
HW4: Shared-Memory Sample Sort

Course: ENEE159V/H, Spring 2009
Title: Shared-Memory Sample Sort
Date Assigned: March 26th, 2009
Date Due: April 15th, 20093:30pm

1 Assignment Goal

The goal of this assignment is to provide a randomized sorting algorithm that runs efficiently on XMT.
The Sample Sort algorithm follows a "decomposition first" pattern and is widely used on multiprocessor
architectures. Being a randomized algorithm, its running time depends on the output of a random number
generator. Sample Sort performs well on very large arrays, with high probability.

In this assignment, we propose implementing a variation of the Sample Sort algorithm that performs
well on shared memory parallel architectures such as XMT.

2 Problem Statement

The Shared Memory Sample Sort algorithm is an implementation of Sample Sort forshared memory
machines. The idea behind Sample Sort is to find a set ofp−1 elements from the array, calledsplitters,
which partition then input elements intop groupsset[0] . . .set[p−1]. In particular, every element in
set[i] is smaller than every element inset[i +1]. The partitioned sets are then sorted independently.

The input is an unsorted arrayA. The output is returned in arrayResult. Let p be the number of
processors. We will assume, without loss of generality, thatN is divisible by p. An overview of the
Shared Memory Sample Sort algorithm is as follows:

Step 1. In parallel, a setSof s× p random elements from the original arrayA is collected, wherep is
the number of TCUs available ands is called the oversampling ratio. Sort the arrayS, using an
algorithm that performs well for the size ofS. Select a set ofp−1 evenly spaced elements from
it into S′: S′ = {S[s],S[2s], . . . ,S[(p−1)×s]}

These elements are the splitters that are used below to partition the elements ofA into p sets (or
partitions) set[i], 0≤ i < p. The sets areset[0] = {A[i] | A[i] < S′[0]}, set[1] = {A[i] | S′[0] <
A[i] < S′[1]}, . . . ,set[p−1] = {A[i] | S′[p−1] < A[i]}.

Step 2. Consider the input arrayAdivided intopsubarrays,B[0] = A[0, . . . ,N/p−1], B[1] = A[N/p, . . . ,2N/p−
1] etc. Theith TCU iterates through subarrayB[i] and for each element executes a binary search
on the array of splittersS′, for a total ofN/p binary searches per TCU. The following quantities
are computed:

• c[i][j] - the number of elements fromB[i] that belong in partitionset[j]. Thec[i][j] makes up
the matrixC as in figure 1.

1

Figure 1: TheC matrix built in Step 2.

• partition[k] - the partition (i.e. theset[i]) in which elementA[k] belongs. Each element is
tagged with such an index.

• serial[k] - the number of elements inB[i] that belong inset[partition[k]] but are located
beforeA[k] in B[i].

For example, ifB[0] = [105,101,99,205,75,14] and we haveS′ = [100,150, . . .] as splitters, we
will have c[0][0] = 3, c[0][1] = 2 etc.,partition[0] = 1, partition[2] = 0 etc. andserial[0] = 0,
serial[1] = 1, serial[5] = 2.

Step 3.1 Compute prefix-sumsps[i][j] for eachcolumnof the matrixC. For example,ps[0][j],ps[1][j],. . . ,ps[p−
1][j] are the prefix-sums ofc[0][j],c[1][j],. . . ,c[p−1][j].

Also compute the sum of columni, which is stored insum[i].

Hint: For convenience, you can use a serial prefix-sum algorithm for eachcolumn, and start them
all in parallel. Note that the ordering of the prefix-sum values is important, and you cannot use
the XMT ps() or psm() instructions.

Step 3.2 Compute the prefix sums of thesum[1], . . . ,sum[p] into global_ps[0, . . . , p− 1] and the to-
tal sum ofsum[i] in global_ps[p]. This definition ofglobal_ps turns out to be a programming
conveninence.

Hint: You can also use a serial prefix-sum algorithm here. Since the number ofinput elements
is small (equal with the number of processorsp), it is not worth using a parallel prefix-sum algo-
rithm, such as the one in the class notes.

