
Silhouette-based Gesture and Action Recognition via Modeling Trajectories on
Riemannian shape manifoldsI

Mohamed F. Abdelkadera,∗, Wael Abd-Almageeda, Anuj Srivastavab, Rama Chellappaa

aDepartment of Electrical and Computer Engineering and Center for Automation Research, UMIACS, University of Maryland, College Park, MD
20742 USA.

bDepartment of Statistics, Florida State University, 106D OSB, FSU, Tallahassee, FL 32306 USA.

Abstract

This paper addresses the problem of recognizing human gestures from videos using models that are built from the

Riemannian geometry of shape spaces. We represent a human gesture as a temporal sequence of human poses, each

characterized by a contour of the associated human silhouette. The shape of a contour is viewed as a point on the shape

space of closed curves and, hence, each gesture is characterized and modeled as a trajectory on this shape space. We

propose two approaches for modeling these trajectories. In the first template-based approach, we use dynamic time

warping (DTW) to align the different trajectories using elastic geodesic distances on the shape space. The gesture

templates are then calculated by averaging the aligned trajectories. In the second approach, we use a graphical model

approach similar to an exemplar-based hidden Markov model, where we cluster the gesture shapes on the shape space,

and build non-parametric statistical models to capture the variations within each cluster. We model each gesture as

a Markov model of transitions between these clusters. To evaluate the proposed approaches, an extensive set of

experiments was performed using two different data sets representing gesture and action recognition applications.

The proposed approaches not only are successfully able to represent the shape and dynamics of the different classes

for recognition, but are also robust against some errors resulting from segmentation and background subtraction.

1. Introduction

The problems of modeling and recognition of human gestures and actions from a sequence of images have received

considerable interest in the computer vision community, as one of the many problems that aim at achieving a high

level automated understanding of video data. This interest is motivated by many applications in different areas in

human-computer interaction [1], robotics [2], security, and multimedia analysis.

Existing literature in human movement visual analysis (see reviews [3, 4, 5, 6]) uses the terms gesture and action

interchangeably to refer to sequences of human poses corresponding to different activities. However, there are slight

IThis work was partially supported by ONR grant number N00014-09-1-0664.
∗Corresponding author
Email addresses: mdfarouk@umd.edu (Mohamed F. Abdelkader), wamageed@umiacs.umd.edu (Wael Abd-Almageed),

anuj@stat.fsu.edu (Anuj Srivastava), rama@cfar.umd.edu (Rama Chellappa)

Preprint submitted to Elsevier December 10, 2010



variations among these terms. Gesture recognition from video refers to the problem of modeling and recognizing full

body gestures performed by an individual in the form of a sequence of body poses and captured by a video camera.

These gestures are typically used to communicate certain control commands and requests to a machine equipped with

vision capabilities. This scenario usually arises in applications such as human computer interaction and robotics.

On the other hand, action recognition refer to the more general case of modeling and recognizing different human

actions- such as walking, running, jumping, etc, performed under different scenarios and conditions. This problem

is more prominent in applications such as smart surveillance and media indexing. The main difference between the

two problems is that in the former the human subject can be more cooperating, which reduces the need for building

view-invariance into the models. The models proposed in this paper can be used for either of the two problems. This

is demonstrated by using two different experimental datasets for gesture and action recognition respectively. We will

use the term gesture to refer to both gestures and simple actions throughout the paper.

Many of the existing approaches for gesture recognition model gestures as a temporal sequence of feature points

representing the human pose at each time instant. The choice of these features usually depends on the application

domain, image quality or resolution, and computational constraints. Features such as exemplar key frames [7], optical

flow [8] and feature points trajectories [9, 10] have been frequently used to represent the raw, high-dimensional video

data in several approaches. The major challenge of most of these features is that they require highly accurate low-

level processing tasks such as tracking of interest points. This accuracy turns out to be very hard to achieve in gesture

recognition scenarios because of fast articulation, self occlusion, and different resolution levels that are encountered

in different applications.

In order to overcome this limitation, silhouette-based approaches have been receiving increasing attention recently

[11, 12, 13]. These approaches focus on the use of the shape of the binary silhouette of the human body as a feature for

gesture recognition. They rely on the observation that most human gestures can be recognized using only the shape of

the outer contour of the body as shown in Figure 1 for a ”Turn Right” control gesture. The most important advantage of

these features is being easy to extract from the raw video frames using object localization and background subtraction

algorithms, which are low-level processing tasks and relatively higher accuracy can be achieved in these tasks under

different conditions.

