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Abstract—Although most game theory models assume that payoff matrices are provided as input, getting payoff matrices in strategic
games (e.g. corporate negotiations, counter-terrorism operations) has proven difficult. To tackle this challenge, we propose PIE (Payoff
Inference Engine) that finds payoffs assuming that players in a game follow a myopic best response or a regret minimization heuristic.
This assumption yields a set of constraints (possibly non-linear) on the payoffs with a multiplicity of solutions. PIE finds payoffs by
considering solutions of these constraints and their variants via three heuristics: i) We approximately compute a centroid of the resulting
polytope of the constraints, ii) We use a soft constraint approach that allows violation of constraints by penalizing violations in the
objective function and iii) We develop a novel approach to payoff inference based on Support Vector Machines (SVM). Unlike past work
on payoff inference, PIE has the following advantages: (i) PIE supports reasoning about multi-player games, not just one or two players,
(ii) PIE can use short histories, not long ones which may not be available in many real-world situations, (iii) PIE does not require all
players to be fully rational, (iv) PIE is one to two orders of magnitude more scalable than past work. We run experiments on (i) a synthetic
data set where we generate payoff functions for the players and see how well our algorithms can learn them, (ii) a real-world
coarse-grained counter-terrorism data set about a set of different terrorist groups, and (iii) a real-world fine-grained data set about a
specific terrorist group. As the ground truth about payoffs for the terrorist groups cannot be tested directly, we test PIE by using the
payoffs to make predictions about actions of the groups and corresponding governments (even though this is not the purpose of the
paper). We show that compared with recent work on payoff inference, PIE has both higher accuracy and much shorter run time.

Index Terms—Game Theory, Payoff Inference, Counter-Terrorism
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1 INTRODUCTION

GAME theory is a classic and powerful tool for modelling
strategic behavior of a system of multiple agents who

interact with each other. Almost all work in game theory
starts with a payoff matrix. In his pioneering study of conflict,
Schelling [1] starts out with a payoff matrix for virtually
every scenario. While getting a payoff matrix for a game
is critical to modelling and understanding the behaviors of
the involved agents, it unfortunately poses an enormous
challenge in many real-world strategic games where such
knowledge does not exist.

In this paper, we address the payoff inference problem
in a game of interacting players with our counter-terrorism
application. Because counter-terrorism is adversarial, we
target non-cooperative scenarios in order to answer the
following question: Given a body of historical data about the
interactions of a set of non-cooperative players, is there a way
to learn a payoff matrix? The approach in this paper is
partly motivated by our ongoing counter-terrorism research
involving the terrorist group Lashkar-e-Taiba (responsible for
the 2008 Mumbai attacks) — given the history of interactions
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of the governments of Pakistan and India and Lashkar-e-
Taiba (LeT), we wish to understand their payoff [2], [3]. To
answer these questions, we need a realistic game theoretic
model that is able to characterize real-world game scenarios
(e.g. in counter-terrorism) while being robust to potential
deviations from the game models. To this end, we consider
the following properties in our model:

‚ Best Response. Given the history of past events (i.e.,
choices of actions), in each time period, players choose
an action that is an approximate best response to the
history (subject to the bounded rationality property
as described next).

‚ Bounded Rationality. In real-world games such as our
counter-terrorism situations, decision makers are not
likely to be fully rational but boundedly rational,
i.e. players take actions whose payoffs are within
ε percent of the action with best response payoff.
Therefore, we assume bounded rationality, not full
rationality.

‚ Time Discounting. Intuitively, players are more likely
to be influenced by “recent” history as opposed to
events from a distant past. In order to model this, we
developed a notion of time-discounted regret.

‚ No Correlated Equilibria, Short Histories. A correlated
equilibrium is a status where no player wants to
deviate from the recommended strategy from a public
signal (assuming the others don’t deviate). When long
histories are available and some extra assumptions are
made e.g. [4], game play can converge to a correlated
equilibrium even without a signaling mechanism.
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However, many real-world applications have short
histories for which convergence cannot be assumed.
As a result, we do not assume correlated equilibria
[4] or the existence of a signaling mechanism [5].

There has been extensive prior work on applying game-
theoretic models to counter-terrorism and more generally,
security problems [3], [6], [7], [8], [9], [10], [11], [12], [13].
These works usually assume that the payoff matrices of the
players are known a-priori, which is not the case in our
counter-terrorism domain. The payoff inference problem has
been studied in economics for various markets [14], [15], [16],
[17]. However, their focus is on modeling a particular market
and then to use the domain-specific model for model fitting
and regression. Therefore, their methods cannot be applied
to our problem. Though there are several existing works
on inverse reinforcement learning (IRL) which study the
payoff inference problem, we will show that (i) most of these
works focus on single agent agent [18], [19], [20], (ii) some
of these works focus on multiple agents in a cooperative
setting [21], [22] and (iii) the works on multi-agent non-
cooperative settings [23], [24], [25], [26] generally (including
those in (i) and (ii)) target payoff inference problems defined
on a Markov decision process (MDP), which is an over-
complication of our problem. For payoff inference on games
with multiple players, we show that past works lack at least
one of these properties. One work that is closely related to
our problem is [27]. However, we will show that the model
formulated in [27] is computationally inefficient, as solving
the model involves convex optimization. Moreover, another
distinction of our model from existing works is that we take
into consideration all the properties mentioned above (i.e.
best response, time discounting, no correlated equilibria) –
but existing works lack at least one of the properties in their
game theory-based payoff inference model.

We provide two different formulations to model the
payoff inference problem. The first formulation is built on
top of the concept of regret in repeated decision making prob-
lems where we define a set of constraints whose variables
represent the tabular representation of payoffs for each player
under each joint action. Our constraints informally state that
at each time point t in the past, each player i chose to perform
the action for which he had the maximal expected time-
discounted regret prior to time t. In the second model, we
interpret these constraints as a myopic best response to the
state of the world (i.e., a history of actions for all the players),
with a (possibly) non-linear function form representation
of the payoff function. The two models lead to a set of
constraints defined on the payoff functions.

To solve the above problems, we propose three ap-
proaches: CBS and SCA are devised for the first model,
while SVMM is designed for the second model.

1) Centroid-Based Solution (CBS). In CBS, the (ap-
proximate) centroid of the constraint polytope is
picked as the solution.

2) Soft Constraints Approach (SCA). In SCA, we allow
the rationality constraints to be violated but penalize
such violations in the objective function.

3) SVM-based Method (SVMM). In SVMM, we pro-
pose a heuristic method to map the payoff inference
problem onto a support vector machine [28] and

build a separator that captures the payoff function
we wish to learn.

