
XMT-HW2: Shared-Memory Sample Sort

Course: ENEE759K/CMSC751
Title: Shared-Memory Sample Sort
Date Assigned: February 24, 2014
Date Due: Part A – ICE: March 7, 2014, 11:59pm

Part B – XMTC: March 10, 2014, 11:59pm
Contact: ICE: Fady Ghanim - fghanim@umd.edu

XMTC: James Edwards - jedward5@umd.edu

1 Assignment Goal

The goal of this assignment is to provide a randomized sorting algorithm that runs efficiently on XMT.
While you are allowed some flexibility as to what serial sorting algorithms to use for different steps of the
parallel algorithm, you should try to find and select the most efficient one for each case. The Sample Sort
algorithm follows a “decomposition first” pattern and is widely used on multiprocessor architectures. Being
a randomized algorithm, its running time depends on the output of a random number generator. Sample Sort
performs well on very large arrays, with high probability.

In this assignment, we propose implementing a variation of the Sample Sort algorithm that performs well
on shared memory parallel architectures such as XMT.

2 Problem Statement

The Shared Memory Sample Sort algorithm is an implementation of Sample Sort for shared memory ma-
chines. The idea behind Sample Sort is to find a set of p−1 elements from the array, called splitters, which
partition the n input elements into p groups set0 . . . setp−1. In particular, every element in seti is smaller than
every element in seti+1. The partitioned sets are then sorted independently.

The input is an unsorted array A. The output is returned in array Result. Let p be the number of processors.
We will assume, without loss of generality, that N is divisible by p. An overview of the Shared Memory
Sample Sort algorithm is as follows:

Step 1. In parallel, a set S of s× p random elements from the original array A is collected, where p is the
number of TCUs available and s is called the oversampling ratio. Sort the array S, using an algorithm
that performs well for the size of S. Select a set of p− 1 evenly spaced elements from it into S′:
S′ = {S[s],S[2s], . . . ,S[(p−1)× s]}
These elements are the splitters that are used below to partition the elements of A into p sets (or
partitions) seti, 0 ≤ i < p. The sets are set0 = {A[i] | A[i]< S′[0]}, set1 = {A[i] | S′[0]≤ A[i]< S′[1]},
. . . , setp−1 = {A[i] | S′[p−2]≤ A[i]}.

1

01

i1

p−1,1

C

C

C psp−1,1

ps01

i1ps

B 0 B 1 B p−1

jsum
global_ps0 global_psj global_psp−1

sum0 sump−1
global_psp

sum1
global_ps1

... ...

TCU 0:

TCU i:

TCU p−1:

1 j p−10

i,p−1

0,p−1

Bucket:

ij

0jps

ps C

Cps

C 00

C i0

Cp−1,0 psp−1,0

ps

ps

i0

00 C 0j

C ij

Cp−1,j p−1,j

C ps
0,p−1

ps
i,p−1

ps
p−1,p−1 p−1,p−1

N−10 N/p−1 2N/p−1 (p−1)N/p−1

...

...
...
...

Figure 1: The C matrix built in Step 2.

Step 2. Consider the input array A divided into p subarrays,
B0 = A[0, . . . ,(N/p)− 1], B1 = A[N/p, . . . ,2(N/p)− 1] etc. The ith TCU iterates through subarray
Bi and for each element executes a binary search on the array of splitters S′, for a total of N/p binary
searches per TCU. The following quantities are computed:

• ci j - the number of elements from Bi that belong in partition set j. The ci j makes up the matrix C
as in figure 1.

• partitionk - the partition (i.e. the seti) in which element A[k] belongs. Each element is tagged
with such an index.

• serialk - the number of elements in Bi that belong in setpartitionk but are located before A[k] in Bi.

For example, if B0 = [105,101,99,205,75,14] and we have S′ = [100,150, . . .] as splitters, we will
have c0,0 = 3, c0,1 = 2 etc., partition0 = 1, partition2 = 0 etc. and serial0 = 0, serial1 = 1, serial5 = 2.

Step 3. Compute prefix-sums psi, j for each column of the matrix C. For example, ps0, j ,ps1, j,. . . ,psp−1, j
are the prefix-sums of c0, j,c1, j,. . . ,cp−1, j.

Also compute the sum of column i, which is stored in sumi. Compute the prefix sums of the sum1, . . . ,sump
into global_ps0,...,p−1 and the total sum of sumi in global_psp. This definition of globalps turns out
to be a programming convenience.

Step 4. Each TCU i computes: for each element A[j] in segment Bi, i · N
p ≤ j < (i+1)N

p :

pos j = global_pspartition j + psi,partition j + serial j

Copy Result[pos j] = A[j].

2

Step 5. TCU i executes a (serial) sorting algorithm on the elements of seti, which are now stored in
Result[global_psi, . . . ,global_psi+1 −1].

