
XMT-HW1: Matrix-Vector Multiplication

Course: ENEE459P/ENEE699
Title: Matrix-vector multiplication (matvec)
Date Assigned: September 27th, 2010
Date Due: October 11, 2010, 11:59pm Central Time
Contact: Fuat Keceli – keceli@umd.edu

1 Assignment

Your assignment is to implement a parallel algorithm in XMTC to multiply a sparse matrix with a dense
vector 1. Your parallel algorithm should be as fast as possible. Use the data structures described in the
next section. Your implementation should satisfy the following:

- Each row will be handled by a single thread.

- No thread will handle more than one row.

Before you begin, you may want to read the XMTC Tutorial and complete the examples mentioned
there. If you need further information and examples about using the XMT tools, you can also refer to
the XMTC Quick Reference document available from the class assignment webpage.

2 Data structures

In this assignment the sparse matrix is represented using the following three data structures:

- rowptr array: For each row i of the sparse matrix, rowptr[i] contains the index number of the
first nonzero element in this row. This index can be used in col_ind and values arrays (see below).
If row i does not contain a non-zero element (i.e. it is all zeros), then rowptr[i] == rowptr[i+1].
This array has m + 1 elements where m is the number of rows in the matrix. The last element of
this row points to the outside of the col_ind and values array to indicate that there are no more
non-zero numbers.

- col_ind array: This array contains the column indices of the non-zero elements. If the matrix
element at row i column j is a non-zero element, then for some k such that 0 ≤ k < rowptr[i +
1]− rowptr[i], col_ind[rowptr[i]+ k] == j.

- values array: This array contains the values of non-zero elements. This array is indexed similar
to the col_ind array. If the matrix element at row i column j has the non-zero value v, then for
some k such that 0≤ k < rowptr[i+1]− rowptr[i], values[rowptr[i]+ k] == v.

Consider the 6x7 sparse matrix in Figure 1. The above described data structures corresponding to
this matrix can be seen in Figure 2.

1A related assignment was first given at the University of California, Santa Barbara at the end of a graduate course based
on the parallel programming language MPI. The current assignment was developed to allow comparative study of program
development-time for XMTC vs MPI. See http://www.umiacs.umd.edu/users/vishkin/XMT/HochsteinBVG-journal-paper.pdf

1

A =

0 0 3 0 1 4 0
0 2 0 0 6 1 0
1 0 0 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 2 0

Figure 1: Example 6x7 sparse matrix

rowptr

col_ind

values

row: 0 1 2 3 4 5

End

0 3 6 7 8 8 10

2 4 5 1 4 5 0 3 3 5

3 1 4 2 6 1 1 3 1 2

Figure 2: Implementation

2.1 Setting up the environment

The header files and the binary files can be downloaded from /opt/xmt/class10_fall/xmtdata. To get the
data files, log in to your account in the class server and copy the matvec.tgz file from directory using the
following commands:

$ cp /opt/xmt/class10_fall/xmtdata/matvec.tgz ~
$ tar xzvf matvec.tgz

This will create the directory matvec with following folders: data, src, and doc. Data files are available
in data directory. Put your c files to src, and txt files to doc.

3 Questions

1. Serial implementation:

(a) Describe the serial algorithm of matvec in file algorithm.s.txt

(b) Provide a brief work and time complexity analysis of this algorithm. Append this analysis
to the file algorithm.s.txt

(c) Write the XMTC serial program that executes this algorithm. Use matvec.s.c that is given
to you in src. Write your code to the place indicated in the file. Please do not modify the
marked region, you will use that region to check the correctness of your program.

(d) Run this program using 4 sets of data given in the Input section.

(e) Collect the number of clock cycles for each run and fill out the table in doc/table.txt using
this information (see Output section).

2. Parallel implementation:

2

(a) Describe the parallel algorithm of matvec in file algorithm.p.txt

(b) Provide a brief work and time complexity analysis of this algorithm. Append this analysis
to the file algorithm.p.txt

(c) Write the XMTC parallel program that executes this algorithm. Use matvec.p.c that is given
to you in src. Write your code to the place indicated in the file. Please do not modify the
marked region, you will use that region to check the correctness of your program.

