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Abstract

Many tasks in day-to-day life involve interactions among several people. Many of these interactions involve negotiating over a
desired outcome. Negotiation in and of itself is not an easy task, and it becomes more complex under conditions of incomplete
information. For example, the parties do not know in advance the exact tradeoff of their counterparts between different outcomes.
Furthermore information regarding the preferences of counterparts might only be elicited during the negotiation process itself.
In this paper we propose a model for an automated negotiation agent capable of negotiating with bounded rational agents under
conditions of incomplete information. We test this agent against people in two distinct domains, in order to verify that its model
is generic, and thus can be adapted to any domain as long as the negotiators’ preferences can be expressed in additive utilities.
Our results indicate that the automated agent reaches more agreements and plays more effectively than its human counterparts.
Moreover, in most of the cases, the automated agent achieves significantly better agreements, in terms of individual utility, than the
human counterparts playing the same role.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Various tasks in day-to day life require negotiation capabilities. These can be as simple and ordinary as haggling
over a price in the market, through deciding what show to watch on TV. On the other hand, it can also involve issues
over which millions of lives are at stake, such as interstate disputes [25] and nuclear disarmament [9]. No matter what
the domain, the negotiation process itself is not an easy task. The parties will have conflicting interests with reference
to some aspects of the negotiation. On the other hand, both sides might also have the incentive to cooperate with each
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other, as reaching an agreement could be more beneficial for them than walking away without any agreement ([20],
Chapter 7).

Negotiation is a profession, yet on many occasions, ordinary people need to become involved in negotiation tasks.
Thus, success in modeling such an agent has great advantages and implications: from using it for training people in
negotiations, to assisting in e-commerce environments, as well as for the development of tools for modeling negotia-
tion behavior in general. We propose a model of such an automated agent. Thus, we make a significant contribution
in this respect.

With regard to the negotiation model, we consider a setting of a finite horizon bilateral negotiation with incomplete
information between an automated agent and a human counterpart. The negotiation is said to have a finite horizon
if the length of every possible history of the negotiation is finite ([20], p. 90). Incomplete information is expressed
as uncertainty regarding the utility preferences of the opponent, and we assume that there is a finite set of different
agent types. The negotiation itself consists of a finite set of multi-attribute issues and time-constraints. The negotiation
consists of multi-attribute issues if the parties have to negotiate an agreement which involves several attributes for each
issue. This can help in making complex decisions while taking into account multiple factors [10]. Costs are assigned
to each agent, such that during the negotiation process, the agents might gain or lose utility over time. If no agreement
is reached by the given deadline a status quo outcome is enforced.

Our automated agent is capable of negotiating efficiently in such environments, as our experimental results show.
Nonetheless, in order to allow our agent to negotiate efficiently in these settings, we had to decide how to allow it
to deal with the uncertainty both regarding the environment and the opponent. To achieve this, we incorporated two
mechanisms in the automated agent. The first deals with incomplete information regarding the opponent by using a
practical learning algorithm based on Bayes’ theorem which updates the agent’s beliefs regarding its opponent. The
second mechanism deals with the bounded rationality of the opponent. While our model applies utility functions, it
is a based on a non-classical decision making method. Instead of focusing on maximizing the expected utility, we
are motivated by qualitative decision making approaches [4,24] and we use the maximin function and the qualitative
valuation of offers in our model. Using these methods our automated agent generates offers and decides whether to
accept or reject proposals it has received.

We conducted three sets of experiments in which we matched our automated agent against (a) human negotiators,
(b) an automated agent following an equilibrium strategy, and (c) against itself—that is, the same models of an agent
playing both sides. The experiments were run on two distinct domains. In the first domain, England and Zimbabwe
negotiate in order to reach an agreement evolving from the World Health Organization’s Framework Convention on
Tobacco Control, the world’s first public health treaty. In the second domain a negotiation takes place after a successful
job interview between an employer and a job candidate.

By analyzing the results of the experiments we conducted, we show that our automated agent is capable of negoti-
ating efficiently and reaching multi-attribute agreements in such environments.

When playing one of the sides in the negotiation (England in the first domain and the job candidate in the second
domain) our agent achieved significantly higher utility values than the human players, and agreements were reached
faster than when an agent was not present in the negotiation. On the other hand, when the agent played the other
side, though it reached higher utility values than the human player, these results were not significantly higher than the
humans’ results.

This paper contributes to research on automated negotiation in several ways. First, it tackles the problem of
multi-attribute negotiation with incomplete information. Given the importance of negotiating efficiently in such an
environment we provide a generic mechanism that achieves just that. Second, we present an automated negotiation
agent which is domain independent and allows to experiment with almost any real-life domain. Together, the auto-
mated negotiation environment will enable exploration of future research directions and thereafter it can be used to
better understand behavioral and cognitive aspects of negotiations undertaken by human negotiators.

The remainder of the paper is organized as follows. Section 2 provides an overview of bilateral negotiation with
incomplete information. Section 3 surveys related work in the field of negotiation with incomplete information and
bounded rational agents. Section 4 presents the design of the automated agent, including its beliefs updating and
decision making mechanisms. Section 5 describes the experimental setting and methodology and reviews the results.
Finally, Section 6 provides a summary and lists recommendations for future work in this area.
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2. Problem description

We consider a bilateral negotiation in which two agents negotiate to reach an agreement on conflicting issues.
The negotiation can end either when (a) the negotiators reach a full agreement, (b) one of the agents opts out, thus
forcing the termination of the negotiation with an opt-out outcome denoted OPT , or (c) a predefined deadline is
reached, denoted dl, whereby, if a partial agreement is reached it is implemented or, if no agreement is reached,
a status quo outcome, denoted SQ, is implemented. Since no agreement is worse than any agreement, and a status
quo is implemented if the deadline is reached, we assume that default values are assigned to each attribute. Thus, if
both sides agree only on a subset of the issues and the deadline is reached, the unresolved issues are assigned with
their default value and thus a partial agreement can be implemented. Let I denote the set of issues in the negotiation,
Oi the finite set of values for each i ∈ I and O a finite set of values for all issues (O1 × O2 × · · · × O|I |). We allow
partial agreements, ⊥ ∈ Oi for each i ∈ I . An offer is then denoted as a vector �o ∈ O . It is assumed that the agents
can take actions during the negotiation process until it terminates. Let Time denote the set of time periods in the
negotiation, that is Time = {0,1, . . . ,dl}. Time also impacts the agents’ utilities. Each agent is assigned a time cost
which influences its utility as time passes.

In each period t ∈ Time of the negotiation, if the negotiation has not terminated earlier, each agent can propose a
possible agreement, and the opponent can either accept the offer, reject it or opt out. Each agent can either propose
an agreement which consists of all the issues in the negotiation, or a partial agreement. In contrast to the model of
alternating offers ([20], pp. 118–121), each agent can perform up to M > 0 interactions with the opponent agent in
each time period. Thus, an agent must take into account that its opponent may opt out in any time period.

Since we deal with incomplete information, we assume that there is a finite set of agent types. These types are
associated with different additive utility functions (e.g., one type might have a long term orientation regarding the
final agreement, while the other type might have a more constrained orientation). Formally, we denote the possible
types of the agents Types = {1, . . . , k}. Given l ∈ Types, 1 � l � k, we refer to the utility of an agent of type l as
ul , and ul : {(O ∪ {SQ} ∪ {OPT}) × Time} → R. Each agent is given its exact utility function. Also, each agent of
type l ∈ Types is given a certain reservation price, denoted rl , which is held private. The reservation price states the
minimum value of the utility of an offer under which the agent is unwilling to accept the offer. The agent, and the
subjects in the experiments described later in the paper, are also aware of the set of possible types of the opponent.
However, the exact utility function of the rival is private information. Our agent has some probabilistic belief about
the type of the other agent. This belief may be updated over time during the negotiation process (for example, using
Bayes’ rule).

3. Related work

The problem of modeling an automated agent for bilateral negotiation is not new for researchers in the fields of
Multi-Agent Systems and Game Theory. However, most research makes assumptions that do not necessarily apply
in genuine negotiations with humans, such as assuming complete information [5,19] or the rationality of the human
negotiator [5–7,13]. In this sense, they assume that both parties are rational in their behavior (e.g., describing the
decisions made by the agents as rational and that they are utility maximizing agents that cannot deviate from their
prescribed behavior). For example, Faratin et al. [5] assume that the agents are motivated by maximizing the joint
utility of the outcome, that is, the agents are utility maximizers that seek Pareto-optimal agreements. In a similar
manner, [6,7,13] assert that the agent’s strategy must follow the equilibrium’s strategy such that it should be the best
response to the opponent’s strategy. In other words, no agent will have an incentive to deviate from the strategy.
None of the above researchers has looked into the negotiation process involving both incomplete information and
negotiations against humans. While their approaches might be appropriate in their context, they cannot be applied to
our settings.

Dealing only with the bounded rationality of the opponent, several researchers suggested new notions of equilibria
(e.g., the trembling hand equilibrium described in Rasmusen [21] (p. 139)) or other probability models. For example,
Capra et al. [3] use what is called a “standard logit model”. In this model probabilities are assigned to the decisions.
Those probabilities are proportional to exponential functions of expected payoffs. They use this model in order to
enable the players to update their beliefs about other players. This model is equivalent to assuming expected payoffs
are subjected to deviations with an extreme value distribution. That is, the logit model assumes that the decisions are
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not perfect and may have some noise. It also tries to deal with such situations. These noisy decisions can be interpreted
either as unobserved random changes in preferences or as errors in responding to expected payoffs. Similar to Capra
et al., our agent also assigns probability to the believed type of the opponent. However, we try to avoid the need of
adding a special mechanism that assumes that the actions of the opponent are characterized by noise.

In addition, in a recent paper, Kraus et al. [11] describe an automated agent that negotiates efficiently with humans.
Although they also deal with negotiation against humans, in their settings there is complete information. That is, the
agents know exactly what the world state parameters are and how changing them affects the other agent. First, they
identified the perfect equilibrium strategies in their model. Then, however, they observed, that the human players do
not necessarily follow these equilibrium strategies. Thus, they added heuristics and argumentation tailored to their
specific settings to enable effective negotiation by their perfect equilibrium agent. We, on the other hand, propose
a general model of an agent, who can negotiate efficiently in multi-attribute negotiations against bounded rational
agents with incomplete information.

Other researchers suggested shifting from quantitative decision theory to qualitative decision theory [24]. In using
such a model we do not necessarily assume that the opponent will follow the equilibrium strategy or try to be a
utility maximizer. Also, this model is better suited for cases in which the utility or preferences are unknown but can
be expressed in ordinal scales or as preference relations [4]. This approach seems appropriate in our settings, and
using the maximin criteria, which is generally used in this context, enables our agent to follow a pessimistic approach
regarding the probability that an offer will be accepted.