We implemented CBS, SCA, SVMM, as well as the ICEL
algorithm (Inverse Correlation Equilibrium Learning [27])
on both synthetic data and two real-world datasets. We
compared all 4 algorithms w.r.t. solution quality and run-
time. On synthetic data where we knew the ground truth
(because we generated player behavior using known payoff
functions), we showed that SVMM outperforms both CBS
and SCA w.r.t. both solution quality and run-time. We also
compared CBS,SCA, and SVMM on two real-world data sets:
(i) the Minorities at Risk Organizational Behavior (MAROB)
dataset [29] the contains data on terrorist group behaviors
and related government actions and (ii) a much more fine-
grained data set [2] about the behavior of the terrorist group
Lashkar-e-Taiba (LeT).1 Again, SVMM outperformed CBS
and SCA. We then ran experiments comparing SVMM with
ICEL. When we compare the ability of SVMM with that of
ICEL to predict true behaviors from learned payoffs on the
MAROB data, SVMM’s ability to predict behavior from the
learned payoffs was much better than that of ICEL (median
Spearman Correlation Coefficient of 0.7 for SVMM, compared
to just 0.114 for ICEL).

2 RELATED WORK

A major driver for our work is counter-terrorism applications.
The development of game-theoretic methods to analyze
terrorist behavior and organization has been pioneered
by [6], [7], and subsequently adopted by others [8], [9],
[10], [11], [12], [13]. However, as described above, these
approaches usually assume that the payoff matrices are
known in advance by the decision makers, which might
not be the case in many real-world problems such as the
counter-terrorism applications motivating our work.

Economists have studied payoff inference problems for
various markets [14], [15], [16], [17]. However, their focus
is on modeling a particular market and then to use various
model fitting and regression methods to learn the best
parameters. For instance, [16] studies the effect of land use
regulations on the mid-scale hotel market. In our problem,
the decision making process is in an interactive environ-
ment [30], [31] with multiple agents (i.e., governments and
terrorist groups) as opposed to the single agent scenario
in these works. Therefore, these lines of research cannot be
directly applied to our problem.

Inverse Reinforcement Learning [18] learns payoffs of
a single-agent operating in a given (usually Markovian)
environment. [18] addresses the problem of learning a
reward function by observing behavior of MDPs. However,
they and a series of subsequent works [19], [20] assume a
single rational agent in a given environment. Some recent
works have focused on Multi-agent Inverse Reinforcement

1. As no ground truth exists about payoffs for real-world players
in the MAROB and LeT data sets, we learned player payoffs from a
training data set and then validated them on a separate validation data
set by making predictions based on learned payoffs. We emphasize the
fact that this paper is not about prediction – but about learning payoffs
in order to understand group behavior. The goal is to understand the
payoff structure for different players for different strategies so diplomats
and counter-terrorism agencies can shape policies towards the terrorist
groups. We use predictions solely to validate learned payoffs.
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Learning (MIRL). In contrast to the scenario we consider
in which players are non-cooperative, [21] and [22] study
the problem of learning player payoffs in the presence of
a centralized coordinator. While several other works [23],
[24], [25], [26] study the non-cooperative setting, a major
difference between the problem addressed in these works
is that they focus on non-cooperative games defined on a
Markov decision process (MDP), while the problem targeted
in this paper is a one-shot decision making problem (i.e., the
decision at the current time step does not affect the decisions
at future time steps). Therefore, the approaches to MIRL
are distinct from our work. Perhaps the prior work that is
closest to our problem setting is by Waugh et al. [27] who
proposed an approach to predict player behavior when no
payoff matrix is available. A convex optimization formulation
finds a maximum entropy solution to find the predicted
distribution over joint actions. Finally, payoffs are computed
by using the dual of the above optimization convex problem.
However, this approach suffers from the computational
complexity brought by the convex program formulation.

The assumption of equilibrium is common to most work
on MIRL and other payoff learning methods. However,
decision theory strongly suggests that human players don’t
follow equilibrium strategies, even when the equilibrium
is unique (which is also rare in real-world problems) [1].
However, decision theory does highlight the importance of re-
cency [32] and regret in human decision making. Anticipated
regret is considered an important determinant of choice-
behavior [33], [34], [35]. These aspects form the basis for
PIE’s time discounted regret minimization and myopic best
response with exponentially decaying state. Thus, PIE differs
from existing work on payoff inference in that we assume
myopic rationality and not global rationality (equilibrium).
We also assume simple game play dynamics inspired by
relevant work from decision theory. In addition, we develop
a fast and practical data analytic approach compared to the
more theoretical approach taken by most machine learning
papers. We show this with experiments on two real-world
datasets and show superior performance compared to Waugh
et al [27] who only study a very small, toy example.

3 PAYOFF INFERENCE MODEL

In this section, we first introduce the preliminaries of the
game model, followed by two different formulations of the
payoff inference models. The first model is based on the idea
of “regret minimization”, with a tabular representation of
the payoff matrices. The second model, which is motivated
by our counter-terrorism application on Lashkar-e-Taiba,
represents the payoff matrices in a function approximation
form with respect to a “time-weighted history”.

Preliminaries

Let rN s “ t1, . . . , Nu be a set of players. We assume that
each player i has an associated set Ai of actions that it can
take. Let A “ A1 ˆ ¨ ¨ ¨ ˆAN denote the set of all possible
joint actions. Given a joint action a P A, ai is the action of
player i and a´i is the joint action of all other players. Let ui
be an unknown payoff function: ui : AÑ r0, 1s. uipaq is the
payoff of joint action a for player i. Let U “ tu1, . . . , uNu be

the set of all (as yet unknown) payoff functions where ui is
the payoff function for player i. Let rT s “ t1, . . . , T u be a set
of past time points.

Let m “
ř

iPrns |Ai| be the total number of actions for
all players in the game. We encode a joint action as an
m-dimensional binary vector. Each action for a player i is
indexed from

ř

jPt1...,i´1u |Aj |`1 to
ř

jPt1...iu |Aj | in a fixed
but arbitrary order. In other words, the first |A1| entries in
the vector describe the actions for the first player, the next
|A2| entries describe the actions for the second player, and
so forth. Let v be an encoding for a P A. If, in the joint action
represented by a, player i plays action ai P Ai at time t, then,
and only then is vrais “ 1, otherwise vrais “ 0.
Example 1. Suppose we have two players 1, 2 and suppose
A1 “ ta, b, cu and A2 “ ta, eu are the actions they can
perform. Then the dimensionality of a joint action is 5 and
an example of the vector representation of a joint action is:

pl-1 pl-1 pl-2 pl-2 pl-2
a b c a e
1 0 0 0 1

The first row is the player’s ID and the second row is the
action name. Here, the 5-dimensional vector (1,0,0,0,1) tells
us that in this joint action, player 1 performed action a and
player 2 performed action e.

