the second and third step of the algorithm, as described on page
89 of the class notes, namely the Hooking on smaller and Hooking non-hooked-upon steps.
Note. The order in which the edges in the spanning forest are discovered and recorded is arbitrary. In fact,
for the same input graph, you might get different (correct) spanning forests at different runs.

The graph G is provided using the incidence list representation. See Figure 1.

3 Assignment

1. Implement the parallel algorithm for the second connectivity algorithm in the ICE language. Name
your code file connectivity.ice.cpp. You are not required to generate a spanning tree for this part.

2. Implement the parallel algorithm for generating a spanning forest using the Second Connectivity
Algorithm in the XMTC language. Name your code file connectivity.p.c.

1

3. Implement a serial algorithm for generating a spanning forest using a serial connectivity algorithm of
your choice. Name your code file connectivity.s.c.

Important: Both parallel and serial algorithms must be as efficient as possible. You will be graded based
on both correctness and efficiency of your implementations.

4 Input

4.1 Setting up the environment

To get the source file templates and the Makefile for compiling programs, log in to your account in the class
server and extract the connectivity.tgz using the following command:

$ tar xzvf /opt/xmt/class/xmtdata/connectivity.tgz

This will create the directory connectivity which contains the C file templates that you are supposed to edit,
a C file for checking correctness and a Makefile.

As opposed to the previous assignments, data files are not included in this package. Instead they are
located under /opt/xmt/class/xmtdata/connectivity. The Makefile system will automatically use the appro-
priate data files following your make commands so you don’t need to make a copy of them in your work
environment. You have the OS privileges to view the header files however you cannot edit them. You will
still have to use the entire path however when you compile your ICE code

4.2 Input Format

The type and size of the data structures provided is given in the following table.

#define N The number of vertices in the graph
#define M The number of edges in the graph (each edge counts twice)
int edges[M][2] The start and end vertex of each edge
int vertices[N] The index in the edges array, at which point the edges incident to vertex begin
int degrees[N] The degree of each vertex
int D[N] Result array: stores the result pointer graph
int spanforest[N-1][2] Result array: stores the edges in the spanning forest
int spanforest_size Result value: gives the number of edges in the spanning forest

degrees

vertices

m=12n=5

0 3 6 7 9

3 3 1 2 3

edges
0 1 2
1 1 4
2 1 5
3 2 1

4 2 3
5 2 5
6 3 2
7 4 1
8 4 5
9 5 1

10 5 2

11 5 4

5

1

2

34

Figure 1: Incidence lists representation

2

Declaration of temporary/auxiliary arrays: You can declare any number of global arrays and variables in
your program as needed. For example, this is valid XMTC code:

#define N 16384

int temp1[16384];
int temp2[2*N];
int pointer;

int main() {
//...

}

4.3 Data Sets

The following data sets are provided:

Dataset N M Header file Binary File
graph0 19 36 $DATA/graph0/connectivity.h $DATA/graph0/connectivity.xbo
graph1 50 400 $DATA/graph1/connectivity.h $DATA/graph1/connectivity.xbo
graph2 10000 40000 $DATA/graph2/connectivity.h $DATA/graph2/connectivity.xbo
graph3 20000 40000 $DATA/graph3/connectivity.h $DATA/graph3/connectivity.xbo

$DATA is /opt/xmt/class/xmtdata/connectivity. Note that each edge is listed twice in the input file. For
example, the undirected graph0 has only 18 edges.

Graph example. We have provided an example graph given by the dataset graph0 for debugging and
exemplification purposes. This corresponds to the graph in Figure 2.

1

3

5 2 8

4 10 9

0

6 7 13

15

16 17 18

14

11

12

Figure 2: Graph example: graph0 dataset.

4.4 Hints and Remarks

Separating concurrent reads and writes: Consider the first iteration of the algorithm applied to the graph
in Figure 2. Initially, nodes 14-17 each belong to a trivial rooted star that consists of only one node, as shown
in Figure 3.a.