Another way to deal with bounded rationality was suggested by Luce [15], who introduced the choice axiom. The
choice axiom, in relation to negotiations, states that the probability of selecting one offer over another from a pool of
offers, is not affected by the presence or absence of other items in that pool. The axiom introduces the notion of Luce
numbers. A Luce number is a non-negative number that is associated with each offer. The Luce number of an offer
�o ∈ O is calculated using the following formula:

lu(�o) = u(�o)
∑

�x∈O u(�x)
(1)

From the mathematical definition the following property follows:

Property 3.1 (Luce Number Relation). For every offer �x and �y, if u(�x) � u(�y) then lu(�x) � lu(�y) when lu(�x) and
lu(�y) denote the Luce number associated with offer �x and �y respectively.

Mostly in economics, this model is used to assign probabilistic beliefs regarding the tendency of the consumer’s to
choose one offer over another (e.g., see Luce’s survey of the choice axiom [16]). As such, we believe that this model
can be used as an estimation of the acceptance rate of the opponent’s offer.

Several methods are proposed when dealing with incomplete information regarding the preferences of an opponent.
For example, Bayes’ theorem is the core component of the Bayesian Nash equilibrium ([20], pp. 24–29), and it is used
to deduce the current state given a certain signal. One motivation for using this notion of equilibrium is that it allows
one to compensate for incomplete information and enables good adaptation in negotiations with time-constraints. In
finite horizon negotiations there are no past interactions to learn from and not enough time periods to build a complete
model. Thus this model provides a good probabilistic tool to model the opponent, as opposed to using feed-forward
neural networks [19] or genetic algorithms [13], both of which require considerable time to facilitate adequate learning
and are more sensitive to the domain in which they are run.

Zeng and Sycara [26] also use the Bayesian analysis as a learning mechanism in negotiations. And like them, we
also use Bayes’ theorem to update the believed type of the opponent. Thus, we allow the negotiator, at each time
period, to act as if the opponent is of a certain type.

Since we aim to design an agent that can negotiate efficiently against bounded rational agents in conditions of
incomplete information, we should design it not only with a good mechanism to deal with the bounded rationality of
the opponent, but also with a mechanism which can help overcome the incomplete information settings. Following the
surveyed related work, we believe that implementing a non-classical valuation mechanism, using the Luce numbers,
for generating and responding to offers, while also incorporating a Bayesian belief update component to deal with the
incomplete information, can lead to an agent’s efficient design. We elaborate on this design in the next section.
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4. Agent design

Due to the unique settings in which we operate—incomplete information and bounded rationality of the opponent—
the agent is built with two mechanisms: (a) a learning mechanism, and (b) a decision making mechanism.

For the learning mechanism we use the formal model of the Bayesian updating rule and for the decision making
mechanism we incorporate a non-classical model of offers’ valuation, rather than the traditional quantitative decision
making model. We describe both mechanisms in the following subsections.

4.1. The decision making valuation component

As Brafman and Tennenholtz [1] state, there are extensions to qualitative decision theory yet to be pursued. We
contend that one such extension should be in negotiation under uncertainty against a bounded rational agent. One
reason is due to the fact that, as in real life, we do not impose restrictions on the bounded rational agent and we do
not assert that it will follow an equilibrium strategy. We propose a unique decision making model. While our model is
quantitative in spirit, we shift from the model of expected utility maximization and try to evaluate the offers in a more
qualitative way, using the maximin method and the ranking of offers, described below.

The decision making valuation component takes into account the agent’s utility function, as well as the believed
type of the opponent (note that the believed type of the opponent is also influenced by the offers proposed by the
opponent, as described in Section 4.2). This data is used both for deciding whether to accept or reject an offer and
for generating an offer. In our settings, although several offers can be proposed in each time period, we restrict the
agent to making a single offer in each period. This is done due to the fact that our mechanism for generating offers
only produces one distinct offer at a given time period. The opponent, on the other hand, is free to propose several
offers, and the agent can respond to all the offers, which indeed happened in the experiments. While we provide
some theoretical foundations for our approach, we demonstrate its effectiveness using experiments with people in an
environment of incomplete information, as described in Section 5.

4.1.1. Generating offers
The motivation behind the mechanism for generating offers is that the automated agent would like to propose an

offer which yields it the highest utility value. However, due to conflicting interests, there is a high probability that this
offer will be rejected by the opponent. To overcome this, the agent evaluates all possible offers based on their utility
and the probability that the rival will accept them.

An initial version of this offer generating mechanism was presented in [14]. Based on the preliminary experimental
results, we have decided to improve this mechanism. Thus, instead of directly using the utility value of an offer, our
mechanism uses the ranking value of an offer, which is associated with each offer and a given utility function u,
denoted rank(·). The rank number of an offer �o ∈ O is calculated using the following formula:

rank(�o) = order(�o,O)

|O| (2)

where order(·,·) is the ordering function which orders the offer �o in an ordinal scale between 1 and |O| according
to its utility value compared to all other offers in O . In order to facilitate the computations we also divide the offer’s
ordering number by |O| to obtain a range between [0,1]. Note that a certain offer might be ranked differently when
using the utility value of the agent for that offer and the believed utility value of the opponent. In addition, the Luce
numbers are used to estimate the probability of the agent accepting an offer, following Luce’s choice axiom models,
which assign a probability to each offer [15]. Based on Property 3.1, we get that the higher the utility of the offer
the higher its Luce number as well. As the choice axioms is usually used to assign probabilistic beliefs regarding the
tendency of an agent to propose an offer, we also believe that using the Luce numbers can provide a good estimation
of an acceptance of offers.

Since the opponent also tries to estimate whether an offer will be accepted by the agent, we take the Luce numbers
of both into account. Then, the agent tries to estimate, from the opponent’s point of view, whether the opponent will
accept the offer. This is done by estimating the sum of the Luce numbers of the agent and the presumed type of the
opponent. This sum is used as an estimation of the acceptance of the offer, and is multiplied by the ranking value of
that offer of the opponent. The sum of both agents is used in the calculation as a method for estimating the social
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welfare of both sides. Finally, the agent compares these values with its own estimation of the offer, which is based on
its ranking of the offer and the probability that it will accept the offer.

Similar to qualitative decision theory, which uses the maximin value [4,24], the agent selects the minimum value
between these two values (the agent’s own estimation of the offer and the agent’s estimation from the opponent’s
point of view), under the pessimistic assumption that the probability that an offer is accepted is based on the agent
that favors the offer the least. After calculating the minimum value of all the offers, the agent selects the offer with the
maximum value among all the minima, in order to also try and maximize its own utility. Thus, our qualitative offer
generation mechanism selects, intuitively, the best offer among the offers that the agent believes might be accepted.
In the rest of this section we describe this process formally.

First we will demonstrate this using the following example.

Example 1. Bob (b) and Alice (a) are negotiating about what to do over the weekend. They have to decide about
the activity and on which night they will do it. Given that I is the set of issues, let Activity ∈ I and Night ∈ I be the
possible issues. There are two possible values for the activity—seeing a movie (M) or going to a basketball game (B)
and two possible values for the chosen night—either they will go on a Friday night (F ) or on Saturday night (S). Bob
prefers going to a basketball game than to a movie. He also prefers it to be on a Saturday night, as the match should
be more interesting than on Friday night. However, if a movie is chosen, he prefers to go on Friday to allow him to
catch the game on ‘Pay Per View’ on Saturday. On the other hand, Alice prefers going out to a movie rather than to a
basketball game. The best night for a movie would be Saturday as on Saturday is the opening night for the premieres,
while if going to a basketball game, she prefers to stay home on Saturday and not engage in any activity. Table 1
reflects the utility values for Bob and Alice derived from their preferences, described above, for all the possible offers,
along with the Luce number values and the ranking of the offers. In addition, Table 2 also compares the ranking of the
offers between Bob and Alice. Let the reservation price for both sides be equal to 5. For simplicity and demonstration
purposes, we assume that there is only one type of utility for each side and no time effect for both sides.

Assume that our agent plays the role of Bob. It will now choose the maximum value among all the minima between
the values in lines 7 and 9 in Table 1. Thus, our agent will offer Alice to go to a basketball game on Friday.

We continue now to describe the process formally. Formally, we assume that, at each time period t , the automated
agent has a belief about the type of its opponent. This believed type, denoted by BT(t), is the one that the agent
presumes to be the most probable for the opponent. The agent uses the utility function associated with that type in

Table 1
Example of calculating QO

�o1 = {M,S} �o2 = {M,F } �o3 = {B,S} �o4 = {B,F }
1 ub(�oi ) 4 6 10 8
2 ua(�oi ) 10 9 4 6
3 lub(�oi ) 4/28 = 0.14 6/28 = 0.21 10/28 = 0.36 8/28 = 0.29
4 lua(�oi ) 10/29 = 0.34 9/29 = 0.31 4/29 = 0.14 6/29 = 0.21
5 rankb(�oi ) 1/4 = 0.25 2/4 = 0.50 4/4 = 1.00 3/4 = 0.75
6 ranka(�oi ) 4/4 = 1.00 3/4 = 0.75 1/4 = 0.25 2/4 = 0.50
7 lub(�oi ) · rankb(�oi ) 0.04 0.11 0.36 0.21
8 lua(�oi ) · ranka(�oi ) 0.34 0.23 0.03 0.10
9 [lub(�oi ) + lua(�oi )] · ranka(�oi ) 0.49 0.39 0.12 0.25

10 [lua(�oi ) + lub(�oi )] · rankb(�oi ) 0.12 0.26 0.49 0.37

Table 2
Ranking of offers

Ranking Bob Alice

4/4 = 1.00 �o3 = {B,S} �o1 = {M,S}
3/4 = 0.75 �o4 = {B,F } �o2 = {M,F }
2/4 = 0.50 �o2 = {M,F } �o4 = {B,F }
1/4 = 0.25 �o1 = {M,S} �o3 = {B,S}
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all of the calculations in that time period. In Section 4.2 we describe in detail how the belief is dynamically updated.
We denote by u

BT(t)
opp the utility function associated with the believed type of the opponent at time t . From this utility

function, the agent derives the Luce numbers. Since the Luce number is calculated based on a given utility function,
we denote the Luce number of an offer, �o ∈ O , derived from the opponent’s believed utility at time t , u

BT(t)
opp , by

luopp(�o|uBT(t)
opp ), and the Luce number for an offer derived by the agent’s own utility simply as lu(�o). We denote our

function by QO(t) (standing for Qualitative Offer), where t ∈ Time is the time of the offer.
Thus, if the current agent is j , the strategy selects an offer o in time t such that:

QO(t) = arg max
o∈O

min{α,β}

where α = rank(�o) · lu(�o) and β = [
luopp(�o|uBT(t)

opp ) + lu(�o)
] · rankBT(t)

opp (�o) (3)

In the example specified in Example 1 and Table 1, assuming our agent plays the role of Bob, lines 7 and 9 represent
α and β , respectively. Then, to calculate the actual offer to propose to Alice, the agent calculates the minimum values
between these two values, and finally chooses the maximum between all the minima calculated. That is, the agent will
choose �o3 since it has the maximum value of the minimum values associated with the four offers (0.04, 0.11, 0.12,
0.21).

Seemingly, our QO function is a non-classical method for generating offers. However, not only were we able to
show its efficacy through empirical experiments, in which people used it in negotiations, as we describe in Section 5,
we also showed (Section 4.1.3) that it conforms to some properties from classical negotiation theory, which are
mainly used by mediators. In addition, our QO function does not build on a fixed opponent’s type. That is, eliciting
the believed type of the opponent is external to the computation.