A history is a sequence Hτ “ă a1, . . . , aτ ą where at is
the vector of joint actions taken at time t P rT s. We represent
the history of a game as a matrix, H , where Hrt, as “ 1 iff
player i plays action a P Ai at time t. Thus, Ht, the tth row
of the history matrix represents the joint action taken by all
players at time t. Likewise, the i’th column of H tells us that
actions taken by player i at each time point.
Example 2. Suppose we have two players rN s “ t1, 2u;
player 1 is a terror group and player 2 is the government.
Assume that the players’ actions are pe g ( “political en-
gagement with the government”) for player 1 and pe tg
(“political engagement with the terror group”) for player
2. Each of these variables has 3 possible levels of intensity
(low, medium, high). Therefore, player 1 has three actions,
pe gplq, pe gpmq, pe gphq, corresponding to the three levels
of intensity of this action, and similarly, player 2 has three
actions pe tgplq, pe tgpmq, pe tgphq. Let indices of the
actions pe gplq, pe gpmq, pe gphq be 1, 2 and 3 respectively
for player 1, and 4, 5 and 6 respectively for player 2. Suppose
we have three years (rT s “ t1, 2, 3u) of history below:

rT s year player 1 player 2
1 2010 pe gplq pe tgpmq
2 2011 pe gpmq pe tgplq
3 2012 pe gphq pe tgpmq

Then the history matrix H is given by:
¨

˝

1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 1 0

˛

‚

Regret-Based Payoff Inference
In this section, we define the concept of time discounted
regret. Classical regret is defined with respect to a class Φ
of modification functions. Each modification function f P
Φ is a mapping f : A Ñ A. Intuitively, a modification
function suggests an alternative choice fpaq for an action
a. Instead of taking action a, the player takes action fpaq.
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As there are many ways in which a player could modify
his choice, we consider a set Φ of modification functions.
In the context of our running counter-terrorism example,
the different modification functions might correspond to all
feasible actions that could replace a given action a. The regret
for a player i is defined as:

Ri,Φptq “ max
fPΦ

t´1
ÿ

t̂“1

uipfpa
t̂
iq, a

t̂
´iq ´ uipa

t̂q.

Here, uipfpat̂iq, a
t̂
´iq ´ uipa

t̂q is the difference in utility for
player i had he elected to take action fpat̂iq instead of
whatever action he took at time t in the past. The summation
řt´1
t̂“1 uipfpa

t̂
iq, a

t̂
´iq ´ uipa

t̂q reflects the total regret that
player i had w.r.t. his past actions, had he chosen to use
modification function f instead of whatever method he used
to select his past actions. Had player i used the modification
function f P Φ that maximizes this summation, then he
would have gotten the maximal possible benefit, and the fact
that he (maybe) did not use it is what leads to this regret.

When determining what action to take, players in the
real world are often more influenced by recent actions than
by actions in the distant past. Our notion of time-discounted
regret takes this into account by allowing a player to discount
the past at a rate α s.t. 0 ă α ď 1. After each time point, the
“importance” of a past event is reduced by a factor of α. The
time-discounted regret is defined as follows:

TDRi,Φptq “ max
fPΦ

řt´1
t̂“1 α

t´1´t̂puipfpa
t̂
iq, a

t̂
´iq ´ uipa

t̂qq
řt´1
t̂“1 α

t´1´t̂

(1)

Because of the α parameter in the definition of TDR, for us,
a history is a timed-stamped collection of past joint actions.
This is very different from [27] which only uses the history
to extract the distribution of joint actions and considers it to
be a collection (without timestamps) of past joint actions. When
α “ 1, the definitions of regret and time-discounted regret
coincide.

Suppose Φc is the set of all functions from A to A that are
constant functions, i.e. if f is in Φc, there must exist an action
a1 P A such that for all a P A, fpaq “ a1. The time discounted
external regret w.r.t. Φc is then simply given by:

TDERi,Φc
ptq “ max

âPA

řt´1
t̂“1 α

t´1´t̂puipâ, a
t̂
´iq ´ uipa

t̂qq
řt´1
t̂“1 α

t´1´t̂

In other words, TDERi,Φc only considers constant functions
when computing time-discounted regret. We define the time-
discounted external regret w.r.t. action â as:

TDERipâ, tq “

řt´1
t̂“1 α

t´1´t̂puipâ, a
t̂
´iq ´ uipa

t̂qq
řt´1
t̂“1 α

t´1´t̂
(2)

Intuitively, TDERipâ, tq is the regret for player i due to the
fact that she/he did not use the strategy to always play the
action â in the past. We assume that for a rational player,
the greater the regret w.r.t an action â in the past, the more
likely it is that the player will play the action â in the future.2
Example 3. Let us reconsider Example 2 with α “ 0.9. The

2. In simple terms: if the player had great regret about not doing
something in the past, especially the recent past, then he is more likely
to do it in the future, especially in the near future.

time-discounted external regret for player 1 w.r.t. action h in
the year 2013 (t “ 4) is:

TDER1ph, 4q “

0.81pu1ph,mq́ u1pl,mqq̀ 0.9pu1ph, lq́ u1pm, lqq̀ pu1ph,mq́ u1ph,mqq

0.81` 0.9` 1.0

Observe that the weights 0.81, 0.9 and 1.0 are the weights
for years 2010, 2011 and 2012, respectively.

A player is rational if, for each time t, the player chooses
the action that caused the maximum time-discounted exter-
nal regret in the past. Thus, our rationality constraints require
that @t P rT szt1u, @i P rN s, @â P Aztatiu the following
condition holds3:

TDERipâ, tq ď TDERipa
t
i, tq (3)

or, equivalently,

t´1
ÿ

t̂“1

αt´1´t̂puipâ, a
t̂
´iq ´ uipa

t
i, a

t̂
´iqq ď 0 (4)

Since our goal is to infer the payoff function of players (based
on regret maximization) instead of computing an equilibrium,
we do not have any constraint at t “ 1, and the action at t “ 1
is from the ground truth of the dataset. Bounded Rationality.
As players in the real world are rarely 100% rational, we
introduce a parameter ε P r0, 1s that captures the degree of
rationality. The closer ε is to 1, the more rational the player
is, while the closer ε is to 0, the more irrational the player is.
We replace Equation 3 (which assumes complete rationality)
with the equation below, which allows weaker notions of
rationality:

ε ¨ TDERipâ, tq ď TDERipa
t
i, tq

or equivalently

t´1
ÿ

t̂“1

αt´1´t̂pε ¨ uipâ, a
t̂
´iq ´ uipa

t
i, a

t̂
´iqq ď 0. (5)

As ε and the α’s are constants, this equation is linear. Each
uip´q term is a variable in this constraint. Let LC be the set
of all linear constraints generated by Equation 5 above. We
demonstrate them in the next example.
Example 4. By considering only the last two years of the
history in Example 2, we observe that HT is

rT s year player 1 player 2
1 2011 m l
2 2012 h m

If α “ 0.9 and ε “ 0.8, the rationality constraints are:

p0.8 u1pl, lq ´ u1ph, lqq ď 0 p0.8 u1pm, lq ´ u1ph, lqq ď 0
p0.8 u2pm, lq ´ u2pm,mqq ď 0 p0.8 u2pm,hq ´ u2pm,mqq ď 0

The result below states that LC is polynomial in size.
Proposition 1. The number of variables occurring in LC is

polynomial in the number of players N , the number of
actions M and in the size of the history T .

One problem with LC is that it may have multiple
solutions, some of which may be trivial. An example of
a trivial solution is when the utility function returns the
same value for each joint action for each player. For instance,

3. Note that since we set a constraint for each player, this means that
each player is maximizing its regret knowing that the other players are
simultaneously maximizing their regret.
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the maximal entropy solution of LC (the entropy function is
applied to all variables of LC) assigns the same utility to all
combinations of players and joint actions.

