
HW2: Integer Sort & Radix Sort

Course: ENEE159V/H, Spring 2009
Title: Integer Sort
Date Assigned: February 26th, 2009
Date Due: Friday March 13th 3:30pm, 2009
Contact: Jonathan Speiser - jspeiser@umd.edu

1 Assignment Goal

The goal of this assignment is to implement theInteger Sorting andRadix Sort algorithms presented in
the class notes (Section 6) in XMTC and run it on the XMT Simulator. The input isan array A[1..n] of
integers in the range[0..r−1].

For Integer Sort we will assume thatn is divisible byr andr =
√

n. The goal is to rank the elements
of the input array from smallest to largest.

For Radix Sort we will assume thatr = n2. The goal is to sort the elements of the input array from
smallest to largest.

2 Description of Integer Sort

Please be aware that this description is slightly different from that in the class notes.
Step 1. Partition A into n/r subarrays:B0 = A[0..r−1], B1 = A[r..2r−1],. . . , Bn/r−1 = A[n− r..n−1].
Using serial bucket sort (see Exercise 12 if you don’t remember serial bucket sort), sort each subarray
independently in parallel. Also compute :

1. number(v,s): the number of elements of subarrayBs that have valuev

2. serial(i): the number of elementsA(j) such thatA(j) = A(i) and precede elementi in its subarray
Bs (i.e.,serial(i) counts onlyj < i, where⌊ j/r⌋ = ⌊i/r⌋ = s), for 1≤ i ≤ n.

Example:B1 = (2,3,2,2) (r=4). Then,number(2,1) = 3, andserial(3) = 1.

Step 2.Separately (and in parallel) for each value 0≤ v≤ r−1 compute the prefix-sums ofnumber(v,0),
number(v,1) .. number(v,n/r−1) into ps(v,0), ps(v,1) . . . ps(v,n/r−1), and their sum (the number
of elements whose value is v) intocardinality(v). For this algorithm, the definition of prefix sum at
positionx is the sum of elements[0..x−1], i.e., ps[x] = ∑x−1

i=0 A[i], andps[0] = 0. Thereforeps(v,0) = 0
andglobalPS(0) = 0 in step 3. Also note thatps is an XMTC keyword, so use a different name for your
array when you code this step.

Step 3.Compute the prefix sums ofcardinality(0), cardinality(1) . . .cardinality(r−1) into globalPS(0),
globalPS(1) . . .globalPS(r−1).

Step 4.In parallel for every element i (0≤ i ≤ n−1), compute its rank:

rank(i) = serial(i)+ ps(v,s)+globalPS(v)

wherev = A(i) andBs the subarray of elementi (s = ⌊i/r⌋)

1

0

v−1
v

r−1

Bs−1

Serial(i)−

v

v−1
iiv

v−1

Bs

v−1
v

0 0 0

r−1r−1r−1

B0 Bn/r−1

PS(v,s)−

globalPS(v)−

3 Description of Radix Sort

Radix sort uses integer sort as its base so it is advisable to tackle it after you finish integer sort. As
mentioned in the introduction the ranger of values for radix-sort is larger than the number of elements
to sortn and for that reason using a parallel integer sort or a serial bucket sort is inefficient. Radix sort
overcomes the issue of a larger range by sortingk times, each time taking into account only a portion of
the actual value of the input elements.

Imagine having the binary representation (since we are working on computers) of a valuev of the
input (v ∈ [0..r−1]). It is b = log2 r bits long. Now break it up ink segments, eachl = b/k bits long
(assume thatb is divisible byk). Radix sort works ink rounds sorting the input elements not using their
value, but the value of theirith segment, starting from the one that contains the least significant bit, and
moving up towards the most significant bit.

As an example we present the case where k=2:

Step 1.Apply the integer sorting algorithm to sort the input arrayA using
A(1)(mod

√
r), A(2)(mod

√
r), . . . ,A(n)(mod

√
r) as keys.

If the computed rank of elementi is j thenB(j) := A(i).

Step 2.Apply the integer sorting algorithm again, now on arrayB using
⌊B(1)/

√
r⌋, ⌊B(2)/

√
r⌋, . . . ,⌊B(n)/

√
r⌋ as keys.

4 Assignment

1. Serial Sort: Implement a stable (order preserving) serial sort in XMTC (a template program
isort.s.c is provided). While you can choose any algorithm you want, you probablywant to im-
plement an order preserving bucket sort, since it will be used as part of the parallel sort. The serial
implementation will be used to calculate the speedup achieved by the parallel implementation.

2. Parallel Integer Sort: Implement the parallel integer sorting algorithm described above (and in
your class notes) in XMTC (a template programisort.p.c is provided).

3. Serial Radix Sort: Implement serial radix sort in XMTC withk = 2. Save your program as
rsort.s.c

2

4. Parallel Radix Sort: Implement parallel radix sort in XMTC. Start withk = 2, see why that choice
of k, while adequate for the serial version, is inadequate for the parallel version, and implement it
for k = 4 as well. Save your program asrsort.p.c

4.1 Setting up the environment

To get the data files, use the following commands:

$ wget http://terpconnect.umd.edu/~jspeiser/isort.tgz
$ tar xzvf isort.tgz

This will create the directoryisort with following folders:data, src, anddoc. Data files are available in
data directory. Edit thec files in src, and thetxt file in doc.