(d) Run this program using 4 sets of data given in the Input section.

(e) Collect the number of clock cycles for each run and fill out the table in doc/table.txt using
this information (see Output section).

3.1 Input format

#define m The number of rows in the sparse matrix
#define n The number of columns in the sparse matrix
#define nnz The number of non-zero elements in the sparse matrix
int rowptr[m+1] For each row this arrays contains an index number for col_ind

and values arrays
int col_ind[nnz] This array contains the column indices of each non-zero element
int values[nnz] This array contains the values of each non-zero element
int vector[n] This array contains the values of each element of the column vector, that

you’re going to multiply with the sparse matrix
int result[m] The result vector. The result of the matrix-vector multiplication will be

written into this vector

Table 1: Input format

You can declare any number of global arrays and variables in your program as needed. The number
of elements in the arrays (m, n, and nnz) are declared as a constant in each dataset, and you can use those
to declare auxiliary arrays. For example, this is valid XMTC code:

#define N 16384

int temp1[16384];
int temp2[2*N];
int pointer;

int main() {
//...
}

3.2 Data sets

Run all your programs (serial and parallel) using the following data files. You can directly include the
header file into your XMTC code with #include or you can include the header file with the compile
option -include. The binary file that contains the data (.xbo file) should be passed to the compiler as
shown in “ Testing the program” section.

3

Description Data Set Header File Binary file Max. non-zero
elements / row

Small m = 50, n = 100 data/small/matvec.h data/small/matvec.xbo 5
nnz = 110

Medium m = 400, n = 100 data/medium/matvec.h data/medium/matvec.xbo 9
nnz = 826

Large m = 10000, n = 100 data/large/matvec.h data/large/matvec.xbo 10
nnz = 19872

X-Large m = 30000, n = 100 data/xlarge/matvec.h data/xlarge/matvec.xbo 10
nnz = 60130

Table 2: Header files

4 Testing the program

You can test the correctness of your programs with the result data given in data sets as follows:

> xmtcc matvec.p.c -include ../data/small/matvec.h ../data/small/matvec.xbo \
-D PRINT_RESULT -quiet -o matvec.p

> xmtfpga matvec.p.b -o myFileSmall.txt
> diff -b myFileSmall.txt ../data/small/resultFileSmall.txt

If the diff command does not give any output, it means that you have the same result value and your
program is right. Don’t forget the -b option.

IMPORTANT: The FPGA has limited reserved space for standard output right now. This causes
problems when while using printf statements to test the output of larger programs, such as matvec for
the XLarge testcase. In particular, if you run your reference solution with that dataset and compare the
outputs, you will notice that the result is truncated and diff with the provided result will fail. Use the
standard output only to test the first 3 dataset (small, medium and large), and not the largest one
(xlarge).

4.1 Output

Fill the following table: A text file named table.txt in doc is already created for you. Fill out the table
in this text file using white spaces to indent the fields. This text file will be parsed automatically by a
script so it is important to adhere to the format. Remove any printf statements from your code while
taking these measurements. Printf statements increase the clock count. Therefore the measurements
with printf statements may not reflect the actual time and work done.

Input size Small Medium Large X-large
matvec.s.c
matvec.p.c

Table 3: Clock cycles will be written to table.txt

Note that, a part of your grading criteria is the performance of your parallel implementation. There-
fore you should try to obtain the fastest running parallel program. As a guideline, following are the
cycle counts for our reference serial and parallel implementations on the FPGA computer. Serial im-
plementation: 3653342 clock cycles, parallel implementation: 214319 clock cycles, parallel speedup:
∼17x.

4

4.2 Submission

The use of the make utility for submission make submit is required. Make sure that you have the correct
files at correct locations (src and doc directories) using the make submitcheck command. Run following
commands to submit the assignment:

$ make submitcheck
$ make submit

5