Proposition 2. Suppose U “ tu1, . . . , uNu is a maximal
entropy solution for LC. Then for all joint actions a, a1

and all players i, j, uipaq “ ujpa
1q.

The proofs of the above two propositions are in the appendix.
Hence, given the assumptions in this paper, maximal entropy
is not a very effective way of choosing a solution.

Function Form Payoff Matrix with Time-Weighted History

PIE was motivated by our ongoing counter-terrorism re-
search. We have applied PIE to a multi-player game involving
the terrorist group Lashkar-e-Taiba (responsible for the 2008
Mumbai attacks) and the governments of Pakistan and India
as players. In such scenarios, a time-weighted history of
players’ actions is a representation of state of the world
(which is a history of players’ actions) at the time the player
decides to take a new action. Time-weighted history captures
the idea that recent actions may be more relevant than older
ones.

The payoffs in Equation 5 are in tabular forms. Suppose
we assume that a payoff function for player i at time t is
any (linear or non-linear) function πi : Rm`1 ÞÑ R of the
time-weighted history at time t. A time-weighed history, wt, at
time t is an m-dimensional vector defined as follows:

wt “

ř

iPt1...tu α
t´iHi

ř

iPt1...tu α
t´i

.

That is, πipa,wtq takes an action a and a time weighted
history wt as input and outputs a payoff value, specifying
the payoff to player i of playing a at time t, w.r.t. wt.

We assume that a player chooses an action at time t that
has highest payoff with respect to the state of the world at
time t´ 1. Let a be the action of player i at time t, thus

πipa,wtq ě πipa
1, wtq @a

1 P Ai, i P rN s, t P rT s (6)

One such constraint needs to be written for each player i
and each time t. Note that these constraints may be non-linear.
It is easy to see that Equation 6 generalizes Equation 5.
Note that this system of inequalities is feasible as assigning
identical payoffs for all actions always satisfies Equation
6. However, this solution is trivial. Hence, it is important
to choose a “robust” solution to the above system. For real-
world problems, we require that the selected solution satisfies
the following properties:

(P1) The family of functions to which our payoff functions
πi belong should not have arbitrary complexity, i.e.,
our hypothesis space should not allow arbitrary
payoff functions to avoid overfitting. On the other
hand, we should allow somewhat complicated non-
linear payoff functions to avoid over-simplification.

(P2) While it is reasonable to assume that players react to
game history and use actions which would generate
high payoffs, we cannot assume that each and every
player always adheres to this heuristic at all times.
Therefore, our algorithm must admit the possibility
that some points in the history may violate Equation

6. However, Equation 6 should hold for most of the
game history.

(P3) Last but not the least, there must be a tractable
algorithm to select a solution of these constraints
so that PIE can apply to real-world strategic games
involving many players and dozens of actions. While
the current best approach [27] in the literature has
been applied to games of upto 6 players with 3 actions
for each player, they don’t discuss the runtime of their
approach. Our experiments will show that our best
approach is 1 to 2 orders of magnitude faster.

4 SOLUTIONS

In this section, we present three approaches to select a
solution of the system of constraints defined in the previous
section. Note that the CBS and SCA approaches are designed
for the LC constraints in Equation (5), while the SVMM is
devised for the constraints in Equation (6).

Centroid Based Solution (CBS)

The Centroid Based Solution uses LC (Equation (5)). The
classical way to choose one solution of LC is to choose the
maximum entropy solution. However, as proved earlier in
Proposition 2, this is not useful as the maximum entropy
solution assigns the same utility to all combinations of
players and joint actions. In order to avoid this, we choose
a centroid based approach. The centroid solution of LC is
the mean position of all points satisfying LC. Unfortunately,
computing the centroid of a convex region is computationally
very complex — even approximating it is #P -hard [36].
We therefore approximate the centroid by using Hit-and-
Run (HAR) sampling [37]. In HAR sampling, we start with
a randomly selected solution of the constraints (point in
the polytope). We then randomly identify a direction and
distance and head in that direction for the selected distance
from the last sampled point. If we are still within the
polytope, this becomes our next sampled point. If the new
point is outside the polytope, we regenerate a distance and
direction till a valid point within the polytope is found. This
process is iterated till the desired number of sample points is
generated. HAR sampling allows us to sample points from
a convex polytope uniformly at random in time polynomial
in the number of dimensions (number of variables of LC).
We approximate the centroid by taking the component-wise
mean of the sampled payoffs.

Proposition 3. The centroid approximation described above
is a solution of LC.

This proposition follows as the centroid approximation is a
convex combination of solutions of LC.

Soft Constraints Approach (SCA)

In the Soft Constraints Approach, we again use only LC
(Equation 5) and allow the rationality constraints to be
violated by introducing a slack variable in each constraint
in LC . These slack variables are denoted si,a,t in the revised
linear program RLP given below. We then find a solution of
RLC that minimizes the sum of the slack variables which, in
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a sense, minimizes the amount of violation of the constraint.
The Revised Linear Program RLP is shown below.

Minimize
s,u

ÿ

i,a,t

si,a,t

Subject to:
t´1
ÿ

t̂“1

αt́ 1́ t̂
`

εuipa, a
t̂
´iq́ uipa

t
i, a

t̂
´iq`si,a,t

˘

ď0,@iPrN s,aPA,tPrT s

(7)

The slack variables in Equation 7 are inside the parentheses
to normalize for the history length and time decay of payoffs.

Payoff Inference using SVMM
In this section, we present a novel approach that uses Support
Vector Machines (SVM) to find a “good” candidate solution to
the system of inequalities given in Equation 6. Here, we use a
set CONS of constraints which are generated by Equation 6.
Each constraint generated by Equation 6 has a left hand side
and a right hand side. We encode the left and right hand
sides of the inequalities in Equation 6 as points in a space.
If a point encodes the right hand side of an inequality, it is
assigned a label 1, otherwise, it is assigned a label 0. We then
run the classification algorithm. The decision function for
the learned classifier is the desired payoff function. We now
describe this method in more detail.

Encoding points in game history. Let the number of actions
of player i be ni “ |Ai|. Let a be an action of player i, whose
index is equal to

ř

jPt1...i´1u |Aj | ` k. Consider an m ` 1-
tuple pa, hq, where a P Ai and h is an m-dimensional point.
Let V : Rm`1 ÞÑ Rpm`1qni be a map that takes this m` 1’th-
tuple as input and outputs an pm`1q˚ni-dimensional vector.
Map V is defined as follows:

V pa, hqrpk ´ 1q ˚ pm` 1q ` 1s “ 1

V pa, hqrpk ´ 1q ˚ pm` 1q ` 1` js “ hrjs, @j P t1 . . .mu

All other entries of V pa, hq are 0. Suppose player i plays
action a at time t. Then V pa,wt,i, wt´1,´iq is labeled 1. For
all actions a1 ‰ a, V pa1, wt,i, wt´1,´iq are labeled 0. The
following example shows how this works.
Example 5. Consider a 3 player game with players t1, 2, 3u
with 2 actions (namely, Action 1 and Action 2) for each
player. A point in the history of the game is represented
by a 6-dimensional binary vector, e.g. the vector (1,0,0,1,1,0)
represents the fact that players 1, 2 and 3 played actions 1, 2
and 1 respectively. Let the current state of the world be given
by the vector wt “ pw1, w2, w3, w4, w5, w6q. Assume that at
any time, player 1 plays a myopic best response to this state
of the world. For simplicity, let payoffs be a linear function
of the state of the world. The payoff for playing action 1 by
player 1 is p1 “ a1 `