4.2 Input Format for Integer Sort

The input is provided as an array of integersA.

#define N The number of elements to sort.
#define R The number different values. Values will be in[0..R−1].
#define NbyR The value ofN/R. Also the number of sub-arrays in Step 1.
int A[N] The array to sort.
int rank[N] To store the resulting ranks.

You can declare any number of global arrays and variables in your program as needed. The number of
elements in the arrays (N), the number of values (R) and their quotient (NbyR) are declared as constants
in each dataset, and you can use them to declare auxiliary arrays. For example, this is valid XMTC code:

int serial[N];
int prefixSum[R][NbyR];

int main() {
//...
}

4.3 Input Format for Radix Sort

The input is provided as an array of integersA.

#define N The number of elements to sort.
#define R The number different values. Values will be in[0..R−1].
int A[N] The array to sort.
int result[N] To store the sorted elements.

4.4 Data sets for Integer Sort

Both the serial and parallel versions of your program will be using the data files given in the following
table. You can directly include the header file into your XMTC code with#include or you can include
the header file with the compile option-include.

Dataset N R Header File Binary file
d1 256 16 data/d1/isort.h data/d1/isort.xbo
d2 4096 64 data/d2/isort.h data/d2/isort.xbo
d3 64k 256 data/d3/isort.h data/d3/isort.xbo

3

4.5 Data sets for Radix Sort

Both the serial and parallel versions of your program will be using the data files given in the following
table. You can directly include the header file into your XMTC code with#include or you can include
the header file with the compile option-include.

Dataset N R Header File Binary file
d1 256 64K data/d1/rsort.h data/d1/rsort.xbo
d2 4096 16M data/d2/rsort.h data/d2/rsort.xbo
d3 64k 4G data/d3/rsort.h data/d3/rsort.xbo

Note that the large dataset has values from[0..4G−1] = [0..232−1] but since an integer only has 32
bits and it is signed the values are really only in[0..231−1].

4.6 Compiling and Executing

You can compile the parallel program using the following command line for the small dataset (d1):

> xmtcc -include ../data/d1/isort.h ../data/d1/isort.xbo isort.p.c -o isort.p

If the program compiles correctly a file calledisort.p.b will be created. This is the binary exe-
cutable you will run on the simulator using the following command:

> xmtsim isort.p.sim -binload isort.p.b

If you wish to have the rank printed on the screen by the program compile using the-D PRINT_RESULT
flag. For larger datasets we will provide a textual memory dump of the rank array. To compare your
results against them use the following command when running the program:

> xmtsim isort.p.b --memdump dump --dumpvar rank

After the execution, a file calleddump will be left in the directory and you can compare it usingdiff
to the provided correct solution.

Adapt the above commands to compile the radix sort programs as well.

4.7 Debugging

In order to test you integer sort implementation you need to write a procedurethat runs two simple tests
on the output of the sorting program, therank array. The tests are:

1. Check that the ranks in the rank array appear exactly once and are inthe range of[0..N −1].

2. Check that ranking produces an array that is indeed sorted in ascending order.

Your testing routines should be derived from the most efficient PRAM algorithms you can design.
Please report intable.txt (see Section 4.8) the parallel complexity of these algorithms.

Provide pseudo-code for your checks at the end of thetable.txt (see Section 4.8 below) as well
as their work and time complexity for full credit.

4

4.8 Output

The input arrayA has to be ranked inincreasing order, as described in Section 2. The ranking should
be order-preserving (i.e. ifA[i] = A[j], andi < j thenrank[i] < rank[j]) and it should be stored in array
rank.

Fill-in the text file calledtable.txt in the doc directory. Remember to remove anyprintf
statements from your code before taking measurements, as wellas any checking code.Printf
statements and checking code (see Section 4.7) increase the clock count. Therefore the measurements
with printf statements may not reflect the actual time and work done.

Note that a part of your grading criteria is the performance of your parallel implementation on the
largest dataset (d3) for both integer-sort and radix-sort. Therefore you should try to obtain the fastest
running parallel program. As a guideline, for the larger dataset (d3) our serial isort runs in 6877346
cycles, and our parallel isort runs in 777748 cycles (speedup∼8.8) on the XMT FPGA computer.

Dataset d1 d2 d3
Parallel isort clock cycles
Serial isort clock cycles

Dataset d1 d2 d3
Parallel rsort clock cycles
Serial rsort clock cycles

Check Time Complexity Work Complexity
Each ranki ∈ [0..N −1] appears exactly once
The resulting array is indeed sorted

4.9 Submission

For this project, all work should be contained within the isort directory. Upon completing the project
use the following command:

$ tar czvf homework2.tgz isort

5

	Assignment Goal
	Description of Integer Sort
	Description of Radix Sort
	Assignment
	Setting up the environment
	Input Format for Integer Sort
	Input Format for Radix Sort
	Data sets for Integer Sort
	Data sets for Radix Sort
	Compiling and Executing
	Debugging
	Output
	Submission