An important question in silhouette-based approaches is: how can we represent the shape of these silhouettes in

an efficient and robust way? Several shape representation features have been used in the literature for this purpose,

including chain codes [14], Fourier descriptors [15], shape moments [16], and shape context [17]. For most of these

features, the feature vector is treated as a vector in a Euclidean space in order to use standard vector space methods

for modeling and recognition. This assumption is not usually valid as these feature lie in a low-dimensional, non-

Euclidean space. Working directly on these nonlinear manifolds can provide models and discriminative measures that

may result in an improved performance. One way to explore this lower-dimensional space is to try to learn its structure

from training data using dimensionality reduction techniques combined with a suitable notion of local discriminative

measure between the visual data features. This technique was recently used [18, 19, 13] for human action recognition
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(a) Original images

(b) Background subtracted images

(c) Contour curve representation

Figure 1: An example of different frames of a humans performing a ”Turn Right” control gesture. (a) The original video frames (b) The background

subtracted images and (c) The sequence of contours. Most of the information about the gesture can be modeled using only the contour curves

and pose recovery. The problems with this technique come from the limitations of data driven manifolds such as a

lack of robust statistical models, and the difficulty in extrapolation and matching of new data.

The limitations of data driven manifolds methods noted above have shifted the attention of many computer vision

researchers towards the use of analytic differential geometry. This shift was also supported by the fact that many

features in computer vision lie on curved space because of the geometric nature of the problems. Several of these

manifolds were used in problems like object detection and tracking [20], affine invariant shape clustering [21], and

activity modeling [22]. The use of such manifolds offers a wide variety of statistical and modeling tools that arise from

the field of differentiable geometry. These tools have found applications in problems such as target recognition [23],

parameter estimation [24], clustering and dimensionality reduction [25], classification [26], and statistical analysis

[27, 22].

The choice of the right feature and space to model the shape of the silhouettes is not the only issue in silhouette-

based methods. An equally important problem is the efficient modeling of the dynamics of temporal variations of these

feature as the gesture progresses. The importance of both shape and dynamic cues for modeling human movement

was noted and demonstrated experimentally in [28]. Various models were used for modeling these dynamics, ranging

between statistical generative models [29, 30, 31, 32], and the more recent discriminative models [33, 34]. The

invariance to temporal rate of execution of action in such models is crucial for achieving accurate recognition [35].
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1.1. Motivation and Overview of Approach

In this paper, we explore the use of shape analysis on manifolds for human actions and gesture recognition. Our

approach falls into the category of the silhouette-based approaches described earlier. Each silhouette is represented by

a planar closed curve corresponding to the contour of this silhouette, and we are interested in evolving shapes of these

curves during actions and gestures. We will use a recent approach for shape analysis [36, 37, 38], that uses differential

geometric tools on the shape spaces of closed curves. Similar ideas have also been presented in [39, 40, 41]. While

there are several ways to analyze shapes of closed curves, an elastic analysis of the parameterized curves is particularly

appropriate in this application. This is because: (1) the elastic matching of curves allows nonlinear registration and

improved matching of features (e.g. body parts) across silhouettes, (2) this method uses a square-root representation

under which the elastic metric reduces to the standard L2 metric and thus simplifies the analysis, and (3) under this

metric the re-parameterizations of curves do not change Riemannian distances between them and thus help remove

the parametrization variability from the analysis. Furthermore, such geometric approaches are useful because they

allow us to perform intrinsic statistical analysis tasks, such as shape modeling and clustering, on such Riemannian

spaces [42].

Using a square-root representation of contours, each human gesture is transferred into a sequence of points on the

shape space of closed curves. Thus, the problem of action recognition becomes a problem of modeling and comparing

dynamical trajectories on the shape space. We propose two different approaches to model these trajectories.

In the first approach, we propose a template-based approach to learn a unique template trajectory representing

each gesture. One of the main challenges in template-based method is to account for variation in temporal execution

rate. To deal with this problem, we use a modified version of the Dynamic Time Warping (DTW) algorithm to learn

the warping functions between the different realizations of each gesture. We use the geodesic distances on the shape

space to match different points on the trajectories in order to learn the warping functions. An iterative approach is

then used to learn a mean trajectory on the shape space and to compute the temporal warping functions.