ř

iPt1..6u a1iwi. Similarly for action 2,
p2 “ a2 `

ř

iPt1..6u a2iwi. Thus, the payoff function can be
represented as a 14-dimensional vector p “ pp1, p2q. Further,
assume that player 1 actually chooses action 1 as the best
response, then:

p1 ą“ p2 (8)

We now encode the RHS as V p1, wtq “ p1, w1, w2, w3,
w4, w5, w6, 0, 0, 0, 0, 0, 0, 0q and the LHS as V p2, wtq “
p0, 0, 0, 0, 0, 0, 0, 1, w1, w2, w3, w4, w5, w6q. If we use SVM to

learn a separating hyperplane W for points V p1, wtq and
V p2, wtq such that V p1, wtq is on the positive side and
V p2, wtq is on the negative side, then we have:

WTV p1, wtq ą 0, WTV p2, wtq ă 0 (9)

Thus, we have WTV p1, sq ą WTV p2, sq and W is a 14-
dimension vector representing a feasible solution of Eq. 9.

Going back to the general case, let E be the function
that takes a given game history as input and outputs a
payoff value, the labeling, and encoding of points as defined
above. We now describe the relationship between the SVM
classifier applied to points given by mapping V and the
system of inequalities given by Equation 6 with the help of
the following two propositions - proofs are in the Appendix.
Proposition 4. The system of inequalities given in Equation

6 is feasible for a game history H , i.e., we can find payoff
functions such that all the inequalities are satisfied if the
SVM algorithm can find a separator for encoding EpHq.

Proposition 5. If the SVM algorithm can find a separator that
misclassifies n1 points with label 1 and n0 points with
label 0, then we can find payoff functions such that at
most n0`n1 of the inequalities in Equation 6 are violated.

5 IMPLEMENTATION AND EXPERIMENTS

We implemented CBS, SCA, SVMM as well as the ICEL
algorithm [27]. Section 5 uses synthetic data (with known
payoff functions to evaluate these algorithms’ accuracy).
Section 6 uses the real-world MAROB data about 10 terrorist
groups [29] with actions by both the terrorist groups and
the government of the country involved. Section 6 also uses
a very fine-grained counter-terrorism data set with three
actors: the terror group Lashkar-e-Taiba [2] which carried out
the Mumbai attacks and the governments of Pakistan and
India. Section 7 compares our best algorithm with the ICEL
algorithm. We used the MAROB data to compare ICEL and
our SVMM method. Because of Proposition 2, we could not
apply ICEL to the synthetic data — and because the Lashkar-
e-Taiba data contained a host of environmental variables, we
could not apply ICEL to that either. For the experiments on
both the synthetic and real datasets, the discount factor α is
set to 0.9.

Generation of Synthetic Data

We wrote R code to generate random games with random
linear payoff functions and a random state of the world
at each time. A payoff function is represented as a vector
of coefficients of a linear function. Each of the payoff
functions and the state of the world at each time point is a
uniformly randomly directed positive vector of norm 1. After
generating the payoffs and the state of the world at different
times, an action history for all players is generated assuming
best response. We are not simulating a game. Instead, each
time point is a “what if” scenario, where each player is
presented with a state of the world and they choose the best
response as per their payoff functions. The code to generate
random games varies the following inputs:

The state of the world is thus an pna ˚ npq-dimensional
vector. Payoff for each action is a linear function of the
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np Number of players
na Number of actions for each player
n Length of history for each game
noise Probability an action is chosen uniformly at random
seed The seed for random number generation

state of the world and hence is represented as an pna ˚ npq-
dimensional vector of coefficients. Thus, each player has
na such vectors. 4 We introduce noise into our experiments
by allowing each player, at each time step, to either play a
random response independently at random with probability
given by parameter “noise”, or a best response to the current
state of the world. To evaluate quality of payoffs learned,
we learn the np ˚ na2 length vector of parameters of each
player’s payoff function. We measure the quality of our three
payoff learning algorithms by comparing this vector with
the actual payoff function vectors using Pearson Correlation
Coefficients (PCCs for short).

The following subsections compare the three algorithms
presented in this paper in order to identify which one is best
- both from an accuracy and from a run-time perspective.

Performance of SVM based method
We use a linear soft margin SVM classifier using the R
interface to libsvm [38]. The hyper-parameter for tuning
this SVM is the cost of mis-classification C. We tried values
of C P t0.01, 0.1, 1, 10, 100u and chose the best-forming
SVM model. However, we also report the overall results
(encompassing all five values of C). The choice of C turns
out to not be critical to the performance of our algorithms.
SVMM performs very well with median PCC above 0.8 for games
with 5 players and 5 actions for each player and median PCC
between 0.6 and 0.8 for most of the smaller games. In addition,
performance degrades slowly with noise. We now analyze
SVMM’s performance in more detail.

Effect of Dimension of Payoff Function (SVMM): Figure
1 shows the effect of dimension of the payoff function on
performance of SVMM.5 Here, the number of sampled history
points is 1000 and the noise parameter is set to 0. Surprisingly,
the performance improves with dimension of the payoff
function. This will be discussed in detail later in this section.

Effect of Noise (SVMM): Figure 2 shows the effect of noise
on SVMM’s performance. The number of samples is 1000
and the dimension of the payoff function is 9. We note that
performance degrades gracefully under noise. For zero noise,
the median PCC value is 0.73, whereas even with noise as
high as 0.3 (i.e., with probability 0.3 a player chooses to play
a random action instead of the best response), we still get a
median PCC of 0.66.

Effect of Length of History (n) (SVMM): Figure 3 shows
the effect of the length of the history on SVMM’s performance.
There is slight improvement in median PCC as n increases
from 200 to 1000.

4. For most experiments on synthetic data, we have na “ np “ 3.
Thus, each payoff function is a 9 dimensional vector. As there are 3
payoff functions per player (one per action), we are trying to learn a
total of 9 vectors, each of which is 9-dimensional.

5. The figure was plotted using the standard ”boxplot” function in R
(http://www.r-bloggers.com/boxplots-and-beyond-part-i/). The boxes
denote the range of 25th and the 75th percentiles. The line in the box is
the median. The upper and lower lines outside the box is the ”nominal”
range of values and the circles are outliers.

Performance of SCA
In this section we describe the performance of the SCA
method and show that it is inferior to SVMM.

Effect of Dimension of Payoff Function (SCA): Figure 4
shows the effect of dimension of the payoff function on SCA’s
performance. The number of sample history points is 1000
and the noise parameter is set to 0. Performance degrades
with dimension of the payoff function.

Effect of Noise (SCA): Figure 5 shows the effect of noise
on SCA’s performance. The number of samples is 200 and di-
mension of the payoff function is 9. While performance does
not degrade significantly with noise, overall performance is
poor (Overall PCC median of 0.22).

