FMM CMSC 878R/AMSC 698R

Lecture 6
Outline

• General Forms of Factorization for Fast Summation
• Far Field Expansions (or S-expansions)
• Approaches for Selection Basis Functions
• Introduction to Functional Analysis
General Forms of Factorization for Fast Summation (1)

\[v_j = \sum_{i=1}^{N} u_i \Phi(y_j, x_i), \quad j = 1, ..., M. \]

\[
\Phi(y_j, x_i) = \sum_{m=0}^{p} a_m(x_i, x_*) f_m(y_j - x_*) + \text{Error}(p, x_i, x_*, y_j)
\]

scalar product

\[= a(x_i, x_*) \cdot f(y_j - x_*) + \text{Error}. \]

How about vectors of length \(p \)

\[v_j = \sum_{i=1}^{N} u_i e^{-\lambda_j |x_i - y_j|^2} \]

Some parameter depending on \(i \)

More general to have

\[v_j = \sum_{i=1}^{N} u_i \Phi_i(y_j) \quad \text{or} \quad v(y) = \sum_{i=1}^{N} u_i \Phi_i(y). \]
General Forms of Factorization for Fast Summation (2)

The potential can be factorized as

\[\Phi_i(y) = A_i(x_\star) \circ F(y - x_\star) \]

Generalized product \(\circ \) can be scalar product, contraction, etc. \(A_i \) and \(F \) can be real or complex vectors, tensors, etc. in \(p \)-dimensional space.

Requirements to the product (distributivity with respect to addition)

\[(\alpha A_i + \beta A_j) \circ F = \alpha A_i \circ F + \beta A_j \circ F. \]

In this case

\[v(y) = \sum_{i=1}^{N} u_i \Phi_i(y) = \sum_{i=1}^{N} u_i A_i(x_\star) \circ F(y - x_\star) = A(x_\star) \circ F(y - x_\star) \]

\[A(x_\star) = \sum_{i=1}^{N} u_i A_i(x_\star) \]

We do not need commutativity of \(\circ \) (i.e. we do not request \(A_i \circ F = F \circ A_i \)).
General Forms of Factorization for Fast Summation (3)

Actually, we even do need continuous variable y, The problem is to represent all matrix elements in the form

$$
\Phi_{ji} = A_i \circ F_j
$$

then

$$
v_j = \sum_{i=1}^{N} u_i \Phi_{ji} = \sum_{i=1}^{N} u_i (A_i \circ F_j) = \left(\sum_{i=1}^{N} u_i A_i \right) \circ F_j.
$$
Complexity of Fast Summation

Let \(\circ \) be a scalar product of vectors \(A_i \) and \(F_j \) of length \(P(p) \) (\(p \) is the truncation number). Complexity of summation over \(i \) is then \(O(PN) \).

Complexity of scalar product operation is \(P \).

Complexity of \(M \) scalar product operations is \(O(PM) \) (for \(j = 1, \ldots, M \)).

Total complexity is \(O(PM + PN) \).

Fast Method is more efficient than direct only if \(O(PM + PN) < O(MN) \), so we should have

\[
P(p) \ll \min(M, N)
\]
Far Field Expansions
(S-expansions)

Let

\[x_* \in \mathbb{R}^d. \]

We call expansion

\[\Phi(y, x_i) = \sum_{m=0}^{\infty} b_{m^2}(x_i, x_*) S_{m^2}(y - x_*) \]

far field expansion (or S-expansion) outside a sphere

\[|y - x_*| > R_* \]

if the series converges for \(\forall y, |y - x_*| > R_* \).
Far Field Expansion of a Regular Potential

\[|y - x_*| > R_* > |x_i - x_*| \]

Can be like this:

\[|x_i - x_*| > |y - x_*| > R_* \]
Local Expansion of a Regular Potential
Can be Far Field Expansion Also
(Repeat Example from Lecture 3)

Valid for any \(r_* < \infty \), and \(x_i \).

\[\Phi(y, x_i) = e^{-(y - x_i)^2} = \sum_{m=0}^{\infty} a_m(x_i, x_*) S_m(y - x_*). \]

We have

\[e^{-(y - x_i)^2} = e^{-[y - x_* - (x_i - x_*)]^2} = e^{-(y - x_*+)^2} e^{-(x_i - x_*)^2} e^{2(x_i - x_*)(y - x_*)} \]

\[= e^{-(y - x_*)^2} e^{-(x_i - x_*)^2} \sum_{m=0}^{\infty} \frac{2^m (x_i - x_*)^m (y - x_*)^m}{m!}. \]