In the second approach, we utilize the geometry of the shape space more efficiently in order to cope with the

different variations within each gesture caused by changes in execution style, body shape and noise. Each gesture is

modeled as a Markov model to represent the transition among different clusters on the shape space of closed curve. We

learn these models by decoupling the problem into two stages. In the first stage, we cluster the individual silhouette

shapes using the Affinity Propagation (AP) clustering technique [43], and build statistical model of variation within

each cluster. In the second stage, a hidden Markov Model (HMM) is used to learn the transition between different

clusters for each gesture.

Extensive experiments were conducted to test the performance of our algorithms. We used two different data sets

of video sequences representing different control gestures and regular actions, with a total of 226 video sequences.

The data sets contained many variations in terms of the number of subjects, execution styles, and temporal execution

rates.
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1.2. Contributions

Our contribution in this work can be summarized as

1. Posing the problem of gesture and action recognition as one of classifying the trajectories on a Riemannian

shape space of closed curves.

2. Proposing a template-based model and a Markovian graphical model for modeling the time series data of points

on the shape manifold. These models were designed to fully adhere to the geometry of the manifold and to

model the statistical variation of the data on this manifold.

3. Provide a comprehensive set of experimental analysis of the proposed models on two different datasets for

gesture and action recognition.

1.3. Organization

The reminder of this paper is organized as follows: Section 2 reviews some of the work in different areas related

to this paper. In Section 3, we review some notations from Riemannian geometry and then describe the square-root

representation of closed curves and the resulting shape space. We also give a brief overview of the computation of

distances and statistics on this manifold. Section 4 describes the two dynamical model approaches used for gesture

modeling. Experimental results validating the proposed method for human gesture recognition are introduced in

Section 5.

2. Related Work

The problems of gesture and action recognition have received great attention in the literature. Several survey

papers [3, 4, 5, 6] have tried to group and analyze the existing body of work. The reader is referred to these review

papers for a complete overview of the related work in the field. Meanwhile, we will give a brief review of some of the

approaches in three different areas that are of most relevance to this paper.

2.1. Gesture and Action Modeling

Wang and Suter recently proposed two approaches [34, 13] for modeling motion subspaces associated with human

actions represented by silhouettes. In the first approach [34], they represent the silhouettes using block based features,

where each block is represented by the normalized value of the intensity values within the block. They then use the

KPCA technique to learn a nonlinear subspace of the action data. The dynamics of the action is then modeled us-

ing a discriminative factorial conditional random field model (FCRF). In the second approach [13], they use features

based on distance transform (DT) and use local preserving projections (LPP) to project the feature data onto the lower

dimensional manifold. They use a simpler model for recognition based on comparing the trajectories on the embed-

ding space. In both approaches, the main assumption was that the features will have an inherently low-dimensional

structure, and that data-driven nonlinear dimensionality techniques will successfully capture this structure.
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Another related class of approaches for silhouette-based action recognition is called exemplar-based modeling

[44, 45], where the different features corresponding to gestures are clustered into a set of exemplars or key poses,

and the dynamics of the action are learnt as a set of transitions between these exemplars. A recent example of these

approaches is [46], where each gesture is represented using a sequence of shape-motion prototypes. The training data

is used to build a prototype tree in the joint shape and motion space via hierarchical k-means clustering. A k-NN

classifier is used to classify gestures based on the frame to prototype distance of the test sequence. Exemplar-based

hidden Markov models [47, 48] were used in [44] to model body gestures using Chamfer distance as a matching

measure between different poses. The same tool was used in [45] for view invariant modeling of actions using 3D

exemplars. Our technique for learning the graphical model for trajectories presented in Section 4, comes under this

category, if we consider the different clusters as exemplar points on the shape space. However, we use the Riemannian

structure of the manifold to build statistical models around these exemplars. This enables us to perform the statistical

inference task more efficiently than using only the exemplars.

In robotics and human-robot interaction domains, several others aspects of the gesture recognition problem are

more demanding. In [49], problems like gesture spotting and interpretation from a continues sequence of unsegmented

video sequence were handled using HMMs. A special transition gesture was modeled to account for transition among

different learnt gesture models.