The function can work as well with other software agents, and was tested in another two sets of experiments—
the first matched our agent against an automated agent that follows a Bayesian Equilibrium strategy, and the second
matched our agent against itself. Detailed results are described in Section 5.3.

The next subsection deals with the question of when the agent should accept or reject an incoming offer.

4.1.2. Accepting offers
The agent needs to decide what to do when it receives an offer from its opponent at the current time t . In the

following analysis, the terms a and b are used synonymously as the types of agents a and b, respectively. In the
analysis we will refer to the automated agent as agent type a and its opponent as agent type b. Similarly, the terms �oa

and �ob respectively denote an offer received from agent a and agent b. If ua(�ob) � ua(QO(t + 1)) then the automated
agent accepts the offer. Otherwise, it should not immediately rule out accepting the offer it has just received. Instead, it
should take into consideration the probability that its counter-offer will be accepted or rejected by the opponent. This
is done by comparing the (believed) utility of the opponent from the original offer as compared with the opponent’s
utility from the agent’s offer. If the difference is lower than a given threshold1 T , that is |ub(QO(t +1))−ub(�ob)| � T ,
then there is a high probability that the opponent will be indifferent to its original offer and the agent’s counter-offer.
Thus, the automated agent will reject the offer and propose a counter-offer (taking a risk that the offer will be rejected),
since the counter-offer has a higher utility value for the agent. If the difference is greater than the threshold, i.e., there
is a higher probability that the opponent will not accept the agent’s counter-offer, the automated agent will accept the
opponent’s offer with a given probability, which is attached to each outcome, as described below. While in our original
version of the agent [14] we did not impose any restrictions on accepting offers, in the new version, acceptance by the
agent depends on whether the value of the offer is greater than the agent’s reservation price (r). If this is the case, then
the probability is calculated based on the ranking number of the offer. The intuition behind this is to enable the agent
to also accept offers based on their relative values compared to the reservation price, on an ordinal scale of [0..1].
That is, the agent will accept an offer if ua(�ob) � ra and with a probability of rank(�ob) it will reject it and make a
counter-offer.

Let’s return to Example 1 presented above. Assume Alice suggests to Bob to go to a movie on Friday. The utility
value of that offer to Bob equals 6. Bob now checks what would be his utility value from an offer he would make to
Alice in the next time period. We showed earlier that Bob will suggest an offer to go to a basketball game on Friday.

1 In the experiments, T was set to 0.05.
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The utility value of that offer to Bob is 8. Thus, since the utility value of the offer Bob would make is higher than the
one received, Bob does not automatically accept the received offer. Bob needs to take into consideration whether his
offer will be accepted or rejected by the opponent. So bob checks the difference between Alice’s utility value of the
offer he made and her utility value of the offer she made. The difference in this case equals 3 (as Alice’s utility value
for Bob’s offer equals 6, while the utility value of the offer she made equals 9). If we assume that the threshold for
the difference is 0.05 (like in our experiments) than this condition does not hold as well, and Bob needs to continue
to check whether he should reject or accept the offer. Since the utility value of the offer received from Alice is higher
than the reservation price (5), Bob now decides whether to accept or reject the offer based on the probability derived
from the ranking value of the offer. Since the ranking value for Bob from the offer of seeing a movie on Friday is 0.5,
Bob will decide according to this probability whether to accept or reject the offer.

In the next subsection we demonstrate that our proposed solution also conforms to some properties of the Nash
bargaining solution. This gives us the theoretical basis required for use of our technique in bilateral negotiation, and
for the assumption that offers proposed by the agent will also be considered to be accepted by the opponent.

4.1.3. QO: An alternative to the Nash bargaining solution
From Luce and Raiffa ([17], Chapter 6), we employ the definitions of a bargaining problem and the Nash bar-

gaining solution. We denote by B = 〈(ua(·), ub(·)), �d〉 the bargaining problem with two utilities, ua and ub , and a
disagreement point, denoted �d , which is the worst outcome for both agents (in our model, d is equivalent to opting
out). The Nash bargaining solution (which is not the offer itself, but rather the payoff of the offer) is defined by several
characteristics and is usually designed for a mediator in an environment with complete information. A bargaining (or
a negotiation) solution f should satisfy symmetry, efficiency, invariance and independence of irrelevant alternatives
([20], Chapter 15), as defined in the definitions below.

Definition 4.1 (Symmetric). A bargaining problem is symmetric if a bijection φ :O → O , also called a symmetry
function, exists such that:

(1) φ−1 = φ,
(2) φ( �d) = �d ,
(3) ∀�x, �y ∈ O,ua(�x) > ub(�y) ⇔ ub(φ(�x)) > ub(φ(�y)).

For example, suppose that two friends want to split $100 among themselves. Each friend needs to decide how
to split the money, but they both receive nothing if they disagree. This problem is a symmetric one (consider the
symmetric function given by φ(x, y) = (y, x)).

Definition 4.2 (Efficiency). An outcome �x ∈ O is efficient if there is no outcome �y ∈ O with uj (�y) > uj (�x) for both
j = {a, b}.

Let’s look again at the two friends trying to split the $100 between themselves. A solution which will leave some
of the money undivided between the two is inefficient, in the sense that both friends are better off if the remaining
money is split between them.

Definition 4.3 (Equivalence). Two bargaining problems B = 〈(ua(·), ub(·)), �d〉 and B ′ = 〈(u′
a(·), u′

b(·)), �d〉 are equiv-
alent if there are γj > 0 and γj ∈ R

+, δj ∈ R, for j = {a, b} such that u′
j = γjuj + δj .

To understand the notion of the equivalence problem, assume that the first involves temperature that is measured
in Fahrenheit. An equivalent problem would be the same problem with the transformation from Fahrenheit to Celsius
(γj = 5/9, δj = −160/9).

Definition 4.4 (Subset Problems). A bargaining problem B ′ = 〈(u′
a(·), u′

b(·)), �d〉, u′
j :O ′ → R

2 for j = {a, b} is a

subset of another bargaining problem B = 〈(ua(·), ub(·)), �d〉, uj :O → R
2, denoted by B ′ ⊆ B , if O ′ ⊆ O .
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For example, the problem of splitting the $100 between two friends such that both friends receive an equal split is
a subset of the problem in which both friends can receive any split of the money.

Given the above definitions we state that a bargaining (or a negotiation) solution should have the following proper-
ties:

Property 4.1 (Symmetry). A negotiation solution f satisfies symmetry if for all symmetric problems B with symmetry
function φ,f (B) = φ(f (B)).

The symmetry property above states that if both players have the same bargaining power (since it deals with sym-
metric negotiation problems), then neither player will have any reason to accept an agreement which yields a lower
payoff for it than for its opponent. For example, for the solution to be symmetric, it should not depend on the agent
which started the negotiation process. In our example of splitting the $100 between the two friends, both friends
have the same utility function. For the solution to be symmetric, both must receive an equal payoff, that is, an equal
distribution of the money.

Property 4.2 (Efficient). A negotiation solution f satisfies efficiency if f (B) is efficient for all B .

Efficiency states that two rational agents will not reach an agreement if its utility is lower for both of them than
another possible agreement. This solution is said to be Pareto-optimal. In this case, each friend will not agree on any
agreement other than splitting the money equally between themselves in a way that each receive exactly half of the
money, as every other split will generate a lower payoff for either of them.

Property 4.3 (Invariance). A negotiation solution f satisfies invariance if for all equivalent problems B =
〈(ua(·), ub(·)), �d〉 and B ′ = 〈(u′

a(·), u′
b(·)), �d〉, f (B) = f (B ′).

Invariance states that for all equivalent problems B and B ′, that is B ′ = (γa ·ua(·)+δa, γb ·ub(·)+δb), γa, γb ∈ R
+,

δa, δb ∈ R, the solution is also the same, f (B) = f (B ′). That is, two positive affine transformations can be applied on
the utility functions of both agents and the solution will remain the same. For example, the solution for the problem of
splitting the $100 between the two friends is equivalent to the solution in the case of splitting £500 between themselves
instead of dollars. Thus, this solution satisfies the invariance property.

Property 4.4 (Independence of irrelevant alternatives). A negotiation solution f satisfies independence of irrelevant
alternatives if f (B) = f (B ′) whenever B ′ ⊆ B and f (B) ⊆ B ′.

Finally, independence of irrelevant alternatives asserts that the solution f (B) = f (B ′) whenever B ′ ⊆ B and
f (B) ⊆ B ′. That is, if new agreements are added to the problem in such a manner that the status quo remains un-
changed, either the original solution is unchanged or it becomes one of the new agreements. For example, as we stated
above, the problem of splitting the $100 between two friends in such that both friends receive an equal split is a subset
of the problem in which both friends can receive any split of the money. If we assume that also all the money has to
be distributed between the friends, then the solution of an equal split between the friends satisfies the independence
of irrelevant alternatives, as the added alternatives of unequal split, are not part of the solution.

It was shown by Nash [18] that the only solution that satisfies all of these properties is the product maximizing the
agents’ utilities, described in Eq. (4).

arg max
�x∈O

(
ua(�x) − ua( �d)

)(
ub(�x) − ub( �d)

)
. (4)

However, as we stated, the Nash solution is usually designed for a mediator. Since we propose a model for an
automated agent which negotiates with bounded rational agents following the QO function (Eq. (3)), our solution
cannot satisfy all of these properties. To this end, we modified the independence of irrelevant alternatives property to
allow for a set of possible solutions instead of one unique solution:

Property 4.5 (Independence of irrelevant alternative solutions). A negotiation solution f satisfies independence of
irrelevant alternative solutions if the set of all possible solutions of f (B) is equal to the set of all possible solutions
of f (B ′) whenever B ′ ⊆ B and f (B) ⊆ B ′.
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In this case, assume that in the problem of splitting the $100 between two friends any split of the money is legiti-
mate. Also, the problem in which both friends receive an equal split is a subset of the problem in which both friends
can receive any split of the money. In this case, the negotiation solution f is a set which consists of every equal split.
This solution satisfies the independence of irrelevant alternative solutions, as the added alternatives of unequal split,
are not part of the solution.

Proving that the agent’s strategy for proposing offers conforms to these properties (Properties 4.1, 4.2, 4.3 and 4.5)
is important since although the agent should maximize its own utility, it should also find agreements that would be
acceptable to its opponent. The following claims and their proofs lay the theoretical foundation for this.

Theorem 4.1. The QO function satisfies the properties of symmetry, efficiency and independence of irrelevant alter-
native solutions.

The proof of the theorem can be found in Appendix A, Claims A.2, A.3 and A.5. In addition, we show that under
some conditions QO also satisfies the property of invariance (see Claim A.4 in Appendix A).

We recall that the Nash bargaining solution should have four properties: symmetry (Property 4.1), efficient (Prop-
erty 4.2), invariance (Property 4.3) and independent of irrelevant alternatives (Property 4.4). By proving the above
theorem, we show that our QO function satisfies only three of the four properties of the Nash bargaining solution.
Thus the question is, why not use the Nash solution stated in Eq. (4) instead of our proposed solution? The reasoning
for not using the above Nash solution is presented in the next claim.