Choose

\[a_m(x_i, x_*) = e^{-(x_i - x_*)^2} (x_i - x_*)^m, \quad m = 0, 1, \ldots, \]

\[S_m(y - x_*) = e^{-(y - x_*)^2} \frac{2^m}{m!} (y - x_*)^m, \quad m = 0, 1, \ldots. \]
Example of Far Field Expansion of a Regular Function (Asymptotic Series)

\[\Phi(y, x_i) = \frac{1}{1 + (y - x_i)^2} = \sum_{m=0}^{\infty} a_m(x_i, x_*) S_m(y - x_*) \]

Asymptotic Expansion:

\[
\frac{1}{1 + (y - x_i)^2} = \frac{1}{1 + [y - x_* - (x_i - x_*)]^2} \\
= \frac{1}{1 + (y - x_*)^2} \left[1 - \frac{2(x_i - x_*)(y - x_*)}{1 + (y - x_*)^2} + \frac{(x_i - x_*)^2}{1 + (y - x_*)^2} \right]^{-1} \\
= \frac{1}{1 + (y - x_*)^2} \left\{ 1 + \frac{2(x_i - x_*)(y - x_*)}{1 + (y - x_*)^2} - \frac{(x_i - x_*)^2}{1 + (y - x_*)^2} \left[1 - 4\frac{(y - x_*)^2}{1 + (y - x_*)^2} \right] \right\} \\
+ O \left(\left(\frac{x_i - x_*}{\sqrt{1 + (y - x_*)^2}} \right)^3 \right) \]

Converges, if \(|x_i - x_*| < \sqrt{1 + (y - x_*)^2}\).
Example of Far Field Expansion of a Regular Function (continuation)

\[\Phi(y, x_i) = \frac{1}{1 + (y - x_i)^2} = \sum_{m=0}^{\infty} a_m(x_i, x_\star) S_m(y - x_\star). \]

Choose

\[a_m(x_i, x_\star) = (x_i - x_\star)^m, \quad m = 0, 1, \ldots. \]

\[S_0(y - x_\star) = \frac{1}{1 + (y - x_\star)^2}, \]

\[S_1(y - x_\star) = \frac{2(y - x_\star)}{[1 + (y - x_\star)^2]^2}, \]

\[S_2(y - x_\star) = \frac{1 - 3(y - x_\star)^2}{[1 + (y - x_\star)^2]^3}, \]

\[\vdots \]

\[S_m(y - x_\star) = O\left(\left[1 + (y - x_\star)^2\right]^{-1-m/2}\right), \]

\[\vdots \]
Far Field Expansion of a Singular Potential

\[|y - x*| > R* > |x_i - x*| \]

\[y - x* > R* \geq |x_i - x*| \]

This case only!
Example For S-expansion of Singular Potential

\[\Phi(y, x_i) = \frac{1}{y - x_i}. \]

\[\frac{1}{y - x_i} = \frac{1}{y - x_* - (x_i - x_*)} = \frac{1}{(y - x_*) \left[1 - \frac{x_i - x_*}{y - x_*} \right]} = \frac{1}{(y - x_*) \left[1 - \frac{x_i - x_*}{y - x_*} \right]^{-1}}. \]

\[\left[1 - \frac{x_i - x_*}{y - x_*} \right]^{-1} = \sum_{m=0}^{\infty} \frac{(x_i - x_*)^m}{(y - x_*)_m}, \quad |y - x_*| > |x_i - x_*|. \]

\[\Phi(y, x_i) = \sum_{m=0}^{\infty} b_m(x_i, x_*) S_m(y - x_*), \]

\[b_m(x_i, x_*) = (x_i - x_*)^m, \quad m = 0, 1, \ldots, \]

\[S_m(y - x_*) = (y - x_*)^{-m-1}, \quad m = 0, 1, \ldots \]
Let us compare with the R-expansion of the same function

\[|y - x_*| < |x_i - x_*| : \]

R-expansion

\[\Phi(y, x_i) = \sum_{m=0}^{\infty} a_m(x_i, x_*) R_m(y - x_*), \]

\[a_m(x_i, x_*) = -(x_i - x_*)^{-m-1}, \quad m = 0, 1, \ldots, \]

\[R_m(y - x_*) = (y - x_*)^m, \quad m = 0, 1, \ldots \]

\[|y - x_*| > |x_i - x_*| : \]

S-expansion

\[\Phi(y, x_i) = \sum_{m=0}^{\infty} b_m(x_i, x_*) S_m(y - x_*), \]

\[b_m(x_i, x_*) = (x_i - x_*)^m, \quad m = 0, 1, \ldots, \]

\[S_m(y - x_*) = (y - x_*)^{-m-1}, \quad m = 0, 1, \ldots \]