2.2. Shape Spaces in Computer Vision

Among the different geometric manifolds that are of interest in computer vision applications, shape spaces have

received the most attention in the literature. The goal of these spaces is building tools for shape detection, track-

ing and analysis that are invariant to different shape-preserving transformation groups. The work in this area can be

classified into two main categories. The first category is based on landmark-based analysis, where the shape of the

object is presented by a discrete sampling of the object contour [50, 51]. This formulation was used to represent

shape spaces that are invariant under transformation groups such as similarity [52], affine [53], and projective trans-

formation [54]. The limitation with this class of approaches is its dependence on automatic detection and tracking

of landmark points. A simple landmark-based approach is Active Shape Model (ASM) [55], that assumes that shape

belongs to a Euclidean space and uses principal component analysis (PCA) of the landmark location to model the

shape variability within that space. Although this approach has found many applications because of its simplicity,

it ignores the nonlinear geometry of the shape space which limits its representative power under different geometric

transformations. The second category of shape spaces can be linked to Grenander’s formulation [56], where shapes

are modeled as points on infinite-dimensional manifolds, and the variations between the shapes are modeled by the

actions of Lie-groups (diffeomorphisms) on these manifolds. This class of approaches avoid the problems associated

with landmark tracking. However it suffers from the high computational cost of such high-dimensional models.

Shape spaces have also been used for activity recognition in several computer vision publications. Kendall’s

statistical shape theory was used to model the interactions of a group of people and objects in [57], as well as the
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motion of individuals [28]. In both approaches, assuming the stationarity of the shape sequence of an activity, the

authors project the sequence of shape points into the tangent plane at the mean shape. The dynamics of the projected

points are then modeled using regular vector space approaches on this single tangent plane. In a more recent work

[58], a non stationary model was proposed. It builds an auto regressive (AR) process on the shape space represented

by a sequence of tangent planes. They use an alignment step to align the tangent planes at two consecutive time steps.

The proposed model was used for tracking of the shape using a particle filter algorithm and for action synthesis. There

were no experimental results for using this approach for action classification and recognition.

Although landmark-based shape space methods have proven successful in several vision problems, the perfor-

mance usually relies on accurate detection and tracking of key landmark points. This turns out to be a very challeng-

ing task especially under rapid motion and self-occlusion, which are common in gesture recognition problems. For

this reason, instead of using landmark-based shape representation and space, our approach models the shape of the

contour at each frame using a closed curve representation.

Recently, there has been a growing interest in building mathematical representations and metrics for modeling the

shapes of closed curves. We will employ one of the recent approaches [59], which uses differential geometry tools for

analyzing the space of closed curves using elastic string models. Similar ideas have also been presented in [41]. Using

Riemannian analysis of such space, statistical models and efficient methods were built to perform tasks such as shape

modeling and clustering [42]. Later, the same methods were combined with a square-root representation [36, 38] to

construct a shape space of closed curves in R2 and to compute geodesics between 2D and 3D closed curves. Invariance

to different shape preserving geometric transformation and re-parametrization were incorporated into the computation

of geodesics between shapes and subsequently used for shape analysis of curves in [37].

3. Manifold Representation of Silhouettes

As mentioned earlier, we will use the square-root elastic representation [36, 37] to construct a shape space of

closed curves in R2. Under this framework, the contour of the human silhouette in each frame represents a point

in the shape space and each gesture represents a temporal trajectory on that space. We then use principles from

Riemannian geometry combined with the structure of the shape space to build statistical models for these trajectories

for representation and recognition.

For the sake of completeness, we will first review some of the general notations in Riemannian geometry. We

will then briefly introduce the reader to the square-root elastic representation of curves and some properties of the the

space of curves under such representations.

3.1. Review of Riemannian Geometry

We will briefly review the basics of Riemannian geometry [60]. A topological manifold is a set that is, among

other things, locally Euclidean. This means that for an n-dimensional manifoldM, there exists a set of neighborhoods
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that coverM and that are homeomorphic to corresponding open sets in Rn. If these local mappings are diffeomorphic,

and the different neighborhoods are (maximally) smoothly compatible, thenM is a differentiable manifold. Figure

2 shows an example of a two-dimensional manifold in R3. The (infinite-dimensional) Hilbert manifold is a set that

is locally diffeomorphic to an (infinite-dimensional) Hilbert space. The tangent space TxM at each point x ∈ M is

the vector space that contains the velocity vectors of all the differentiable curves on M passing through x, at x. A

Riemannian metric on a manifoldM is an inner product ⟨., .⟩x on the tangent space TxM that varies smoothly with x.