Claim 4.1. Let the agreement given by the Nash solution be �x. If an agreement �y exists where lua(�y) · ranka(�y) >

lua(�x) · ranka(�x) and lua(�y) · ranka(�y) < [lua(�y) + lub(�y)] · rankb(�y) then QO’s solution will be �y rather than �x.

The proof of the claim is given in Appendix A, Claim A.6. However, to clarify this claim we return to Example 1.
Table 1 shows the utility value for Bob and Alice for 4 different offers. Assuming our agent plays the role of Bob, we
show that it will suggest to Alice to go to a basketball game on Friday. However, if the agent follows the Nash solution,
it will suggest to see a movie on Friday, which is the product maximization of the agents’ utilities (6 × 9 = 54), while
the QO solution has a product value of 8 × 6 = 48. Though, the Nash solution generates a utility value of 6 for Bob,
the QO solution generates a value of 8.

We continue to investigate the effects of time on the offers our agent generates. The following definition defines
the concept of time constant discount rate ([20], Chapter 7):

Definition 4.5 (Time constant discount rate). In the case of a time constant discount rate, every agent j has a fixed
discount rate 0 < δj < 1, that is: uj (�o, t) = δt

j uj (�o,0).

We show that if both agents have the same time constant discount rate δ, then QO will generate the same solution
at each time unit. The proof can be found in Appendix A, Claim A.7.

In the next section we present the component responsible for the belief update regarding the opponent.

4.2. The Bayesian updating rule component

The Bayesian updating rule is based on Bayes’ theorem and it provides a practical learning algorithm. Bayes’
theorem is generally used for calculating conditional probabilities and basically states how to update or revise beliefs
in light of new evidence a posteriori ([12], Chapter 2). The calculation is given in the following formula:

P(A|B) = P(B|A) · P(A)

P(B)
(5)

where P(A) and P(B) are the prior probabilities of A and B , respectively, P(A|B) is the conditional probability of A,
given B , and P(B|A) is the conditional probability of B , given A.

We assert that there is a set of different agent types. The bounded rational agent should be matched to one such
type. In each time period, the agent consults the component in order to update its belief regarding the opponent’s type.
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Table 3
Example: Calculating Alice’s believed type

�o1 = {M,S} �o2 = {M,F } �o3 = {B,S} �o4 = {B,F }
1 ua(�oi ), type1 10 9 4 6
2 ua(�oi ), type2 10 7 5 9
3 lua(�oi ), type1 10/29 = 0.34 9/29 = 0.31 4/29 = 0.14 6/29 = 0.21
4 lua(�oi ), type2 10/31 = 0.32 7/31 = 0.23 5/31 = 0.16 9/31 = 0.29

Recall that there are k possible types of agents. At time t = 0 the prior probability of each type is equal, that
is, P(typei

t=0) = 1
k

, ∀i ∈ Types. Then, for each time period t we calculate the a posteriori probability for each of the
possible types, taking into account the history of the negotiation. This is done incrementally after each offer is received
or accepted. That is, the believed type is updated every time an offer is received or accepted, thus eventually it is based
on the overall total history thus far. Then, this value is assigned to P(typet ). Using the calculated probabilities, the
agent selects the type whose probability is the highest and proposes an offer as if it were the opponent’s type. Formally,
at each time period t ∈ Time and for each type ∈ Types and �ot ∈ O (the offer at time period t) we compute:

P(typei |�ot ) = P(�ot |typei )P(typei
t )

P(�ot )
(6)

where P(�ot ) = ∑k
i=1 P(�ot |typei ) · P(typei

t ). Since the Luce numbers actually assign probabilities to each offer,
P(�ot |typei ) is computed using the Luce numbers.

Now we can deduce the believed type of the opponent for each time period t , BT(t), using the following equation:

BT(t) = arg max
i∈Types

P(typei |�ot ), ∀t ∈ Time (7)

We will extend Example 1 to demonstrate this. Let’s assume that there are two types of possible utilities for Alice
(k = 2). In the first, given in Table 1, Alice prefers movies over basketball. In the second type, however, let’s assume
that Alice prefers going to a movie on Friday, and if this is not possible going to a basketball game on Friday. Assume
Table 3 reflects the two different types of possible utilities for Alice derived from these preferences.

Initially, a probability of 1/2 is assigned to both types. Let’s assume that Alice suggests at time t = 1 to go to a
basketball on Friday night. Based on this suggestion, our agent needs to update the type it believes Alice to be. Based
on Eq. (6), the way P(�ot ) is calculated and the Luce numbers, we need to update the probability of each type. For
simplicity, we omit the time from the calculations given below:

P(type1|�o4) = P(�o4|type1)P(type1)

P(�o)
= 0.21 · 0.5

0.21 · 0.5 + 0.29 · 0.5
= 0.42 (8)

P(type2|�o4) = P(�o4|type2)P(type2)

P(�o)
= 0.29 · 0.5

0.21 · 0.5 + 0.29 · 0.5
= 0.58 (9)

Now, based on Eq. (7) we deduce that the believed type for Alice is type2.
Using this updating mechanism enables our updating component to conform to the following conditions, which

are generally imposed on an agent’s system of beliefs, and which are part of the conditions for a sequential Bayesian
equilibrium ([20], Chapter 12):

(1) Consistency. Agent i’s belief should be consistent with its initial belief and with the possible actions of its oppo-
nents. Whenever possible, an agent should update its beliefs. If, after any history, all the actions of agent j ’s in
the given sequence of actions, regardless of its type, indicate that it has to take the same action, and this action
is indeed taken by agent j , then agent i’s beliefs remain as they were before the action was taken. On the other
hand, if an action is taken by j and this action can only be attributed to a single type of agent j , type l, then i

believes with a probability of 1 that j ’s type is indeed of type l. The agent uses the same reasoning about its
opponent j ’s beliefs based on the given sequence of actions and updates its model of j ’s beliefs in a similar
manner.
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(2) Never dissuaded once convinced. Once an agent is convinced of its opponent’s type with a probability of 1, or
convinced that its opponent cannot be of a specific type, that is, the probability of this type is 0, it is never
dissuaded from its viewpoint.

The results of the experiments indeed show that in the majority of the experiments the agent believed that its
opponent is of the correct type with the highest probability amongst all possible opponent’s types.

5. Experiments

We developed a simulation environment which is adaptable such that any scenario and utility function, expressed as
multi-issue attributes, can be used, with no additional changes in the configuration of the interface of the simulations
or the automated agent. The agent can play either role in the negotiation, while the human counterpart accesses the
negotiation interface via a web address. The negotiation itself is conducted using a semi-formal language. Each agent
constructs an offer by choosing the different values constituting the offers. Then, the offer is constructed and sent in
plain English to its counterpart.

We conducted experiments on two distinct domains to test the efficiency of the proposed agent.2 In the experi-
ments, human subjects were matched both against the automated agent and against other human counterparts. These
experiments show that the agent is capable of negotiating in various domains. That is, only the utility functions play a
role, and not the scenario nor the domain. In addition, the experiments show the benefits achieved for both sides in the
agreements (in terms of utility and time) when using an automated agent as compared to human only negotiations. In
the following subsections we describe the two domains and the experimental methodology and we review the results.

5.1. Experimental domain

The experimental domains match the problem definitions described in Section 2. In the first domain one agent gains
as time advances, while the other loses; the status quo value for one of the agents is much higher than for the opponent,
and there is an option to reach partial agreements. In the second domain, both agents lose as time advances, and the
status quo value for both players is quite similar. In both domains we modeled three possible agent types, and thus a
set of six different utility functions was created for each domain. These sets describe the different types or approaches
towards the negotiation process and the other party. For example, the different approaches can describe the importance
each agent attaches to the effects of the agreement over time. One agent might have a long term orientation regarding
the final agreement. This type of agent would favor agreements which are concerned more with future outcomes of the
negotiations, than those focusing only on solving the present problem. On the other hand, another agent might have a
short term orientation which focuses on solving only the burning issues under negotiation without dealing with future
aspects that might arise from the negotiation or its solutions. Finally, there can also be agents with a compromise
orientation. These agents try to find the middle grounds between the possible agreements.

Each negotiator was assigned a utility function at the beginning of the negotiation but had incomplete information
regarding the opponent’s utility. That is, the different possible types of the opponent were public knowledge, but the
exact type of the opponent was unknown. The negotiation lasts at most 14 time periods, each with a duration of two
minutes. If an agreement is not reached by the deadline then the negotiation terminates with a status quo outcome.
Each party can also opt out of the negotiation if it decides that the negotiation is not proceeding in a favorable way.

One of the domains was based on an international crisis, and the subjects had to play a role that was outside of
their normal experience. On the other hand, the second domain was more related to the subjects’ experience, so they
could identify with it better. We describe the two domains in the following subsections. Detailed score functions for
both domains can be found in Appendix B. A snapshot of one of the negotiation experiments in the second domain is
given in Appendix C.

5.1.1. The World Health Organization’s Framework Convention on Tobacco Control domain
In this scenario England and Zimbabwe negotiate in order to reach an agreement evolving from the World Health

Organization’s Framework Convention on Tobacco Control, the world’s first public health treaty. The principal goal

2 Preliminary results on the first domain were presented in [14].
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of the convention is “to protect present and future generations from the devastating health, social, environmental and
economic consequences of tobacco consumption and exposure to tobacco smoke”.

The leaders of both countries are about to meet at a long scheduled summit. They must reach an agreement on the
following issues:

(1) The total amount to be deposited into the Global Tobacco Fund to aid countries seeking to rid themselves of
economic dependence on tobacco production. This issue has an impact on the budget of England and on the
effectiveness of short-range and long-range economic benefits for Zimbabwe. The possible values are (a) $10
billion, (b) $50 billion, (c) $100 billion, or (d) no agreement. Thus, a total of 4 possible values are allowed for
this issue.

(2) Impact on other aid programs. This issue affects the net cost to England and the overall benefit for Zimbabwe.
If other aid programs are reduced, the economic difficulties for Zimbabwe will increase. The possible values are
(a) no reduction, (b) reduction equal to half of the Global Tobacco Fund, (c) reduction equal to the size of the
Global Tobacco Fund, or (d) no agreement. Thus, a total of 4 possible values are allowed for this issue.

(3) Trade issues. Both countries can use trade policy to extract concessions or provide incentives to the other party.
They can use restrictive trade barriers such as tariffs (taxes on imports from the other country) or they can liber-
alize their trade policy by increasing imports from the other party. There are both benefits and costs involved in
these policies: tariffs may increase revenue in the short run but lead to higher prices for consumers and possible
retaliation by affected countries over the long run. Increasing imports can cause problems for domestic industries.
But it can also lead to lower consumer costs and improved welfare. Thus, the possible values are divided between
Zimbabwe’s (a) reducing tariffs or (b) increasing tariffs on imports, and England’s (a) reducing or (b) increasing
imports. Both can also choose not to agree on this. Thus, a total of 9 possible values are allowed for this issue.