Step 4. Each TCUi computes: for each elementA[j] in segmentB[i], i · N
p ≤ j < (i +1)N

p −1:

pos[j] = global_ps[partition[j]]+ ps[i][partition[j]]+serial[j]

CopyResult[pos[j]] = A[j].

2

Step 5. TCU i executes a (serial) sorting algorithm on the elements ofset[i], which are now stored in
Result[global_ps[i], . . . ,global_ps[i +1]−1].

At the end of Step 5, the elements ofA are stored in sorted order inResult.

3 Hints and Remarks

Sorting algorithms The Sample Sort algorithm uses two other sorting algorithms as building blocks:

• Sorting the arraySof sizes× p. Any serial or parallel sorting algorithm can be used. Note
that for the "interesting" values ofN (i.e. N ≫ p), the size ofS is much smaller than the size
of the original problem. An algorithm with best overall performance is expected.

• Serially sorting partitions ofResultby each TCU. Any serial sorting algorithm can be used.
Remember to follow the restrictions imposed on spawn blocks, such as not allowing function
calls, and avoid concurrent reads or writes to memory.

Oversampling ratio The oversampling ratios influences the quality of the partitioning process. When
s is large, the partitioning is more balanced with high probability, and the algorithm performs
better. However, this means more time is spent in sampling and sortingS. The optimum value for
sdepends on the size of the problem. We will use a default value ofs= 8 for the inputs provided.

Random numbers for sampling Step 1 requires using a random number generator. Such a library
function is not yet implemented on XMT. We have provided you with a pre-generated sequence
of random numbers as an array in the input. The number of random valuesin the sequence is
provided as part of the input. The numbers are positive integers in the range 0..1,000,000. You
need to normalize these values to the range that you need in your program. Use a global index
into this array and increment it (avoiding concurrent reads or writes) each time a random number
is requested, possibly wrapping around if you run out of random numbers.

Number of TCUs Although the number of TCUs on a given architecture is fixed (e.g. 1024 or64),
for the purpose of this assignment we can scale down this number to allow easier testing and
debugging. The number of available TCUs will be provided as part of the input for each dataset.

Testing for correctness For the larger data-sets, it is impractical to test the correctness of your algo-
rithm by printing all the elements of the result. Instead, you can add a testing step at the very
end of the implementation which simply iterates through all the elements in theresult array and
tests that they are in increasing order. Make sure to remove or comment outthis test before you
submit your program or collect cycle counts, since it will significantly affect the performance of
your program.

Register spills There is currently an issue on XMT which occurs when the body of a spawn block
exceeds a certain complexity. Please refer to Appendix A for more information on how to deal
with this problem, if you encounter it while solving this assignment.

4 Assignment

1. Parallel Sort: Write a parallel XMTC program ssort.p.cthat implements the Shared Memory
Sample Sort algorithm. This implementation should be as fast as possible.

3

2. Serial Sort: Write a serial XMTC program ssort.s.cthat implements a serial sorting algorithm of
your choice. This implementation will be used to for speedup comparison. Youcan use one of the
serial sorting algorithms implemented as part of sample sort, or you can write a different sorting
algorithm. This implementation should be as fast as possible.

4.1 Setting up the environment

The header files and the binary files can be downloaded from the web using the following commands:

$ wget http://terpconnect.umd.edu/~jspeiser/ssort.tgz
$ tar xzvf ssort.tgz

This will create the directoryssortwith following folders:data, src, anddoc. Data files are available in
data directory. Put yourc files tosrc, andtxt files todoc.

4.2 Input Format

The input is provided as an array of integersA.

#define N The number of elements to sort.
int A[N] The array to sort.
int s The oversampling ratio.
#define NTCU The number of TCUs to be used for sorting.
#define NRAND The number of random values in the RANDOM array.
int RANDOM[NRAND] An array with pregenerated random integers.
int result[N] To store the result of the sorting.