At the end of Step 5, the elements of A are stored in sorted order in Result.

3 Hints and Remarks

Sorting algorithms The Sample Sort algorithm uses two other sorting algorithms as building blocks:

• Sorting the array S of size s× p. Any serial or parallel sorting algorithm can be used. Note that
for the “interesting” values of N (i.e. N � p), the size of S is much smaller than the size of the
original problem. An algorithm with best overall performance is expected.

• Serially sorting partitions of Result by each TCU. Any serial sorting algorithm can be used.
Remember to follow the restrictions imposed on spawn blocks, such as not allowing function
calls, and avoid concurrent reads or writes to memory.

Oversampling ratio The oversampling ratio s influences the quality of the partitioning process. When s
is large, the partitioning is more balanced with high probability, and the algorithm performs better.
However, this means more time is spent in sampling and sorting S. The optimum value for s depends
on the size of the problem. We will use a default value of s = 8 for the inputs provided.

Random numbers for sampling Step 1 requires using a random number generator. Such a library function
is not yet implemented on XMT. We have provided you with a pre-generated sequence of random
numbers as an array in the input. The number of random values in the sequence is provided as part of
the input. The numbers are positive integers in the range 0..1,000,000. You need to normalize these
values to the range that you need in your program. Use a global index into this array and increment
it (avoiding concurrent reads or writes) each time a random number is requested, possibly wrapping
around if you run out of random numbers.

Number of TCUs Although the number of TCUs on a given architecture is fixed (e.g. 1024 or 64), for the
purpose of this assignment we can scale down this number to allow easier testing and debugging. The
number of available TCUs will be provided as part of the input for each dataset.

Measuring Work and Depth to get the most meaningful measurement of work and depth you will need to
measure them for every step of the algorithm. That doesn’t mean that you need to measure them for
every statement that you write in your program, but rather in a place representative of the work and
depth of that step in the algorithm. For example, step 4 above will have an O(N/NTCU) time, and
O(N) work. so the result should be something of the same performance bounds.

4 Assignment

1. Parallel Sort: You are required to submit the solution in both ICE and XMTC.

• Write a parallel ICE program ssort.ice.cpp that Implements the described algorithm. Also pro-
vide a WD analysis of the Algorithm described and measure the work and depth of your imple-
mentation. Compare the results to your analysis.

3

• Write a parallel XMTC program ssort.p.c that implements the Shared Memory Sample Sort
algorithm. This implementation should be as fast as possible.

2. Serial Sort: Write a serial XMTC program ssort.s.c that implements a serial sorting algorithm. This
implementation will be used to for speedup comparison. You can use one of the serial sorting algo-
rithms implemented as part of sample sort, or you can write a different sorting algorithm.

No template files are provided with the homework distribution. You will create these files under the src
directory.

4.1 Setting up the environment

Log in to your account in the class server, copy the ssort.tgz file from /opt/xmt/class/xmtdata/ directory and
extract it using the following commands:

$ cp /opt/xmt/class/xmtdata/ssort.tgz ~
$ tar xzvf ssort.tgz

This will create the directory ssort with src and doc folders. Put your c files in src, and txt files to doc.

Data files are located at a common location in the server (/opt/xmt/class/xmtdata/ssort). If you use the
Makefile system explained in Section 4.4, you will not need to explicitly refer to this location. The provided
Makefile utilizes command line options to pass the paths to the header and data files to the compiler.

4.2 Input Format

The input is provided as an array of integers A.

#define N The number of elements to sort.
int A[N] The array to sort.
int s The oversampling ratio.
#define NTCU The number of TCUs to be used for sorting.
#define NRAND The number of random values in the RANDOM array.
int RANDOM[NRAND] An array with pregenerated random integers.
int result[N] To store the result of the sorting.

You can declare any number of global arrays and variables in your program as needed. The number of
elements in the arrays (n) is declared as a constant in each dataset, and you can use it to declare auxiliary
arrays. For example, this is valid XMTC code:

#define N 16384

int temp1[16384];
int temp2[2*N];
int pointer;

int main() {
//...

}

4

4.3 Data sets

The following datasets are provided for you to use with both your ICE and XMTC programs:

Dataset N NTCU Header File Binary file
d1 256 8 d1/ssort.h d1/ssort.xbo
d2 4096 8 d2/ssort.h d2/ssort.xbo
d3 128k 64 d3/ssort.h d3/ssort.xbo

The paths are given with respect to /opt/xmt/class/xmtdata/ssort, however you will not need the explicit path
unless you do not use the Makefile system. A data set can be chosen by passing a DATA argument to the
Makefile. See Section 4.4 for examples.
You will still need to provide the entire path when using them with ICE.