(4) Creation of a forum to explore comparable arrangements for other long-term health issues. This issue relates to
the precedent that may be set by the Global Tobacco Fund. If the fund is established, Zimbabwe will be highly
motivated to apply the same approach to other global health agreements. This would be very costly to England.
The possible values are (a) creation of a fund, (b) creation of a committee to discuss the creation of a fund,
(c) creation of a committee to develop an agenda for future discussions, or (d) no agreement. Thus, a total of 4
possible values are allowed for this issue.

Consequently, a total of 576 possible agreements exist (4 × 4 × 3 × 3 × 4 = 576). While for the first two issues
there are contradicting preferences for England and Zimbabwe, for the last two issues there are options which might
be jointly preferred by both sides.

Each turn in the scenario is equivalent to a week of the summit, while the summit is limited to 14 weeks. If no
agreement is reached within the specified time limit, the Framework Convention will be seen as an empty document,
devoid of any political significance. This will be a blow to England, which has invested political capital to reach an
agreement, in the hope of gaining support for other, perhaps more important, international agreements in the future. It
will also, however, save England money in the near term. For Zimbabwe, failure to reach an agreement will create a
major financial hardship and deprive it of a precedent that can be used for future negotiations. Consequently, England
is better able to accept a failure than is Zimbabwe. This outcome is modeled for both agents as the status quo outcome.

Opting out of the negotiation is also an option. Opting out by England means trade sanctions imposed by England
on Zimbabwe (including a ban on the import of tobacco from Zimbabwe), while if Zimbabwe opts out then it will
boycott all British imports. However, if England opts out it also saves the funds that would have been spent on the
Tobacco Fund, and if Zimbabwe opts out it loses the opportunity for financial gain and for assistance in reducing
the health problems that arise from tobacco use. Consequently, England will likely be more willing to opt out if the
negotiations are not going its way, and Zimbabwe will be more willing to continue negotiations until agreement is
reached.

Time also has an impact on the negotiations. Creation of the fund is more urgent for Zimbabwe than for England.
Consequently, Zimbabwe has an incentive to reach an agreement earlier rather than later; thus as time advances
Zimbabwe’s utility reduces. On the other hand, England gains as time advances, as it postpones the time at which it
must transfer money to the fund.

Taking into account the different types of agents, we can say, for example, that an agent representing Zimbabwe
with a short term orientation, will focus on a short term redistribution of resources, insist on the largest possible
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current assistance and help with long-term health problems, as well as trade concessions. On the other hand, an agent
representing England with the same short term orientation, for example, will aim to minimize current cost, limit
impact on trade, and maintain its economic and political position in the near term.

5.1.2. The Job Candidate domain
In this scenario, a negotiation takes place after a successful job interview between an employer and a job candidate.

In the negotiation both the employer and the job candidate wish to formalize the hiring terms and conditions of the
applicant. In contrast to the England–Zimbabwe scenario, some issues must be agreed upon to achieve even a partial
agreement. Below are the issues under negotiation:

(1) Salary. This issue dictates the total net salary the applicant will receive per month. The possible values are
(a) $7000, (b) $12,000, or (c) $20,000. Thus, a total of 3 possible values are allowed for this issue.

(2) Job description. This issue describes the job description and responsibilities given to the job applicant. The job
description has an effect on the advancement of the candidate in his/her work place and his/her prestige. The
possible values are (a) QA, (b) programmer, (c) team manager, or (d) project manager. Thus, a total of 4 possible
values are allowed for this issue.

(3) Social benefits. The social benefits are an addition to the salary and thus impose an extra expense on the employer,
yet they can be viewed as an incentive for the applicant. The social benefits are divided into two categories:
company car and the percentage of the salary allocated, by the employer, to the candidate’s pension funds. The
possible values for a company car are (a) providing a leased company car, (b) no leased car, or (c) no agreement.
The possible value for the percentage of the salary deposited in pension funds are (a) 0%, (b) 10%, (c) 20%, or
(d) no agreement. Thus, a total of 12 possible values (3 × 4 = 12) are allowed for this issue.

(4) Promotion possibilities. This issue describes the commitment by the employer regarding the fast track for pro-
motion for the job candidate. The possible values are (a) fast promotion track (2 years), (b) slow promotion track
(4 years), or (c) no agreement. Thus, a total of 3 possible values are allowed for this issue.

(5) Working hours. This issue describes the number of working hours required by the employee per day (not including
over-time). This is an integral part of the contract. The possible values are (a) 8 hours, (b) 9 hours, or (c) 10 hours.
Thus, a total of 3 possible values are allowed for this issue.

In this scenario, a total of 1296 possible agreements exist (3 × 4 × 12 × 3 × 3 = 1296).
Each turn in the scenario equates to two minutes of the negotiation, and the negotiation is limited to 28 minutes. If

the sides do not reach an agreement by the end of the allocated time, the job interview ends with the candidate being
hired with a standard contract, which cannot be renegotiated during the first year. This outcome is modeled for both
agents as the status quo outcome.

Each side can also opt-out of the negotiation if it feels that the prospects of reaching an agreement with the opponent
are slim and it is impossible to negotiate anymore. Opting out by the employer entails the postponement of the project
for which the candidate was interviewing, with the possible prospect of its cancellation and a considerable amount of
expenses.

Opting-out by the job candidate will make it very difficult for him to find another job, as the employer will spread
his/her negative impression of the candidate to other CEOs of large companies.

Time also has an impact on the negotiation. As time advances the candidate’s utility decreases, as the employer’s
good impression has of the job candidate decreases. The employer’s utility also decreases as the candidate becomes
less motivated to work for the company.

5.2. Experimental methodology

We evaluated the performance of the agent against human subjects, all of whom were computer science undergrad-
uates at Bar-Ilan University in Israel. The experiment involved 88 simulations with human subjects, divided into 44
pairs, such that 44 simulations were run for each domain. Each simulation was divided into two parts: (i) negotiating
against another human subject, and (ii) negotiating against the automated agent. While the subjects knew that they will
negotiate against both an automated agent and against another human, they did not know in advance against whom
they played. Also, in order not to bias the results as a consequence of the subjects’ familiarity with the domain and
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the simulation, for exactly half of the subjects the first part of the simulation consisted of negotiating with a human
opponent, while the other half negotiated first with the automated agent. The outcome of each negotiation is either
reaching a full agreement, opting out, or reaching the deadline without an agreement. Prior to the experiments, the
subjects were given oral instructions regarding the experiment and the domain. The subjects were instructed to play
based on their score functions and to achieve the best possible agreement for them.

5.3. Experimental results

The main goal of the experiments was to verify that the automated agent is capable of achieving better agreements
than a human playing the same role, and to facilitate an earlier end to the negotiation as compared to negotiations
without the agent. A secondary goal was to check whether indeed the agent facilitated an increase in the social welfare
of the outcome, that is, improved the utility scores for both parties, as compared to negotiations without an automated
agent. When analyzing the results we use three types of statistical tests:

• t-test: A statistical hypothesis test in which the test statistic has a t-distribution if the null hypothesis is true.
This test requires a normal distribution of the measurements ([2], Chapter 3). Thus, it is used in our analysis for
comparing utility values, which have continuous values.

• Wilcoxon signed-rank test: A non-parametric alternative to the paired t-test for the case of two related samples or
repeated measurements on a single sample. This test does not require any assumptions regarding the distribution
of the measurements ([22], Chapter 5). This test is used in our analysis for comparing discrete samples.

• Fisher’s Exact test: Fisher’s exact test is a statistical significance test used in the analysis of categorical data where
sample sizes are small. This test is used to examine the significance of the association between two variables in
a 2 × 2 contingency table ([8], Chapter 14.4). We use this test in order to show the correlation between the type
of agreements reached (full agreement or partial) and the type of negotiators who reach them (two humans or a
human and an automated agent).

As we mentioned earlier, we experimented in two distinct domains. Tables 4 and 5 summarize the average utility
values of all the negotiations, the average ranking of the agreements reached, and the average of the sums of utility
values and ranking of the agreements in all the experiments in the England–Zimbabwe domain and the Job Candidate
domain, respectively. HZim, HEng, HCan and HEmp denote the utility value gained by people playing the role of Zim-

Table 4
Utility values, ranking values, sums of utility values and sums of ranking values
of final negotiations in the England–Zimbabwe domain

Parameter Avg Stdev

QEng vs. HZim 565.1 283.30
rank(QEng) vs. rank(HZim) 0.82 0.17
HEng vs. HZim 331.8 210.6
rank(HEng) vs. rank(HZim) 0.58 0.19

QZim vs. HEng 18.45 223.1
rank(QZim) vs. rank(HEng) 0.64 0.13
HZim vs. HEng −92.6 247.90
rank(HZim) vs. rank(HEng) 0.60 0.15

HZim vs. QEng −322.55 265.94
rank(HZim) vs. rank(QEng) 0.41 0.16
HEng vs. QZim 311.50 204.79
rank(HEng) vs. rank(QZim) 0.57 0.18

Sum-HEng vs. QZim 330 222.8
Sum-rank(HEng) vs. rank(QZim) 1.21 0.07
Sum-HZim vs. QEng 242.5 409.4
Sum-rank(HZim) vs. rank(QEng) 1.25 0.03
Sum-HEng vs. HZim 239.2 298.8
Sum-rank(HEng) vs. rank(HZim) 1.17 0.07
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Table 5
Utility values, ranking values, sums of utility values and sums of ranking values
of final negotiations in the Job Candidate domain

Parameter Avg Stdev

QCan vs. HEmp 409 93.95
rank(QCan) vs. rank(HEmp) 0.75 0.19
HCan vs. HEmp 309.7 140.2
rank(HCan) vs. rank(HEmp) 0.56 0.29

QEmp vs. HCan 437.3 121.7
rank(QEmp) vs. rank(HCan) 0.77 0.19
HEmp vs. HCan 410.6 114.0
rank(HEmp) vs. rank(HCan) 0.75 0.20

HCan vs. QEmp 342.45 114.40
rank(HCan) vs. rank(QEmp) 0.58 0.24
HEmp vs. QCan 448.82 82.41
rank(HEmp) vs. rank(QCan) 0.74 0.21

Sum-HEmp vs. QCan 852.8 132.2
Sum-rank(HEmp) vs. rank(QCan) 1.49 0.23
Sum-HCan vs. QEmp 779.7 199.0
Sum-rank(HCan) vs. rank(QEmp) 1.35 0.24
Sum-HEmp vs. HCan 720.3 212.5
Sum-rank(HEmp) vs. rank(HCan) 1.30 0.27

babwe or England and the role of the job candidate or the employer, respectively, and QZim, QEng, QCan and QEmp

denote the utility value gained by the QO agent playing either role in either domain.
The utility values range from −575 to 895 for the England role and from −680 to 830 for the Zimbabwe role, and

in the Job Candidate domain from 170 to 620 for the employer role and from 60 to 635 for the job candidate role. The
status quo value in the beginning of the negotiation was 150 for England and −610 for Zimbabwe, and in the second
domain it was 240 for the employer and −160 for the job candidate. England had a fixed gain of 12 points per time
period, while Zimbabwe had a fixed loss of −16 points. In the Job Candidate domain both players had a fixed loss per
time period—the employer of −6 points and the job candidate of −8 points per period.