3

In the Hooking on smaller step of the first iteration, the edges {(15,14),(16,15),(17,16)} will be used to
hook star 15 onto 14, star 16 onto 15 and star 17 onto 16 respectively. This is done by executing in parallel
D[D[u]] = D[v] for each edge (u,v) in the above set. In the PRAM algorithm, the execution proceeds in
a synchronous manner, where first all the processors read D[v] and D[u], then they all write D[D[u]]. The
result is the rooted tree shown in Figure 3.b.

This is the same hint from the previous assignment, and can be solved similarly by using separate arrays
for reads and writes. ICE, however follows the same lock-step model as PRAM, and can be approached as
such.

15 16 171614

14

15

16

17

(a) (b)

Figure 3: First iteration of the Second Connectivity algorithm applied on nodes 14-17 of the graph in Figure
2. (a) Initial state of the pointer graph. (b) The pointer graph after the Hooking on smaller step.

Resolving Concurrent Writes: In the second Connectivity algorithm, a rooted star is allowed to perform
at most one hooking per iteration (either in step 2 or in step 3 of the algorithm). In the PRAM algorithm,
the case where more than one hooking is possible is solved using concurrent writes in the Arbitrary CRCW
convention. This is the case for the ICE language as well.

For XMTC, we recommend using prefix-sums operation combined with a gatekeeper array; for example,
before hooking a rooted star onto a rooted tree using edge (u,v), execute a psm() instruction on an array
entry corresponding to D[u]. Proceed with the hooking operation only if the prefix-sum returns 0.

5 Compiling and executing via the Makefile system

You can use the provided makefile system to compile and run your programs. For the smallest data set
(graph0) parallel connectivity program is run as follows:

> make run INPUT=connectivity.p.c DATA=graph0

This command will compile and run the connectivity.p.c program with the dms1 data set. For other
programs and data sets, change the name of the input file and the data set. You can use the make check
command to compile and run your program and check the result for correctness.

4

> make check INPUT=connectivity.p.c DATA=graph0

If you need to just compile the input file (no run):

> make compile INPUT=connectivity.p.c DATA=graph0

You can get help on available commands with

> make help

Note that, you can still use the xmtcc and xmtfpga commands as in the earlier assignments. You can run
with the makefile system first to see the commands and copy them to command line to run manually.

Please use the ICE.py script to compile your ICE program. so in case of the example used above, the
command will look like this:

> ICE.py -Include ${DPTH}/graph0/connectivity.h -XBO ${DPTH}/graph0/connectivity.h
-i connectivity.ice.cpp -o connectivity.p

if successful the binary executable connectivity.p.b will be created. You can run that on the FPGA using
the following command:

> xmtfpga ssort.p.b

6 Grading Criteria and Submission

In this assignment, you will be graded on the correctness of your programs (connectivity.s.c and connec-
tivity.p.c) and the performance of your parallel implementation in terms of completion time. Performance
of your program will be compared against the performance of our reference implementation on graph2 and
graph3 data sets. The cycle count for the reference implementation on graph2 is 1.3M cycles and on graph3
it is 1M cycles. For graph2 this corresponds to a speedup factor of 4 over our serial implementation of the
connectivity algorithm. For graph3 the speedup factor is 7.6.

The correctness of your code will be checked via the make check rule as mentioned in the previous
section. You can inspect the code in the checks.c file to see what is being checked. You have to store your
results in the D, spanforest and spanforest_size global variables (see Section 4.2) in order for the checks to
be performed correctly.

Please remove any printf statements that you may have placed for debugging purposes from your code
as they will affect the performance and possibly break the automated grading script. Once you have the two
source files ready you can check the correctness of your programs1:

> make testall

check the validity of your submission:

> make submitcheck

and submit:

> make submit

1make testall command runs all possible combinations of programs and data files. Since it blocks the FPGA for a long time,
use this command judiciously in order not to inconvenience other users.

5

	Assignment Goal
	Problem Statement
	Assignment
	Input
	Setting up the environment
	Input Format
	Data Sets
	Hints and Remarks

	Compiling and executing via the Makefile system
	Grading Criteria and Submission