The norm of the vector v ∈ TxM is given by ||v|| = ⟨v, v⟩x(1/2). If α : [0, 1]→M is a differentiable path inM, then its

length is given by L[α] =
∫ 1

0 ||α̇(t)|| dt. The Riemannian distance between two points x, y ∈ M, denoted as d(x, y), is

defined as the minimum length over all paths on the manifold between x and y. A geodesic path is a path that locally

minimizes the length between points.

�

�
�
�

�

�����
�
���

	
�
�
�

����
�
����

Figure 2: A two-dimensional manifoldM in R3, TxM the tangent plane at x ∈ M, and the exp and log maps relating x, y ∈ M.

Given a tangent vector υ ∈ TxM, there exists a locally unique geodesic, γυ(t), starting at x with υ as its initial

velocity and traveling with constant speed. The Riemannian exponential map, expx : TxM → M maps a tangent

vector υ to a point on the manifold that is reached in unit time by the geodesic γυ(t). The inverse of expx is known

as the logarithm map and is denoted by logx : M → TxM. Thus, for a point y in the domain of logx, the geodesic

distance between x and y is given by

d(x, y) = ||logx(y)|| . (1)

As explained in [61, 62], the exponential map realizes a chart called the the exponential chart. In this chart,

geodesics starting from x are straight lines, and the distance from the development point are preserved. This chart is

considered the ”most linear” chart of the manifold with respect to the point x.

In order to build efficient and robust models of trajectories on Riemannian manifolds, we need to use some tools

for statistical analysis of points on Riemannian manifolds. We start with calculating the intrinsic mean and principal

components for a set of points x1, · · · , xn ∈ M that lie on a sufficiently small neighborhood onM.
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The intrinsic mean or Karcher mean µ is defined as a local minimizer inM of the sum-of-squared Riemannian

distances to each point. Thus, this intrinsic mean is given by

µ = argminx∈M

N∑
i=1

d(x, xi)2 (2)

where d(., .) is the Riemannian geodesic distance defined in (1). A gradient descent approach was proposed in [61, 62]

to solve this minimization problem.

Building high order statistical models directly on Riemannian manifolds is rather difficult to perform. This is

mainly due to the non-linearity of these manifolds. So a common approach is to build the statistical model on the

tangent plane of the manifold at some reference point, which is a vector space and hence more conventional statistics

can be applied. Usually, the reference point is chosen to be the mean point of the set of samples of the distribution.

Under the assumption that the data points lie in a small neighborhood about the mean point µ, it was shown in [63]

that solving for the principal geodesic components, the equivalent of principal component vectors in Euclidean space,

boils down to performing PCA for the tangent vectors logµ(xi) ∈ TµM. This method is called principal geodesic

analysis (PGA).

3.2. Representation and Shape Space of Closed Curves

We represent the shape of a contour curve β, parameterized arbitrary, by its square-root velocity function: q :

S1 → R2, where

q(t) =
β̇(t)√∣∣∣∣∣∣β̇(t)∣∣∣∣∣∣ . (3)

where ||.|| is the Euclidean norm in R2, and t is an arbitrary coordinate on S1. The quantity ||q(t)|| is the square-root

of the instantaneous speed, and the ratio q(t)/||q(t)|| represents the instantaneous direction along the curve. The curve

β can be recovered within a translation, using β(t) =
∫ t

0 ||q(s)|| ds. Let C be the set of all unit-length, closed planar

curves that are represented by their square-root velocity functions. If we do not impose the closure condition then this

set is a Hilbert sphere; with the closure constraint C is a submanifold of the unit sphere. C is called a pre-shape space.