4.4 Compiling and Executing

For your convenience, a Makefile is provided with the homework distribution. You can use the provided
makefile system to compile and run your XMTC programs. To run the parallel SSORT on the d1 data set,
use the following command in the src directory:

> make run INPUT=ssort.p.c DATA=d1

This command will compile and run the ssort.p.c program with the d1 data set. For other programs and data
sets, change the the name of the input file and the data set.

If you need to just compile the input file (no run):

> make compile INPUT=ssort.p.c DATA=d1

You can get help on available commands with

> make help

Note that, you can still use the xmtcc and xmtfpga commands as in the earlier assignments. You can run
with the makefile system first to see the commands and copy them to command line to run manually. In case
of the example we used above, the commands will look like:

> xmtcc -include ${DPTH}/d1/ssort.h ${DPTH}/d1/ssort.xbo ssort.p.c -o ssort.p

where $DPT H is defined as /opt/xmt/class/xmtdata/ssort. If the program compiles correctly a file called
ssort.p.b will be created. This is the binary executable you will run on the FPGA using the following
command:

> xmtfpga ssort.p.b

Please use the ICE.py script to compile your ICE program. So in case of the example used above, the
command will look like this:

> ICE.py -include ${DPTH}/d1/ssort.h -XBO ${DPTH}/d1/ssort.xbo -i ssort.ice.cpp -o ssort.p

If successful the binary executable ssort.p.b will be created. You can run that on the FPGA using the
same command above.

5

5 Output

The array has to be sorted in increasing order. The array result should hold the array of sorted values.

Prepare and fill the following table: Create a text file named table.txt in doc. Remove any printf state-
ments from your code while taking these measurements. Printf statements increase the clock count.
Therefore the measurements with printf statements may not reflect the actual time and work done.

Dataset d1 d2 d3
Parallel sort clock cycles
Serial sort clock cycles

Note that a part of your grading criteria is the performance of your parallel implementation on the largest
dataset (d3). Therefore you should try to obtain the fastest running parallel program. As a guideline, for the
larger dataset (d3) our Serial Sort runs in 45526102 cycles, and our Parallel Sample runs in 9047152 cycles
(speedup ∼5x) on the FPGA computer.

Finally, please create a text file named analysis.txt in doc. This file should include the WD analysis of
the algorithm, and the WD measurements result that you did in the ICE program. Please show how the
measurements you made relate to the WD analysis of the algorithm for the different Datasets.

5.1 Submission

The use of the make utility for submission make submit is required. Make sure that you have the correct
files at correct locations (src and doc directories) using the make submitcheck command. Run following
commands to submit the assignment:

$ make submitcheck
$ make submit

5.2 Discussion about Serial Sorting Algorithms

In this assignment you need a serial sorting algorithm in three different places. First when you implement
the serial sorting itself to compare against your implementation, but also within the sample sort algorithm,
first to sort the array of samples S and later to sort in parallel the p segments. So choosing the right serial
sorting algorithm is very important. The discussion below should guide you and limit your search space
when looking for the best serial algorithms to use with sample sort.

In Table 1 the performance of four serial sorting algorithms is compared as well as the performance
of sample sort using some combinations of these algorithms. The serial algorithms are quicksort (QS),
heapsort (HS), bubble sort(BS) and bubble sort with termination check(BS+check)1. The notation “Sample
Sort(XX/YY)” indicates the parallel sample sort algorithm using the serial sorting algorithm XX in Step 1 to
sort array S and the serial sorting algorithm YY in Step 5.

The Table shows that the fastest serial algorithm of the ones compared is quicksort, heapsort comes
second, and bubblesort is too slow to get a cycle count for the largest dataset. Quicksort however is a
recursive algorithm, naturally implemented using recursive function calls. For that reason it was not used
for Step 5 (the QS/QS configuration was not implemented) since function calls are currently not supported
in parallel code. Students have been able to implement a non-recursive version of quicksort to use in Step 5
which gave improved performance.

1The algorithm checks after each of the N passes of the input array A[N] if there were any swaps. If not it terminates earlier.

6

Table 1: Table of cycle counts for different serial sorting algorithms and sample sort using different sorting
algorithms

Dataset d1 d2 d3
Serial(QS) 50302 1002756 45526102
Serial(HS) 64376 1562200 103129058
Serial(BS) 327350 96523199 timeout
Serial(BS+check) 340158 100349982 timeout

Sample Sort (QS/HS) 59011 1501593 9047152
Sample Sort (HS/HS) 59819 1502359 9101561
Sample Sort (QS/BS) 150381 83490620 timeout

7

	Assignment Goal
	Problem Statement
	Hints and Remarks
	Assignment
	Setting up the environment
	Input Format
	Data sets
	Compiling and Executing

	Output
	Submission
	Discussion about Serial Sorting Algorithms