In both domains similar results were achieved. Thus, in this section we elaborate mainly on the results of the first
domain. Later, we discuss the results in both domains.

5.3.1. Results of negotiations against people
First, we examine the final utility values of all the negotiations for each player, and the sums of the final utility

values. When the automated agent played the role of England the average utility value achieved by the automated
agent was 565.1, while the average for the human playing the role of England was 331.8. The results show that our
agent achieves significantly higher utility values as opposed to a human agent playing the same role (using the 2-
sample t-test: t (22) = 3.10, p < 0.004). (This was also the case when the automated agent played the role of the job
candidate in the second domain (using the 2-sample t-test: t (22) = 2.76, p < 0.008).) On the other hand, when the
agent played the role of Zimbabwe, there was no significant difference between the utility values of the agent and the
human player, though the average utility value for the automated agent was higher (18.45) than that of the humans
(−92.6). One explanation for the higher values achieved by the QO agent is that the QO agent is more eager to
accept agreements than humans, when playing the Zimbabwe side, which has a negative time cost (when QO played
Zimbabwe the average end turn of the negotiation was 5, while when the humans played Zimbabwe the average end
turn was 7). Thus, accepting agreements sooner rather than later allows the agent to gain higher utility values than the
human playing the same side. On the other hand, when the agent played the role of England, the average end turn for
the negotiation was 7 and the same average was achieved when the humans played the role of England.

The above results are also supported by the results received from ranking the agreements. When the automated
agent played the role of Zimbabwe, the average ranking it achieved was similar to the ranking the human players
attained playing the same role (0.64 and 0.60). On the other hand, when the automated agent played the role of
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England it achieved significantly higher ranking values than the human playing the same role, with an average of 0.82
as compared to only 0.58 (using the 2-sample Wilcoxon test, p < 0.002).

Comparing the sum of utility values of both negotiators, based on the role the agent played, we show that this sum
is higher when the agent is involved in the negotiations. When the automated agent played the role of Zimbabwe,
the sum of utility values was 330 as opposed to only 239.2 when two humans were involved. When the automated
agent played the role of England, the sum of utility values was 242.5, which is only marginally higher than the
score of 239.2 reached by the human subjects. (In the second domain the sum was also higher. Furthermore, when
the automated agent played the role of the job candidate the sum was even significantly higher, using the 2-sample
t-test: t (22) = 2.48, p < 0.002, when compared to negotiations in which no automated agent was involved.) When
comparing the sum of the rankings, we note that when the automated agent was involved the sum of rankings was
higher than when only humans were involved (an average of 1.21 and 1.25 when the automated agent played the role
of Zimbabwe and England, respectively, and an average of 1.17 when the human players played against each other).
However, this is only significant when the automated agent played the role of England (using the 2-sample Wilcoxon
test, p < 0.001).

Another important aspect of the negotiation is the outcome—whether a full agreement was reached or whether the
negotiation ended with no agreement (either status quo or opting out) or with a partial agreement. While only 64%
of the negotiations involving only people ended with a full agreement, more than 72% of the negotiations involving
the automated agent ended with a full agreement (and in the Job Candidate domain, respectively 72% and 86%).
Using the Fisher’s Exact test we determined that a correlation exists between the kind of opponent agent (be it an
automated agent or a human) and the form of the final agreement (full, partial or none). The results show that there is
a significantly higher probability of reaching a full agreement when playing against an automated agent (p < 0.006
for both domains).

In the next section we discuss the results of the experiments in both domains, when negotiating against people.

5.3.2. Discussion: Results against people
The results of the experiments, described above, show that the automated agent achieved higher utility values than

the human counterpart. This can be explained by the nature of our agent both in reference to accepting offers and
generating offers. Using the decision making mechanism we allow the agent to propose agreements that are good
for it, but also reasonable for its opponent. In addition, the automated agent makes straightforward calculations. It
evaluates the offer based on its attributes, and not based on its content. In addition, it also places more weight on the
fact that it loses or gains as time advances. This is not the case, however, when analyzing the logs of the people. It
seems that people put more weight on the content of the offer than on its value. This was more evident in the Job
Candidate domain with which the human subjects could more easily identify.

Yet, this does not explain why, in both domains, these results are significant only for one of the sides. In the
England–Zimbabwe domain, the results are significant when the agent played the role of England, while in the Job
Candidate domain these results are significant when it played the role of the job candidate. It is interesting to note
that our results, which show that the automated agents play significantly better when playing one of the sides, are not
unique. Kraus et al. [11] also experimented with an automated agent playing against humans. While they experiment
with a single-issue negotiation in one domain only (i.e. a fishing dispute domain—which is different from ours) they
also showed that their agent design, which has a different design and logic than the one implemented by our agent,
played significantly better only when playing one of the sides.

In the original version of the agent [14] we believed this to be attributed to the fact that the agent is more eager
to accept agreements than people. To this end, we updated the agent and made it less eager (and more conservative)
when it comes to accepting agreements. While in the original version of the agent we did not impose any restrictions
on accepting agreements (agreements were accepted purely on probability based on the ranking of the offer), in
the current version, acceptance by the agent depends on whether the value of the offer is greater than the agent’s
reservation price (r). While still many negotiations ended by the agent accepting the offer (and not by the agent
proposing the winning offer), it allowed us to improve the scores of the agent. However, the fact still remained that
these results are only significant for one of the roles in each domain.

Another possible explanation for this phenomenon can be found by examining the logs of the negotiations and the
values of the agreements. In both domains we can see that the British side and the job candidate sides are the more
dominant sides and have more leverage than the other side. For example, for England the fact that it gains as time
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advances could place more pressure on the other side to accept agreements. For the job candidate side, a psychological
interpretation could serve as an explanation. It seems that the job candidate’s side has less to lose in the negotiation.
While both the employer and the job candidate lose as time passes, the status quo agreement ensures the hiring of the
candidate.

5.3.3. Results of an automated agent playing against another automated agent
In this set of experiments, we matched our automated agent against another automated agent. We conducted two

sets of experiments. In both experiments the agents negotiated in both domains—the England–Zimbabwe domain and
the Job candidate domain. In the first we matched our automated agent against itself. In the second set of experiments
we matched it against another automated agent which followed a Bayesian equilibrium approach. In a Bayesian game,
agents face uncertainties about the characteristics (types) of other agents. This imperfect information can be modeled
by letting Nature select the agents’ types. Agents have initial beliefs about the type of each agent and can update
their beliefs according to Bayes’ rule. Since the agents only know their own types, they must seek to maximize their
expected payoff, given their beliefs about the other players. Note that our domains and experimental settings can be
viewed as Bayesian games. The Bayesian Nash equilibrium is then defined as a strategy profile and beliefs specified
for each agent about the types of the others agents that maximizes the expected payoff for each agent given their
beliefs about the other agents’ types and given the strategies played by the other agents ([20], pp. 24–29). Recall that
there are k possible types of agents. Both our automated agent and the agent which followed a Bayesian equilibrium
approach assume that the initial prior probability of each type is equal, that is, P(typei

t=0) = 1
k

, ∀i ∈ Types.
In the first set of experiments, when the automated agent was matched against itself, most of the agreements were

reached by the earlier turns (by the third round in the England–Zimbabwe domain and by the second round in the
Job Candidate domain). The average utility values for the QO agent playing England was 325.13 and for the QO
agent playing Zimbabwe 79.93 and 499.58 and 423.06 when playing the role of the employer and job candidate,
respectively. When looking at the utility values gained by the automated agent itself in both domains, the automated
agent’s results are higher than the results obtained by humans when playing the same role against either a human
or an automated agent (the results are also significant when the automated agent played the role of Zimbabwe with
p < 0.004 and both the employer and job candidate with p < 0.002 for both roles).

In addition, the average sum of utility values, 405.07 in the England–Zimbabwe domain and 922.65 in the Job
Candidate domain, is also higher (significantly higher in the Job Candidate domain with p < 0.002 when it played the
role of the employer and p < 0.02 when it played the role of the job candidate) than the sum obtained when either the
automated agent played against people (330 when it played the role of Zimbabwe and 242.5 when it played the role
of England; 779.7 when it played the role of the employer and 852.8 when it played the role of job candidate) and it
was significantly higher than negotiations in which only people were involved (an average of 239.2 and p < 0.017 in
the England–Zimbabwe domain and an average of 720.3 and p < 0.001 in the Job Candidate domain).

We can see that in both domains when the automated agent is matched against itself, it reaches better agreements
for both sides. This can be attributed to the decision making component of the agent, which, as we described above,
allows the agent both to generate agreements that are good for it, but also reasonable for the other side, and also to
accept such agreements when they are proposed by their rival.

In the next set of experiments, we matched our automated agent against an automated agent that followed the
Bayesian equilibrium strategy.

In the first domain, when the equilibrium agent played the role of Zimbabwe and the QO agent played the role
of England, most of the negotiations ended by the early time periods, while in the second domain, for both roles
the negotiation ended early (third time period in the England–Zimbabwe domain and second time period in the Job
Candidate domain). The average final utility values of the negotiations were 398.38 for the QO agent playing the role
of England and 61.38 for the equilibrium agent. In the Job candidate domains the values were 488.28 for the QO agent
playing the role of the job candidate and 426.89 for the equilibrium agent and 459.8 for the QO agent playing the
role of the employer and 488.4 for the equilibrium agent. In all these cases, the final utility values for the QO agent
were higher than the average utility values achieved by the humans playing either against our automated agent or
against themselves. On the other hand, when the equilibrium agent played the role of England, all of the negotiations
lasted until the last time period and eventually ended with a status quo agreement, giving England a very high score
of 981 and Zimbabwe a very low score of −548. The differences in the results between the two domains is that in the
England–Zimbabwe domain, an agent playing Zimbabwe loses as time advances, so the equilibrium agent playing the



Author's personal copy

R. Lin et al. / Artificial Intelligence 172 (2008) 823–851 841

role of Zimbabwe is highly motivated to propose an attractive offer to the opponent to facilitate the termination of the
negotiation sooner rather than later. In the job-candidate domain, however, both sides lose as time advances, and thus
when the equilibrium agent played either side the negotiation ended quickly and did not drag on until the last turn.

Though we did not run simulations of the equilibrium agent against human agents, the utility values of the opponent
from the offers suggested by the equilibrium agent are much lower than the final utility values of the human negotia-
tions. By also analyzing the simulation process of the human negotiations, we can deduce that without incorporating
any heuristics into the equilibrium agent, the human players would not have accepted the offers proposed by it. Thus,
when the equilibrium agent would play the role of England the negotiation might be dragged out until the last turn
with the implementation of a status quo agreement. However, perhaps the human playing the role of Zimbabwe would
have given up and preferred opting-out, resulting in an outcome which would have been worse (utility-wise) for the
equilibrium agent than the status quo outcome.