The geodesics between points in C are computed using a path-straightening approach. In this approach, first in-

troduced in [64], the geodesic path between the two points is first initialized with an arbitrary path. Then, this path is

iteratively straightened using a gradient approach and the limit point of this algorithm is a geodesic path. To be effec-

tive for shape analysis, the representation and the geodesics between the points must be invariant to shape-preserving

transformations. These transformations include pose (rotation, scale, and location) and the parameterizations of the

curves. Note that the square-root velocity representation is already invariant to scale and translation. The remaining

two are studied as groups acting on C: rotation by the action of SO(2) and re-parametrization by the action of D,

where D = {γ : S1 → S1} is the space of all orientation-preserving diffeomorphisms. The resulting (transformation

invariant) shape space S is defined as a quotient space as follows

S = C/(SO(2) ×D). (4)
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Elements of this quotient space are equivalence classes of the type:

[q] = {O(q ◦ γ)
√
γ̇|O ∈ SO(2), γ ∈ D} .

These are the orbits of S O(2) × D in C and each such orbit represents a shape uniquely. The problem of finding the

geodesics between two shapes, or two orbits, relies on first solving the optimization problem:

d([q0], [q1]) = min
O∈SO(2),γ∈D

d(q0,O(q ◦ γ)
√
γ̇). (5)

This is iteratively solved using a gradient descent approach that finds these optimal transformation parameters. Once

the optimal rotation and re-parameterization are obtained, one can draw a geodesic path between q0 and O∗(q◦γ∗)
√
γ̇∗

in C using path straightening. This results in a geodesic path between the orbits [q0] and [q1] in the shape space S.

The reader is referred to [37, 39] for more details on algorithms for finding shape geodesics. In the remainder of the

paper, we will use q to denote the equivalence class [q] to reduce notation.

In order to build models for gesture and action recognition on the described shape space, one needs to build

statistical tools to characterize the different distribution of the data samples and to cope with random noise and errors

in low-level processing. The simplest statistical measure, represented by the mean of a group of points in S was

presented in [39]. It uses the Karcher mean formulation as presented in (2), to compute the intrinsic mean of a set of

points in S.

Higher order statistical models for shapes in S were presented in [42]. In that approach, all the sample points are

projected to the tangent plane Tµ(S) ∈ L2, where µ is the mean shape of these sample points. In order to overcome

the infinite-dimensionality of S, they propose to approximate the tangent function g ∈ Tµ(S) by a finite basis; in this

case this finite basis comes from Fourier analysis. They further reduce the dimensionality on this vector space by

assuming that the data lies on a lower dimensional subspace, and use PCA on the tangent plane to learn this subspace

and project all the points into it. The projected points on the low-dimensional subspace can then be modeled either

in a parametric form as a multi-variate normal distribution, or in a non-parametric form using kernel density function.

We refer the reader to [42] for more details and experimental analysis.

4. Modeling Gesture Dynamics

Using the described shape model for closed curves, the dynamic sequence of shapes corresponding to a particular

gesture or action will correspond to a sequence of m points on the form

Q = q1, q2, · · · , qm, (6)

where qi ∈ S for i = 1, 2, . . . ,m, and S is the quotient shape space described in section 3. We propose to use the

trajectories on the shape space corresponding to these sequence as a feature for modeling and recognition of different

gestures. Because of the special nature of the curved shape space, vector space methods can not be directly applied.

Hence, a modified versions of these methods that obey the space geometry is proposed.
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In this section, we present two approaches for modeling and recognition of these trajectories. The first is a template

based non-parametric approach, where a template model is learned from different instances of the same gesture. In

order to account for variations in the execution rates within different realizations, we apply an iterative approach

utilizing the DTW approach [65] to align the different trajectories temporarily and then learn an average template

representation on the manifold for recognition. In the second approach, we build a parametric model by clustering

the different points on the manifold into several clusters using the Affinity Propagation (AP) clustering technique

[43]. Each gesture trajectory is modeled as a sequence of Markovian jumps between some of these clusters. The

transition probabilities of the Markov model are learnt using the standard forward-backward approach [29], while

non-parametric statistical observation models are directly built on the Riemannian manifold.

In each of these approaches we address two different stages of the problem:

1. The learning problem: Given N labeled realization Q1,Q2, · · ·QN of a gesture, where each realization is a time

series of shape points in the form shown in (6), we would like to learn a nominal ( or average) trajectory model

of this gesture.

2. The classification problem: Given a test sequence Q, and M different gesture template models. How can we

classify the test sequence into one of these models?

4.1. Template based Model

In this model, we learn a template trajectory Q∗ for each gesture given the training realizations of this gesture.