Effect of History length (SCA): Figure 6 shows the effect
of history length on SCA’s performance. Here noise is 0 and
dimension of the payoff function is 9. Somewhat counter-
intuitively, performance degrades with history length. This
could be because the number of slack variables increases
linearly with the length of history. Thus, the degrees of
freedom of the model is potentially higher with a longer
history and thus a longer history can lead to overfitting.

Performance of Centroid Based Method
In this section we study CBS’s performance and show that it
is far inferior to SVMM.

Effect of ε (CBS): Figure 7 shows the effect of ε on
CBS’s performance. Here, the length of history is 200 and
dimension of the payoff function is 9. The noise is 0. The
overall performance of CBS is better than SCA but much
worse than the SVM based method (PCC median of 0.45 for
ε “ 0.9).

Effect of Dimension of Payoff Function (CBS): Figure 8
shows the effect of dimension of the payoff function on per-
formance of CBS. Here, the number of sample history points
is 1000 and the noise parameter is set to 0. Performance
shows no discernible trend.

Effect of Noise: Figure 9 shows the effect of noise on
performance of CBS. Here, the number of samples is 1000
and dimension of the payoff function is 9. Performance
degrades sharply with noise and even with 10% noise, is
close to random.

Effect of Length of History (CBS): Figure 10 shows the
effect of history length on performance of CBS. Here noise
is 0 and dimension of the payoff function is 9. Performance
does not improve with n and shows no discernible trend.

Runtime Comparison of CBS, SCA, SVMM
Figure 11 shows the relative runtime performance of the
three methods for varying lengths of histories. SVMM is
faster than SCA by an order of magnitude and faster than
CBS by 2-3 orders of magnitude. For this comparison, na and
np are 3. The actual performance time of SVMM for varying
values of n, na and np are given in Figure 12.

Discussion of the Results
Effect of Dimension of Payoff Function: The effect of the
dimension of the payoff functions on the performance of
the SVMM, SCA and CBS is depicted in Figures 1, 4 and
8 respectively. We see that SVMM’s performance improves
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with dimensionality. This is counter-intuitive as performance
of most classifiers degrades with dimension. However, for
the payoff inference problem, the number of constraints
and hence the number of points increases with the payoff
function’s dimension (for a fixed length of history). Thus,
while the complexity of the classifier increases with data
dimensionality, we have more data to learn from and hence,
performance improves with dimensionality. In the case of
SCA, we see that performance degrades with dimensionality.
For SCA, the number of slack variables is the product of
history length and dimension of the payoff function. Thus,
the increase in dimension leads to an increase in number of
the slack variables. We hypothesize that in SCA, this increase
in number of slack variables with increase in dimensionality
leads to performance degradation. CBS shows no discernible
trend with increasing dimensionality. First, we are only
approximating the centroid. Second, the centroid is very
sensitive to individual constraints. Thus, CBS chooses an
approximation to a feasible representative solution that is
very sensitive to individual constraints. Therefore, it is not
surprising that its performance is erratic.

Effect of Noise: The effect of noise on the performance of
the SVMM, SCA and CBS algorithms is depicted in Figures
2, 5 and 9 respectively. SVMM’s performance degrades
gracefully with noise. As soft margin SVMs evolved from
hard margin SVMs to handle mis-classification, this graceful
degradation is expected. SCA’s performance remains more
or less constant and very poor with and without noise. SCA
accommodates noisy points by allowing constraints to be
violated by allowing negative slack variables and hence some
robustness to noise is expected. However, a total lack of trend
is a bit surprising. As noted earlier, centroid is very sensitive
to individual constraints and hence extreme sensitivity to
noise, as depicted in Figure 9 is expected.

Effect of History Length: The effect of history length
on the performance of SVMM, SCA and CBS is depicted
in Figures 3, 6 and 10 respectively. SVMM’s performance
improves slightly when n increases. Thus, SVMM learns a
better classifier with more data. Surprisingly, for synthetic
data, it seems that SVMM is able to learn a very good
classifier even with n “ 200. SCA again shows the trend
of degrading performance with the increasing number of
constraints. Performance of CBS is again erratic.

Runtime: The runtimes of the SVMM, SCA and CBS are
compared in Figure 11. CBS is easily the worst. SVMM’s
runtime increases with length of the history (Figure 12
because the problem size varies linearly with the length
of the history. The corresponding increase with the number
of actions is faster as the problem size varies quadratically
with the number of actions. SVMM’s runtime increases with
the number of players in general, however, when the number
of players is 10 it suddenly drops. We don’t have a good
explanation for this behavior hope to find one in future work.

BOTTOM LINE: We conclude by stating that of the three
algorithms presented in this paper, SVMM achieves significantly
higher accuracy than SCA and CBS, is more robust to noise, and
performs much better and faster than the other two methods. It
gives excellent performance on relatively large games (Median
Pearson Correlation Coefficient is above 0.8 for games with 5
players, 5 actions per player).

6 EXPERIMENTS ON REAL-WORLD DATA SETS

MAROB Experiments
We ran tests on all 10 terror groups in the Minorities at Risk
Organizational Behavior (MAROB) [29] data set for which at
least 20 rows of data are available. We aggregated low level
MAROB actions (both by the group and the government of
the nation where the group is based) into high level actions.
The high level actions involved two actions each for the
group (political engagement with the government, militant
activities) and for the government (political engagement
with the group and suppression of the group). Each of these
actions can be carried out at mild, medium, intense extents.
Hence, each player can take one of 9 actions, leading to 81
total joint actions. We ran experiments with data about 10
group/nation pairs.6 As the ground truth about payoffs for
the terrorist groups cannot be tested directly, in order to test
validity of the payoffs learned, we made predictions about
actions carried out by terror groups and governments and
checked the accuracy of these predictions. The mean number
of actions for the government player, denoted by G is 4.1 and
the mean for the terror organization, denoted TO is 5.6. The

6. We pair group and nations based on the simplified assumption
that groups have very limited interactions. While there might be a few
exceptions, this is true in most real-world cases.
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mean number of joint actions (product of actions of G and
TO) is 25.30. The history length of each game is between 20
and 25.

There are two issues related to this data that must
be mentioned: (i) we only have 20 data points for each
group/nation pair, (ii) we don’t know the ground truth.
Therefore, we evaluate the quality of the learned payoffs
as follows. We compute the Spearman Rank Correlation
Coefficient (SCC) between predicted payoffs and the binary
vector representing actual actions performed during the
time period. While the payoffs are reals in r0, 1s, we are
correlating them with binary variables in t0, 1u, thus even in
the best case, we cannot expect the correlation to be 1. For
example, for 5 actions, a point in history may be p1, 0, 0, 0, 0q.
It will be correctly predicted by a payoff vector such as
p “ p1, p2, p3, p4, p5q, pi ă 1 @i P t2 . . . 5u. Assuming that
pi ‰ pj @i, j P t1 . . . 5u, the expected SCC for this data
(assuming pi is uniformly distributed over r0, 1q) is 0.71
which is extremely good, considering the paucity of data.
Figure 13 gives the best expected SCC as a function of
the number of actions of a player. We normalized the SCC
between predicted payoffs and the actual binary action vector
to arrive at normalized SCC (NSCC) based on the number of
actions of a player.