6. Conclusions

This paper presents an automated agent design for bilateral negotiation with bounded rational agents where there
is incomplete information regarding the opponent’s utility preferences. The results show that the agent is indeed
capable of negotiating successfully with human counterparts and reaching efficient agreements. In addition, the results
demonstrate that the agent plays at least as well as, and in the case of one of the two roles, achieved significantly higher
utility values, than the human player. By running the experiments on two distinct domains we have shown that it is
quite straightforward to adapt the simulation environment and the agent to any given scenario.

We have developed an automated negotiation environment. However, we do not intend to replace humans in ne-
gotiation, but rather to use the model as an efficient decision support tool or as a training tool for negotiations with
people. Thus, this model can be used to support training in real life negotiations, such as: e-commerce, and it can also
be used as the main tool in conventional lectures or online courses, aimed at turning the trainee into a better negotiator.

We have shown the importance of designing an automated negotiator that can negotiate efficiently with humans
and we have shown that indeed it is possible to design such a negotiator. We believe that the results of our research
can be particularly useful for constructing agents in open environments where uncertainty prevails. By pursuing non-
classical methods of decision making it could be possible to achieve greater flexibility and effective outcomes. As we
have shown, this can also be done without constraining the model to the domain. Thus these agents could be extremely
useful in e-commerce environments and e-negotiations.

Most negotiation tools today are domain-dependent and focus on a single negotiation issue (e.g., see [23]). These
tools do not provide an efficient training and learning experience for the trainee. Instead of providing the trainee with
a wide range of test cases, they constrain him/her to a predefined scenario, which is only a fragment of the variety of
scenarios he/she might encounter in the real world. We have demonstrated that our automated negotiation environment
is adaptable such that any scenario and utility function, expressed as a single issue or multi-issue attributes, can be
used, with no additional changes in the configuration of the interface of the simulations or the automated agents. The
automated agents can play either role in the negotiation. In addition, our environment embodies an automated agent
that plays against the trainee. This allows the trainee to use it anytime in order to test his/her capabilities and note
improvements.

Although much time was spent on designing the mechanism for generating an offer, the results show that most
of the agreements reached were offered by the human counterpart. This, indeed, allowed for more agreements to be
reached when the automated agent was involved (as compared to negotiations in which only humans were involved).
Nonetheless, a careful investigation should be made to examine how the offer generation mechanism can be improved.
Another direction for future would be to improve this mechanism in order to allow the agent to make more than one
offer per turn and to add more ‘personality’ to the agent, by allowing it to interact more with the opponent and adapt
its approach based on this interaction and the pressure of time.

Appendix A. Theoretical proofs

To prove Theorem 4.1 we will prove the following claims. Combining those proofs depicts the correctness of
our theorem. In the following analysis, the terms a and b are used synonymously as the types of agents a and b,
respectively. In the analysis we will refer to the automated agent as the agent of type a and its opponent as the agent
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of type b. We also assume that there is a unique negotiation solution. Recall also that in our model, the disagreement
point d is equivalent to opting out.

Claim A.1. QO always generates an agreement which is not worse than the disagreement point,3 �d , for both agents.

Proof. Since �d is the worst outcome for both agents, then:

∀�x ∈ O rankj (�x) � rankj ( �d) (A.1)

Assume, by contradiction, that QO generated �d as the offer. Following the QO function (Eq. (3)), we obtain:

�d = arg min{αd,βd} where αd = ranka( �d) · lua( �d) and βd = [
lua( �d) + lub( �d)

] · rankb( �d) (A.2)

Also assume that there is another agreement �x ∈ O, �x �= �d such that:

αx = ranka(�x) · lua(�x)

βx = [
lua(�x) + lub(�x)

] · rankb(�x) (A.3)

Thus, we can distinguish between two options. In the first, αd < βd . In this case, following our assumption, αd must
now be selected as the maximum of all the minima. Now, if the agreement �x satisfies αx < βx , then αx will be chosen
as the minima and must be compared to αd when choosing the maximum. Since �d is the worst outcome, and following
Eq. (A.1), αx > αd , which contradicts our assumption that �d was chosen by QO. Thus, we find that αx > βx . In this
case, βx is compared to αd . Following Eq. (A.1) and Property 3.1 we obtain for every �x �= �d also luj (�x) � luj ( �d).
Thus, βx > αd , which means that �d cannot have been chosen by QO.

In the second option we have αd > βd . Following similar considerations as the ones stated in the first case we also
obtain that βd cannot be chosen as the maximum, and thus �d cannot have been chosen by QO. �
Claim A.2. QO satisfies symmetry (Property 4.1).

Proof. Let B = 〈(ua(·), ub(·)), �d〉 be a symmetric negotiation problem with a symmetric function φ. Let �x∗
be the negotiation solution generated by QO. We need to show that φ(�x∗) is also a negotiation solution, i.e.,
(ua(φ(�x∗)), ub(φ(�x∗))) = (ua(�x∗), ub(�x∗)). From the definition of the bargaining problem and Claim A.1 we know
that

ua(�x∗) � ua( �d) (A.4)

ub(�x∗) � ub( �d) (A.5)

Since φ is a symmetric function we find that (Definition 4.1)

ua

(
φ(�x∗)

)
� ua

(
φ( �d)

) = ua( �d) (A.6)

ub

(
φ(�x∗)

)
� ub

(
φ( �d)

) = ub( �d) (A.7)

Assume, by contradiction, that φ(�x∗) is not a negotiation solution. Then, there is �y ∈ O such that

ua(�y) � ua

(
φ(�x∗)

)
(A.8)

ub(�y) � ub

(
φ(�x∗)

)
(A.9)

But since φ is a symmetric function we attain

ua

(
φ(�y)

)
� ua

(
φ ◦ φ(�x∗)

) = ua(�x∗)
ub

(
φ(�y)

)
� ub

(
φ ◦ φ(�x∗)

) = ub(�x∗) (A.10)

From Eq. (A.10) we reveal that there is another solution, φ(�y), in the original negotiation problem which is not worse
than �x∗, which is the negotiation solution QO generated. However, this contradicts the fact that �x∗ is the unique
negotiation solution in the original problem. �

3 If the disagreement point is unique, then QO always generates an agreement which has a higher utility value than the disagreement point.



Author's personal copy

R. Lin et al. / Artificial Intelligence 172 (2008) 823–851 843

Claim A.3. QO satisfies efficiency (Property 4.2).

Proof. We will prove this by contradiction. Let �x∗ be the solution. That is:

�x∗ = arg min{αx,βx} where αx = ranka(�x∗) · lua(�x∗) and βx = [
lua(�x∗) + lub(�x∗)

] · rankb(�x∗) (A.11)

Assume that �x∗ is not efficient, that is, there is �y ∈ O such that ua(�y) > ua(�x∗) and ub(�y) > ub(�x∗). For �y to be
chosen by QO:

�y = arg min{αy,βy} where αy = ranka(�y) · lua(�y) and βy = [
lua(�y) + lub(�y)

] · rankb(�y) (A.12)

QO generates a set of minima from which it selects the maximum as �x∗. We will distinguish between four possible
selections:

(1) αx < βx .
Here there are two possible options:
(a) αy < βy .

Since QO selected agreement �x∗ we know that αx > αy . However, this contradicts the assumption that
ua(�y) > ua(�x∗) (since ranka(�y) > ranka(�x∗) and lua(�y) > lua(�x∗)).

(b) αy > βy .
That is, βy is chosen as the minimum. Since QO selects αx as the maximum element in the set we ob-
tain βx > αx > βy . However, since ua(�y) > ua(�x∗) and ub(�y) > ub(�x∗) we reveal that lua(�y) > lua(�x∗),
ranka(�y) > ranka(�x∗), lub(�y) > lub(�x∗), rankb(�y) > rankb(�x∗). However, this requires that βy > βx . Thus,
the contradiction assumption is wrong.

(2) αx > βx .
As in the previous case, there are two possible options:
(a) αy < βy .

Since QO selected βx then βx > αy . By the assumption, ua(�y) > ua(�x∗). Thus, we obtain βx > αy > αx

which is in contradiction with our base case (Case A.3). Thus, the contradiction assumption is wrong.
(b) αy > βy .

Since QO selects βx as the maximum element in the set of all minima we find that βx > βy . However,
since ua(�y) > ua(�x∗) and ub(�y) > ub(�x∗) we reveal that lua(�y) > lua(�x∗), ranka(�y) > ranka(�x∗), lub(�y) >

lub(�x∗), rankb(�y) > rankb(�x∗). However, this requires that βy > βx . Thus, the contradiction assumption is
wrong. �

Claim A.4. QO satisfies invariance (Property 4.3) under the following conditions:

(1) ui(�o) < uj (�o) ⇔ u′
i (�o) < u′

j (�o);4

(2) ∀�o, �p ∈ O ui(�o) > uj ( �p) ⇒ u′
i (�o) > u′

j ( �p).

Proof. Let B = 〈(ua(·), ub(·)), �d〉 and B ′ = 〈(u′
a(·), u′

b(·)), �d〉 be equivalent problems. Let �x∗ be the negotiation
solution generated by QO. We need to show that f (B) = f (B ′), that is, the same negotiation solution is obtained by
f (B ′). From Eq. (3), we observe that we perform a maximum over the set of minima which is generated from ua

and ub . Condition 1 above guarantees us that if ua(�x) � ub(�x) then also u′
a(�x) � u′

b(�x). Thus, the set of minima
remains identical using ua,ub and u′

a, u
′
b .

Note that since we perform a linear transformation where αi > 0 and αj ∈ R
+, βi ∈ R then

ui(�x) > ui(�y) ⇒ u′
i (�x) > u′

i (�y). (A.13)

Condition 2 and Eq. (A.13) above guarantee that the preference relation among this set will also remain the same.
Thus, we will attain the same solution �x∗. The value of this solution for B ′ can be obtained using the same linear
transformation, that is, QOB ′(t) = αax

∗ + βi . �
4 This condition is applicable in domains such as ours, in which there are contradictory preferences.
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Claim A.5. QO satisfies independence of irrelevant alternative solutions (Property 4.5).

Proof. Let B = 〈(ua(·), ub(·)), �d〉 and B ′ = 〈(u′
a(·), u′

b(·)), �d〉 be negotiation problems, where B ′ ⊆ B . Let X be the
set of all possible negotiation solutions generated by QOB (|X| = 1 if there is only one maximum, and |X| > 1 if there
are several maxima) such that X ⊆ B ′. We need to show that X is also the set of all possible negotiation solutions
generated by QOB ′ . Let �x∗ ∈ X be an arbitrary solution. That is, �x∗ is chosen as the maximum element of all the
values in the minima set. Since the agreement associated with �x∗ is also in B ′ and since B ′ contains only a subset of
the agreements in B , �x∗ must also be the maximum element in the minima set for B ′. That is, �x∗ is also chosen as the
maximum. �
Claim A.6. Let the agreement given by the Nash solution be �x. If an agreement �y exists where lua(�y) · ranka(�y) >

lua(�x) · ranka(�x) and lua(�y) · ranka(�y) < [lua(�y) + lub(�y)] · rankb(�y) then QO’s solution will be �y rather than �x.