You can declare any number of global arrays and variables in your program as needed. The number of
elements in the arraysN is declared as a constant in each dataset, and you can use it to declare auxiliary
arrays. For example, this is valid XMTC code:

#define N 16384

int temp1[16384];
int temp2[2*N];
int pointer;

int main() {
//...
}

4.3 Data sets

Run all your programs (serial and parallel) using the data files given in thefollowing table. You can
directly include the header file into your XMTC code with#includeor you can include the header file
with the compile option-include. To run the compiled program you will need to specify the binary data
with –data-fileoption.

Dataset N NTCU Header File Binary file
d1 256 8 data/d1/ssort.h data/d1/ssort.xbo
d2 4096 8 data/d2/ssort.h data/d2/ssort.xbo
d3 128k 64 data/d3/ssort.h data/d3/ssort.xbo

4

5 Output

The array has to be sorted inincreasingorder. The arrayresult should hold the array of sorted values
for both the serial and parallel solutions.

Prepare and fill the following table: Create a text file named table.txtin doc. Remove anyprintf
statements from your code while taking these measurements.Printf statements increase the clock
count. Therefore the measurements with printf statements may not reflect the actual time and work done.

Dataset d1 d2 d3
Parallel sort clock cycles
Serial sort clock cycles

5.1 Submission

NOTE: When performing the archiving, do not include the entire ssort directory, just archive the src and
doc folders. Run the following commands to submit the assignment:

$ tar czvf selection.tgz doc/ src/

5

A Avoiding register spills in XMTC

The following restriction applies when programming in XMTC at this time.
Currently the only local storage available to threads is in the TCU registers. Therefore, when pro-

gramming in XMTC, special care has to be taken not to overflow the capacity of this storage. Registers
are used to store local variables and temporary values. The compiler doesa series of optimizations to fit
everything into registers, but in some cases when a parallel section is long and complex, it fails to do so
and additional storage is required.

At the present time, if the compiler detects such a situation, compilation will fail with the error
message:"Register spill detected in spawn block. Aborting compilation."

The solution is to split the spawn block into shorter, simpler parallel sections for which the registers
provide enough storage. At the present time, if you get an error message from the compiler regarding
register spills, you will have to change the code by splitting the spawn sectionsyourself. There is no
general recipe for this, you will have to use your knowledge of the application to chose how to change
the code.

Here is a simple example. In the code in the left column below, the value x is used at the beginning
and the end of the tread, but not in the middle. However, this usually requires a register to be allocated
to x and reserved throughout the whole parallel section. This increasesthe register pressureand might
lead to a register spill, if thecode1 andcode2 sections are complex and require using local registers as
well.

An immediate possible solutionis presented in the righthand column below: the parallel section
is split into two, and x is re-assigned closer to the end, thus reducing the register pressure and possibly
avoiding a register spill.

Initial code
High register pressure

spawn(low, high) {
int i, x = A[$];
for (i=0; i<5; i++) {

B[$+i] = x;
// .. code 1 .. //

}
for (i=0;i<5;i++) {

// .. code 2 .. //
}
C[$] = x;

}

Transformed code
Register pressure is lower

spawn(low, high) {
int i, x = A[$];
for (i=0; i<5; i++) {

B[$+i] = x;
// .. code 1 .. //

}
} // join

spawn(low,high) {
int i, x;
for (i=0;i<5;i++) {

// .. code 2 .. //
}
x = A[$];
C[$] = x;

} // join

A medium-term solution, which is currently under development, is to use a parallel stack, stored in
shared memory. However, there is a performance issue with this solution: storing and retrieving values
from shared memory is much slower than the registers, and can significantly affect running time of the
parallel section (for example if the memory access occurs in a loop).

The long term ideal solutionwill include the following ingredients:

• increasing the number of registers available

6

• adding some type of local memory to the TCUs (e.g. cluster buffers or scratch-pads) and retarget-
ting register spills to them (instead of shared memory)

• have the compiler perform spawn block splitting (as showed above) to minimize using the stack
and generate the optimal code without the programmer’s assistance

• use data prefetching mechanisms to reduce the penalty of a register spill to memory.

7

	Assignment Goal
	Problem Statement
	Hints and Remarks
	Assignment
	Setting up the environment
	Input Format
	Data sets

	Output
	Submission

	Avoiding register spills in XMTC