Comparison of performance of the three methods
(Marob): Figure 14 compares CBS, SCA, and SVMM. On this
dataset, SVMM uses the radial basis function as the kernel
and the model is selected based on leave-one-out cross valida-
tion. Here again, SVMM performs well (median NSCC=0.7)
and comfortably outscores SCA (median NSCC=0.6) and
CBS (median NSCC=0). While for some part of the data set
CBS does well with 75th percentile NSCC value close to
0.4, the average CBS performs very poorly, with a median
NSCC of close to 0 indicating near random performance.
SCA performs well but not as well as SVMM.

As in the case of synthetic data (Figure 9) CBS is very
sensitive to noise. SVMM and SCA perform well because
they both allow some constraints to be violated. As shown
in Figures 4 and 6, SCA’s performance degrades with the
number of constraints. However, since all the histories in
the MAROB data set are short („ 20), SCA performs quite
well. SVMM performs even better than SCA. We hypothesize
that this is because SVMM accommodates non-linear payoff
functions using kernel methods and SCA allows only linear
payoffs. This may be because real players’ payoffs functions

are not necessary linear.

LeT Experiments
We conducted extensive tests on the Lashkar-e-Taiba (LeT)
dataset [2] which contains 252 rows (months) of data about
700` variables.7 We choose 24 variables which we consid-
ered relevant to our problem. These variables include six
variables for various types of attacks carried out by LeT
and eight for actions taken by the Pakistani government
and military. The other 10 variables such as existence of an
international ban, existence of conflict within LeT, split in
LeT etc. are treated as environmental variables.8

The LeT dataset models a relatively big game. Players
can take many actions simultaneously. If we encode each
combination of actions as a separate action, we will end
up with 64 actions for LeT and 256 actions for Pakistani
government.9 This leads to a very high dimensional encoding
for this dataset. As an illustration, for a given history,
H of this game, EpHq for Pakistani government would
be 256 ˚ p1 ` 336q “ 86272 dimensions (ignoring the
environment variables). We now describe how we tackle
the dimensionality problem.

Independent Payoffs for Simultaneous Actions
One natural way to reduce dimensionality is to assume
that payoffs for simultaneous actions are independent and
additive. However, different actions may require different
levels of effort for the player and it is reasonable to assume
that payoffs are proportional to effort. For example, if
attacking a security installation requires double the effort
of attacking civilian transport, then the payoffs for the two
actions are comparable only if the payoff from attacking
the security installation is double the payoff from attacking
civilian transport. This is because the capability and resources
of an organization are limited and thus, to maximize the
payoff, effort should be spent on actions that give maximum
payoff for each unit of effort. Therefore, for this approach,
we need to assign effort-based weights to players’ actions.
However, there is no reliable way of knowing how much
effort was needed for each action of the player. Therefore, we
rejected this approach.

Instead, we relax the constraints in Equation 6 by assum-
ing that regret for each action actually played at time t is
greater than or equal to regret for actions not played at time
t. For example, assume that at time t, a player played actions
p0, 1, 0, 1, 0, 0q indicating that they took actions 2 and 4 out
of possible actions in t1, . . . , 6u. We then assume that regrets
for actions 2 and 4 were higher than regrets for other actions
at time t. The other alternative could have been encoding
each of the possible combinations of actions as a separate
action, which leads to 64 possible distinct actions at each
time step.

7. It includes details about attacks carried out by LeT, communications
campaigns and rallies organized by LeT. It also includes actions by the
state (Pakistan) and international actors (US, India, EU etc.) such as
arrests, tribunals, killings related to members of LeT.

8. Environment variables can be seen to be actions of another player
(similar to the chance player in classical game theory), whose actions we
cannot predict (or are not interested in predicting). Nevertheless, these
actions do have an effect on payoffs of other players.

9. The dataset does not attribute other actions to specific third part
players such as the US or India.
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Evaluation of Quality of Learned Payoffs
We evaluate the quality of prediction in two ways. First, we
compute the SCC of events and payoffs for each time period
from the test data. We compute SCC between predicted
payoffs for actions and the binary vector representing actual
occurrence of the events during the time period. We use
this method to compare the performance of SVMM, CBS
and SCA. Second, for SVMM, we compute the quality of
predictions using Area Under the RoC curve as our metric.
We don’t use predictions to evaluate CBS and SCA methods
because these methods don’t extend naturally to prediction
and prediction is not our primary objective.

Comparison of the Methods
Figure 16 presents comparative performance of the three
methods on the LeT dataset. Again, SVMM performs well
and clearly outperforms SCA and CBS. The NSCC for SVMM
when the player considered is LeT in the dataset is 0.59. The
NSCC for SVMM when the player considered is Pakistan
is 0.80. The predictive performance of SVMM is good with
area under single point RoC curve of 0.74 and 0.85 for LeT
and Pakistan respectively (Figure 15).

The performance of SVMM is much better than the other
two methods. We think that the reasons are three-fold. First,
SVMM is robust to noise. Second, SVMM allows for non-
linear payoff functions. Third, SVMM performs better with
more constraints and higher dimensional payoff functions.

Policy Options based on Payoffs Learned about LeT
We used the payoffs learned for different actions to

qualitatively estimate the values of the different actions that
the players in the LeT case study can perform. In particular,
the payoffs suggest the value or lack of value of certain
actions by the two players (LeT and the Government of
Pakistan), as well as actors who can reshape the environment
surrounding LeT such as India or the US.

Actions by Pakistan. The payoffs we inferred using PIE
have made some concrete discoveries. First, they suggest
that arrests of LeT personnel by Pakistan are ineffective –
a finding consistent with [2] where the authors found that
arrests of LeT personnel can actually be followed by attacks
on soft targets. Second, they suggest that release of operatives
from prison is also not effective in curbing attacks by LeT.
This is consistent with Rule (PST-4) in [2] which says that
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LeT attacks symbolic sites three months after months when
the Pakistani government releases 0-9 LeT prisoners and LeT
has locations across the border in India. It is also consistent
with Rule (AA-4) in [2] which says that LeT attacks carries
out attempted attacks one month after 0–2 LeT personnel are
released.

PIE has additionally shown that a ban on LeT by the
Pakistani government can have an effect on curbing attacks
on transportation sites, public sites, and tourist sites. This
is a new result, consistent with results in [2] which shows
that having a ban is linked to LeT backed attacks on Hindus
and that not having a ban is linked to attacks on professional
security forces, security installations, and armed clashes.

Another interesting new finding by PIE is that a freeze of
LeT assets by Pakistan are linked to a much higher payoff for
targeting professional security forces, security installations
and Hindus.

Finally, PIE’s payoffs confirm conventional wisdom that
military support by Pakistan leads to higher payoffs for
targeting security forces, installations and public structures.