Proof. From the assumption we know the lua(�y) · ranka(�y) is chosen as the minimum. We distinguish between the
two possible cases:

(1) lua(�x) · ranka(�x) < [lua(�x) + lub(�x)] · rankb(�x).
In this case, lua(�x) · ranka(�x) is also chosen as the minimum and since ua(�y) > ua(�x), QO will prefer �y over �x.

(2) lua(�x) · ranka(�x) > [lua(�x) + lub(�x)] · rankb(�x).
In this case, [lua(�x) + lub(�x)] · rankb(�x) is chosen as the minimum but since ua(�y) > ua(�x), which requires
lua(�y) · ranka(�y) > lua(�x) · ranka(�x), QO will prefer �y over �x. �

Claim A.7 (Identical discount rate). If both agents have the same time constant discount rate, QO will generate the
same solution at each time unit.

Proof. Let �x∗
0 be the solution generated by QO at time t = 0. We need to show that ∀t > 0, �x∗

t = �x∗
0 . Since both agents

multiply their utilities by the same factor, 0 < δj < 1, the preference relations among their own utility and between
their utilities remain the same. Thus, the probability of accepting an offer and the ranking of the offers also remain the
same. As a result, the agreement generated by QO at time t will be the same as the one generated at the previous time
unit t − 1, and thus will be the same as the one generated at time t = 0. �
Appendix B. Score functions

Tables B.1 and B.2 present the score functions for both negotiators, in both domains. While the human subject
is given his own score function at the beginning of the negotiation, he is also given three additional score functions
which model the different possible types of his opponent.

Appendix C. Negotiation example

The following is a snapshot of a negotiation log between the automated agent and a human counterpart in the Job-
Candidate domain. The automated agent played the role of the job candidate (denoted QOCan) and the human played
the role of the employer (denoted HEmp). The following is the internal log of our program. The people themselves
communicated and received messages via GUI windows. Examples of the main screen, an offer generation screen and
a receiving offer screen are given in Figs. C.1, C.2 and C.3, respectively.

The log below depicts a successful negotiation which enabled the sides to reach an agreement after 5 turns. Alter-
nating offers between the automated agent and the human can be observed until the offer is accepted by the automated
agent in the third turn (offer #6). Yet, the negotiation is not over since this is a partial agreement. This agreement is
enforced and the agents cannot withdraw from it, unless both sides agree to a new agreement (or one side decides to
opt out). We can see that the sides still need to resolve the issue of the leased car. However, since the negotiation is not
over, both sides are free to propose additional offers, not necessarily ones which refer to the unresolved issue. Indeed
this is what the automated agent does. Eventually, the human player proposes to resolve the issue of the leased car
(offer #12). The automated agent agrees and thus the negotiation terminates with a full agreement.
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Table B.1
The England–Zimbabwe domain (i) short-term, (ii) long-term and (iii) compromise orientation score functions

Outcomes Zimbabwe England
Outcome Weight/Importance Outcome Weight/Importance

(i) (ii) (iii) (i) (ii) (iii)

Size of fund 50% 10% 20% 50% 10% 30%

$100 Billion 9 5 6 −5 1 2
$50 Billion 2 2 4 2 3 4
$10 Billion −5 −3 2 10 6 6
No agreement −8 −6 −2 7 −1 −2

Impact on other aid 30% 10% 20% 30% 10% 30%

No reduction 8 6 3 −4 1 0
Reduction is equal to half of the fund size 0 0 0 4 2 3
Reduction is equal to the fund size −3 −3 −2 10 3 5
No agreement −5 −4 −4 −7 0 −2

Trade policy 10% 30% 30% 10% 30% 10%

Zimbabwe will reduce tariffs on imports −6 −3 −4 3 4 5
Zimbabwe will increase tariffs on imports 3 6 4 −3 −6 −6
England will increase imports 7 8 10 −4 −8 −5
England will reduce imports −8 −9 −8 4 6 4
No agreement 0 0 0 0 0 0

Forum on other health issues 10% 50% 30% 10% 50% 30%

Creation of fund 9 8 7 −8 7 4
Creation of committee to discuss creation of fund 3 5 5 2 4 7
Creation of committee to develop agenda −5 −6 3 6 −2 1
No agreement −6 −8 −3 1 −4 −2

Time effect −16 −16 −16 12 12 12
Status quo −610 −500 −210 150 −210 −180
Opting out −530 −520 −240 −105 −240 −75

To: HEmp

From: QOCan
Message Type: Offer (id = 1)
Turn: 1
Message: <Salary: 20,000 NIS, Job Description: Programmer, Leased Car: With leased car, Pension Fund: 20%,
Promotion Possibilities: Fast promotion track, Working Hours: 8 hours>

To: QOCan
From: HEmp

Message Type: Response
Turn: 1
Message: Offer (id = 1) refused

To: QOCan
From: HEmp

Message Type: Offer (id = 2)
Turn: 1
Message: <Salary: 12,000 NIS, Job Description: Programmer, Leased Car: Without leased car, Pension Fund: 10%,
Promotion Possibilities: Fast promotion track, Working Hours: 10 hours>

To: HEmp

From: QOCan
Message Type: Response
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Table B.2
The Job Candidate domain (i) short-term, (ii) long-term and (iii) compromise orientation score functions

Outcomes Job Candidate Employer
Outcome Weight/Importance Outcome Weight/Importance

(i) (ii) (iii) (i) (ii) (iii)

Salary 20% 30% 15% 20% 15% 10%
7000 NIS 3 2 3 8 7 7
12,000 NIS 6 6 5 6 6 6
20,000 NIS 8 9 6 3 3 4

Job description 15% 25% 20% 20% 30% 20%

QA 2 −2 2 4 2 3
Programmer 4 3 4 6 6 6
Team Manager 5 6 6 4 3 4
Project Manager 6 8 8 2 1 3

Leased car 20% 5% 10% 10% 10% 10%

Without leased car −5 −5 −2 3 4 5
With leased car 5 5 2 −2 2 4
No agreement 0 0 0 0 0 0

Pension fund 10% 5% 10% 10% 10% 10%

0% pension fund −2 −2 −2 3 6 6
10% pension fund 3 4 3 4 4 4
20% pension fund 5 6 5 3 3 3
No agreement 0 0 0 0 0 0

Promotion possibilities 5% 25% 35% 10% 20% 20%

Slow promotion track 4 1 −2 3 8 6
Fast promotion track 5 5 5 3 5 4
No agreement 0 0 0 0 0 0

Working hours 30% 10% 10% 30% 15% 30%

10 hours 3 3 4 8 8 9
9 hours 5 4 5 6 6 6
8 hours 7 5 6 3 4 3

Time effect −8 −8 −8 −6 −6 −6
Status quo 160 135 70 240 306 306
Opting out 150 75 80 210 150 215

Turn: 1
Message: Offer (id = 2) refused

To: QOCan
From: HEmp
Message Type: Offer (id = 3)
Turn: 2
Message: <Salary: 12,000 NIS, Job Description: Programmer, Leased Car: Not discussed, Pension Fund: 10%, Pro-
motion Possibilities: Fast promotion track, Working Hours: 9 hours>

To: HEmp
From: QOCan
Message Type: Offer (id = 4)
Turn: 2
Message: <Salary: 20,000 NIS, Job Description: Programmer, Leased Car: With leased car, Pension Fund: 20%,
Promotion Possibilities: Fast promotion track, Working Hours: 9 hours>

To: HEmp
From: QOCan
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Fig. C.1. Main negotiation screen.

Message Type: Response
Turn: 2
Message: Offer (id = 3) refused

To: QOCan
From: HEmp

Message Type: Response
Turn: 2
Message: Offer (id = 4) refused

To: HEmp

From: QOCan
Message Type: Offer (id = 5)
Turn: 3
Message: <Salary: 12,000 NIS, Job Description: Team Manager, Leased Car: With leased car, Pension Fund: 20%,
Promotion Possibilities: Fast promotion track, Working Hours: 9 hours>

To: QOCan
From: HEmp

Message Type: Response
Turn: 3
Message: Offer (id = 5) refused

To: QOCan
From: HEmp

Message Type: Offer (id = 6)



Author's personal copy

848 R. Lin et al. / Artificial Intelligence 172 (2008) 823–851

Fig. C.2. Generating offers screen.

Turn: 3
Message: <Salary: 12,000 NIS, Job Description: Programmer, Leased Car: Not discussed, Pension Fund: 20%, Pro-
motion Possibilities: Slow promotion track, Working Hours: 9 hours>

To: HEmp

From: QOCan
Message Type: Response
Turn: 3
Message: Offer (id = 6) agreed

To: QOCan
From: HEmp

Message Type: Offer (id = 7)
Turn: 4
Message: <Salary: Not discussed, Job Description: Not discussed, Leased Car: Without leased car, Pension Fund:
Not discussed, Promotion Possibilities: Not discussed, Working Hours: Not discussed >

To: HEmp

From: QOCan
Message Type: Offer (id = 8)
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Fig. C.3. Receiving offers screen.

Turn: 4
Message: <Salary: 12,000 NIS, Job Description: Programmer, Leased Car: With leased car, Pension Fund: 20%,
Promotion Possibilities: Fast promotion track, Working Hours: 9 hours>

To: QOCan
From: HEmp

Message Type: Response
Turn: 4
Message: Offer (id = 8) refused

To: HEmp

From: QOCan
Message Type: Response
Turn: 4
Message: Offer (id = 7) refused

To: QOCan
From: HEmp

Message Type: Offer (id = 9)
Turn: 4
Message: <Salary: Not discussed, Job Description: Not discussed, Leased Car: Without leased car, Pension Fund:
Not discussed, Promotion Possibilities: Fast promotion track, Working Hours: Not discussed>

To: HEmp

From: QOCan
Message Type: Response
Turn: 5
Message: Offer (id = 9) refused
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To: QOCan
From: HEmp

Message Type: Offer (id = 10)
Turn: 5
Message: <Salary: Not discussed, Job Description: Not discussed, Leased Car: Without leased car, Pension Fund:
Not discussed, Promotion Possibilities: Fast promotion track, Working Hours: Not discussed>

To: HEmp

From: QOCan
Message Type: Response
Turn: 5
Message: Offer (id = 10) refused

To: HEmp

From: QOCan
Message Type: Offer (id = 11)
Turn: 5
Message: <Salary: 12,000 NIS, Job Description: Team Manager, Leased Car: With leased car, Pension Fund: 20%,
Promotion Possibilities: Slow promotion track, Working Hours: 9 hours>

To: QOCan
From: HEmp

Message Type: Response
Turn: 5
Message: Offer (id = 11) refused

To: QOCan
From: HEmp

Message Type: Offer (id = 12)
Turn: 5
Message: <Salary: Not discussed, Job Description: Not discussed, Leased Car: With leased car, Pension Fund: Not
discussed, Promotion Possibilities: Not discussed, Working Hours: Not discussed>

To: HEmp

From: QOCan
Message Type: Response
Turn: 5
Message: Offer (id = 12) agreed

End Negotiation: a full agreement was reached:
<Salary: 12,000 NIS, Job Description: Programmer, Leased Car: With leased car, Pension Fund: 20%, Promotion
Possibilities: Slow promotion track Working Hours: 9 hours>

QOCan Score: 468.0
HEmp Score: 436.0
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