Singular Point is located at the Boundary of regions for the R- and S-expansions!
What Do We Need For Real FMM
(that provides spatial grouping)

We need S-expansion for \(|y - x_*| > R_* > |x_i - x_*|\)
We need R-expansion for \(|y - x_*| < r_* < |x_i - x_*|\)
Basis Functions

- Power series are great, but do they provide the best approximation? (sometimes yes!)
- Other approaches to factorization:
 - Asymptotic Series (Can be divergent!);
 - Orthogonal Bases in L_2;
 - Eigen Functions of Differential Operators;
 - Functions Generated by Differentiation or Other Linear Operators.
- Some of this approaches will be considered in this course.
Introduction to Functional Analysis

Source: I. Stakgold: “Green’s Functions and Boundary Value problems” Wiley Interscience, 1979

Goal: Introduce terminology and issues involved.
Linear/Vector Spaces

• Motivation: We have to deal with questions such as
 – What does it mean when an approximation is close to the true value?
 – What basis functions can be used to approximate a function?
 – What is a basis function?
 – How does the approximation converge?
• In the physical world we live in we are endowed with the concept of vectors and distances
• Goal of vector space theory is to imbue functions with this kind of abstract structure
 – Understand functions and their transformations using this structure
Vectors

- A vector \(\mathbf{x} \) of dimension \(d \) represents a point in a \(d \)-dimensional space
- Examples
 - A point in 3D space \([x, y, z]\) or 2D image space \([u, v]\)
 - Point in color space \([r, g, b]\) or \([y, u, v]\)
 - Point in an infinite dimensional functional space on a Fourier basis (coefficients)
 - Point in expansion in terms of power series (coefficients)
- Essentially a short-hand notation to denote a grouping of points
 - No special structure yet
 - Will add structure to it.
• In 3D/2D we have additional structure
 – Distances
 – Angles
 – Geometry …

• We want to understand if there is a way to give high dimensional spaces and infinite dimensional spaces, the same structure so that these questions can be answered.
Linear/Vector Space

- A collection of points that obey certain rules
 - Commutative, existence of a zero element
 \[u + v = v + u; \quad u + (v + w) = (u + v) + w \]
 \[\exists 0, \; u + 0 = u \quad \forall u; \quad u + (\neg u) = 0 \]
 - Scalar multiplication
 \[\alpha (\beta u) = (\alpha \beta) u; \quad 1u = u \]
 \[(\alpha + \beta) u = \alpha u + \beta u; \quad \alpha (u + v) = \alpha u + \alpha v \]

- Let \(u_1, \ldots, u_k \) be a set of vectors:
 Linear combination
 \[\alpha_1 u_1 + \cdots + \alpha_k u_k \]
 Manifold spanned by \(u \)
Dependency, dimension, Basis

• Let $\alpha_1 u_1 + \cdots + \alpha_k u_k = 0$
 – if this is true for a set of non zero α the set is dependent
 – If the set is dependent, at least one of the vectors is a linear combination of the others
 – If 0 is a part of the set the set is dependent

• Dimension of a space is the maximum size of an independent set

• Basis: A set of functions $\{h_1, h_2, \ldots, h_k\}$ is a basis for a space if every vector in the space can be expressed as a sum of these vectors in one and only one way
 – The basis functions are independent
 – In an n dimensional space, any set of n independent vectors form a basis
Dependence and dimensionality

• A set of vectors is dependent if for some scalars $\alpha_1, \ldots, \alpha_k$ not all zero we can write

$$\alpha_1 u_1 + \cdots + \alpha_k u_k = 0$$

 - If the zero vector is part of a set of vectors that set is dependent. If a set of vectors is dependent so is any larger set which contains it.

• A linear space is n dimensional if it possesses a set of n independent vectors but every $n+1$ dimensional set is dependent.

• A set of vectors b_1, \ldots, b_k is a basis for a k dimensional space X if each vector in X can be expressed in one and only one way as a linear combination of b_1, \ldots, b_k.

• One example of a basis are the vectors $(1,0,\ldots,0)$, $(0,1,\ldots,0)$, \ldots, $(0,0,\ldots,1)$.
Lengths and Norms

- We would like to measure distances and directions in the vector space the same way that we do it in Euclidean 3D.
Metric space

- Distance function \(d(u,v)\) makes a vector space a metric space if it satisfies
 - \(d(u,v)>0\) for \(u,v\) different
 - \(d(u,u)=0, \quad d(u,v)=d(v,u)\)
 - \(d(u,w)\leq d(u,v)+d(v,w)\) (triangle inequality)

- Norm ("length").
 - \(\|u\|>0\) for \(u\) not 0, \(\|0\|=0\)
 - \(\|\alpha u\|=|\alpha| \|u\|, \quad \|u+v\| \leq \|u\| + \|v\|\)

- Normed linear space is a metric space with the metric defined by \(d(u,v)=\|u-v\|\) and \(\|u\|=d(u,0)\)
Limits and Completeness

- Can use this distance function to define limits of sequences of functions

\[\lim_{k \to \infty} u_k = u \]

there exists an index \(N \) such that

\[d(u, u_k) \leq \varepsilon \quad \text{for} \quad k > N \]

- Limit can lie within the space or outside it. IF limits of all convergent sequences inside converge to an element of the space, it is complete.