Actions by International Actors (primarily India and the US)
We know from [2] that arrests of LeT personnel are linked

to a reduction in attacks on hard targets (such as security
installations) but are linked to an increase in attacks on softer
targets — PIE’s inferred payoffs confirms this by showing
that such arrests lead to increased attacks on civilians on the
basis of ethnicity (Hindus) and tourist sites.

Likewise, the imposition of international bans can lead to
more attacks on civilian targets and fewer attacks on security
installations, suggesting that external pressure on LeT causes
them to move from attacking hard targets to softer ones.

A new result derived by PIE is that asset freezes reduce
the payoffs for LeT to carry out attacks on civilian targets.
7 COMPARISON WITH ICEL
We compare the performance of our best algorithm (SVMM)
against the Inverse Correlated Equilibrium Learning (ICEL)
algorithm of [27]. ICEL assumes that players play a correlated
equilibrium. The input to ICEL is the game history and
corresponding outcomes, which depend on joint actions
of the players. The output is a joint distribution over the
player’s actions. The learned distribution is a Correlated
Equilibrium for the corresponding inferred payoffs.

We evaluated the performance of ICEL against SVMM
using the NSCC metric on the MAROB dataset. We could
not evaluate ICEL on the LeT dataset because it has envi-
ronmental variables in addition to player actions and ICEL
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is not applicable to games with environmental variables.
If the payoffs learned by ICEL correspond to a Correlated
Equilibrium actually played by the players, we can expect
good rank correlation between chosen actions and payoffs.
However, as can be seen from Figure 17, this is not the
case. The median NSCC is 0.1140 over all games (which
suggests that ICEL is only marginally better than random
noise). NSCC is above 0.5 in only 3 out of 20 instances (10
games, 2 players per game). In comparison, SVMM exhibits
far superior performance with median NSCC of 0.7.

We believe the poor performance of ICEL stems from
two factors. First, we have no knowledge of the outcomes,
only of game history. We empirically observed that in the
absence of any information about the outcomes, the ICEL
convex program simply converges to the distribution of
actions actually played by the players (mean Kullback-Leibler
divergence between actual and learned distributions is 0.043,
max 0.088). Thus, the method corresponds to predicting that
whatever happened in past will happen in future with no
notion of recency and dynamics. Second, in our real-world
data, the players may not play a correlated equilibrium
and our proposed dynamics, which are based on regret
minimization and recency, may be a closer approximation of
reality.

The runtime comparison is shown in Figure 18. Here
again, SVMM is 1-2 orders of magnitude faster than ICEL.
However, this is a bit of an apples and oranges comparison as
the SVMM code is in R with a Libsvm backend and the ICEL
code uses the Python code provided by authors publicly at
their website. We note that ability to use highly optimized,
stable and mature libraries provided by machine learning
community for classification tasks is one of the advantages
of our approach over other extant approaches.

8 CONCLUSION

In this paper, we have developed, for the first-time, a method
to infer payoffs for real-world games, under much more
reasonable assumptions than past work. Specifically, unlike
most past work, PIE is applicable to multi-player games,
allows players to not be fully rational, does not assume
a coordination mechanism, does not assume a symmetric
game and is scalable, while other works are lacking in at
least one of these aspects. Moreover, we apply our theory
to real-world strategic games with two real world counter-
terrorism datasets based on two widely influential previous
studies [2], [39]. Such individuals seek understanding - and our
goal in learning these payoffs were to facilitate explaining
the payoffs to such senior decision makers - rather than
prediction. Toward this end, we propose three heuristics
that may be used to learn payoffs of players in multi-player
real-world games including one that builds upon Support
Vector Machines - a tested technique in data mining that
has never been used before for learning payoffs. Though the
goal of this paper is not prediction, we test our methods in
three ways. We use a synthetic data set and a well-known
terrorism data set [29] to see how well we can predict known
payoff functions (synthetic data) and actions (MAROB data).
Even though we have small amounts of data in both cases,
they are bigger than those in previous studies, and our best
algorithm (SVMM) achieves good correlations. Our third test

looks at 10 years of data about the terror group Lashkar-e-
Taiba (responsible for the 2008 Mumbai attacks). We show
that SVMM is both faster and much more accurate than ICEL
[27] one of the best prior algorithms in the literature. Much
work remains to be done. Even though PIE is more scalable
than past work, there is still a long way to go. Moreover,
explaining learned payoff functions to real world decision
makers also has many challenging aspects that deserve much
more future study.
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APPENDIX

The detachable appendix is only intended for the convenience of
reviewers and is not part of the overall submission.

Summary of Notations

Symbol Brief synopsis
rNs The set of players
A The set of all possible joint actions
Ai The set of actions of Player i
ui The payoff matrix for Player i
U The set of payoff matrices for the game
rT s The set of past time points
a The vector representing joint actions of all players
pk, a´iq The vector a with action of player i modified to action k
at The vector of joint actions of all players at time t
Ht The complete history sequence ă a1, . . . , at ą till time t
wt The weighted time history till time t
α Time discount factor for reward
Φ Family of modification functions for computing regret
TDRi,Φptq Time discounted regret for Player i at time t
TDERiptq Time discounted external regret for Player i at time t
πipk,wtq Payoff function for Player i, (possibly non-linear).

Proof of Proposition 1
Proof 1. The number of constraints for each player at time

t P rT s is M ´ 1. Each constraint has at most T variables.
Thus, the total number of variables that can occur in LC
is at most pM ´ 1qNT .

Proof of Proposition 2
Proof 2. Let the entropy function be defined as follows

´
ÿ

iPrNs,aPA
uipaq lnpuipaqq

We obtain the maximum value of this function when
@i P rN s, @a P A we can deduce that uipaq “ e´1. Since
we know that when ε P r0, 1s,

t´1
ÿ

t̂“1

αt´1´t̂ε ¨ e´1 ď

t´1
ÿ

t̂“1

αt´1´t̂e´1

our rationality constraints in Equation 5 are satisfied. For
these reasons it follows that the theorem holds. l

Proof of Proposition 4
Proof 3. We note that for points on one side of decision

surface, the value of decision surface is less than 0 and
for the other side it is greater than 0. Therefore, if points
encoded for the RHS are on the positive side and LHS
on the negative side, Equations 6 are satisfied. Otherwise,
we can flip sign of the decision function and achieve the
same result.

Proof of Proposition 5
Proof 4. Without loss of generality, we assume that points

encoding the RHS of Equation 6 are assigned positive
labels and points encoding the LHS are assigned negative
labels. A misclassified point LHS point can be assigned
a decision value higher than the RHS point can lead to
at most one violated constraint. Similarly, a misclassified
RHS point can lead to at most one violated constraint.
Thus in all we can have at most n0 ` n1 violated
constraints.
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Fig. 19. Effect of cost on performance of SVM method for synthetic data
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Additional experimental results
Effect of Cost (SVM) Figure 19 shows the effect of the hyper
parameter C on the performance of the SVMM. We present
this figure in order to show that for the synthetic data, the
performance is quite stable and not very dependent on the
choice of the hyperparameter C. Hence, tuning the SVM is
straightforward.
Actual runtime for CBS and SCA methods Figures 20 and
21 show the actual runtimes of CBS and SCA under different
settings.