- Rational numbers are incomplete
 - Transcendentals can be defined as limits of rational sequences
Normed space

- A normed linear space possesses a norm with following properties

\[||u|| > 0, \quad u \neq 0 \]
\[||0|| = 0 \]
\[||\alpha u|| = |\alpha| ||u|| \]
\[||u+v|| \leq ||u|| + ||v|| \]

- Knowing norm, we can define a distance function \(d \)

\[d(u,v) = ||u-v||, \]

- Called “natural metric”

- If space is complete in its natural metric it is called a “Banach” space
• Have not yet define what the “norm” is
• Have a notion of length of vector
• No notion of angle between vectors
 – Inner or “dot” product
Dot Product

- Dot product of two vectors with same dimension
 Recall dot product of two vectors
 \[\langle x, y \rangle = \sum_{i=1}^{d} x_i y_i = y^t x. \]
- Dot product space behaves like Euclidean \(\mathbb{R}^3 \)
- Dot product defines a norm and a metric.
 \[\langle u, v \rangle = \langle v, u \rangle \]
 \[\langle \alpha u, v \rangle = \alpha \langle u, v \rangle \]
 \[\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \]
 \[\langle u, u \rangle > 0 \text{ for } u \neq 0 \]
- Parallelogram law
 \[||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2 ||v||^2 \]
- Orthogonal vectors \(\langle u, v \rangle = 0 \)
- Angle between vectors
 \[\cos \theta = \frac{\langle x, y \rangle}{||x|| ||y||} \]
• Orthonormal basis -- elements have norm 1 and are perpendicular to each other

• Hilbert space
 – Space that is complete in this inner product

• Other distances and products can also define a space:
 – Mahalanobis distance in statistics
 – Sobolev spaces in FEM
 – RKHS in learning theory
Gram Schmidt Orthogonalization

- Given a basis and this definition can now construct an orthonormal basis
- Gram Schmidt Orthogonalization
- Given a set of basis vectors \((b_1, b_2, \ldots, b_n)\)
 construct an orthonormal basis \((e_1, e_2, \ldots, e_n)\) from it.
 - Set \(e_1 = b_1 / ||b_1||\)
 - \(g_2 = b_2 - <b_2, e_1>e_1, \quad e_2 = g_2 / ||g_2||\)
 - For \(k=3, \ldots, n\)
 \(g_k = b_k - \sum_j <b_k, e_j>e_j, \quad e_k = g_k / ||g_k||\)
Matrices as operators

• Matrix is an operator that takes a vector to another vector.
 – Square matrix takes it to a vector in the space of the same dimension.

• Dot product provides a tool to examine matrix properties
 – Adjoint matrix \(<Au,v> = <u,A^*v> \)
 – Square Matrix fully defined as result of its operation on members of a basis.
 \[
 A_{ij} = <Ab_j,b_i>
 \]
Infinite Operators

- Function, Transformation, Operator, Mapping: synonyms
- A function takes elements x defined on its “Domain” D to elements y in its “Range” R which is part of E

IF for each y in R there is exactly one x in D the function is one-to-one. In this case an inverse exists whose domain is R and whose range is D

- Here interested in functions that go from a given Hilbert space to itself.
• Operators are like infinite dimensional matrices
• Can be characterized by their action on basis elements
• Norm of an operator
 • $\forall x \quad \frac{||Ax||}{||x||}$
Eigenvalues and Eigenvectors

- Square matrix possesses its own natural basis.
- Eigen relation

\[Au = \lambda u \]

- Matrix \(A \) acts on vector \(u \) and produces a scaled version of the vector.
- Eigen is a German word meaning “proper” or “specific”
- \(u \) is the eigenvector while \(\lambda \) is the eigenvalue.
 - If \(u \) is an eigenvector so is \(\alpha u \)
 - If \(||u||=1 \) then we call it a normal eigenvector
 - \(\lambda \) is like a measure of the “strength” of \(A \) in the direction of \(u \)
- Set of all eigenvalues and eigenvectors of \(A \) is called the “spectrum of \(A \)”