A usual choice is to compute Q∗ as the average of all the training trajectories at each time instants. This choice is

optimal in terms of minimizing the sum of distances between the template and all of the training examples at each

time instant.

This approach has two limitations. The first is the fact that trajectories are not of the same length due to variations

in execution rates of the same gesture. This also results in a lack of temporal synchronization between different

segments of these trajectories. Therefore, a temporal alignment of these trajectories is crucial before computing the

template. The second issue is that all of the points on the different learning trajectories reside on the shape space

S. Thus we need to make sure that both the temporal matching of shape points and computation of the template Q∗

follow the underlying geometry of that manifold.

In order to solve the temporal variation problem, we propose using the DTW algorithm [65], which is used to

find the optimal non-linear warping function to match a given time-series to a template while adhering to certain

restrictions such as the monotonicity of the mapping in the time domain. This approach is very popular in speech

recognition and has been used in several vision applications such as shape averaging [66], and rate-invariant activity

recognition [35]. The optimization process is usually performed using dynamic programming approaches given a

measure of similarity between the features of the two sequences at different time instants.

Adapting the DTW algorithm to features that reside on Riemannian manifolds is a straightforward task, since

DTW can operate with any measure of similarity between the different temporal features. Hence, we use the geodesic

11



distance between the different shape points d(qi, q j) given in (5) as a distance function between the shape features at

different time instants.

4.1.1. Iteratively learning the template trajectory on the manifold

Given the N labeled realization Q1,Q2, · · ·QN of a certain gesture, we solve for the nominal shape sequence

Q∗ ∈ S that has the minimum distance to all the N realizations, while accounting for the different non-linear temporal

warpings between these realization and Q∗. This can be formulated as computing the average trajectory on the shape

space S of all the warped versions of the N realizations as described next.

Q∗ = AVGS( f1(Q1), f2(Q2), · · · fN(QN)). (7)

where, AVGS stands for the average of the realization computed with respect to the shape manifold S, and fi(Qi)

represent the non-linear warped function that was calculated using DTW to match Qi to the template Q∗.

According to (7), given a set of warping functions fi, i = 1 : N, we can solve for Q∗. This is achieved by computing

the intrinsic mean on S of all the warped sequences at each time instants. We use the Karcher mean on the manifold

as described in Section 3 for this computation. However, a template Q∗ is needed in order to compute these warping

functions.

We solve this dual problem in an iterative manner as shown in Algorithm 1 by iterating between computing the

non-linear warping functions to a given template and updating the template as the average of the warped realizations.

The initialization of this algorithm is performed by choosing one of the N labeled realizations as the initial Q∗.

This choice can be done randomly. However, we found that better performance can be achieved if we choose the

sequence that best represents all of the N labeled realization. This is the sequence that achieves the minimum average

distance with all the labeled realizations when picked as a template and all the sequences are warped to it.

Algorithm 1 Learning gesture template Q∗ from N labeled realization Q1,Q2, · · ·QN

1: Initialize Q∗ to one of the N realizations

2: repeat

3: for n=1 to N do

4: Find DTW to warp Qn to Q∗

5: end for

6: Update Q∗ as the Karcher mean of all the N warped realizations

7: until Convergence or t times

4.1.2. Classification of a test sequence

In the testing stage, we are given test shape sequence Qt and M different gesture templates. We want to classify

Qt as one of these gestures. This classification problem is solved using the nearest neighbor rule, by warping all the
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models to Qt using the geodesic distance in S as a distance measure and computing the total warping distance to each

of these models. Qt is then assigned to the model with the smallest warping distance.

4.2. Graphical-based Statistical Model

The simplicity of template-based approaches encouraged researchers to use it in many practical applications,

where they have shown great success under conditions of small variations and low noise within the training data.

Under these conditions, the mean can be sufficient to characterize the time-series. Unfortunately, in many other

scenarios, these conditions do not hold. Hence, we need higher order statistical models to capture the variation within

the time-series data.

Graphical models such as the Hidden Markov Models (HMM) have proven more effective than template-based

methods in modeling time-series data, specially in areas such as speech processing [29]. This is so because these

models can learn more information about the special statistical variation of both the observation data and the dynamical

transition between different states.

A standard HMM with continuous observation is shown in Figure 3. This is a statistical generative model that

represent the time series of observations in the form of a set of transitions between several abstract hidden states,

where the state at time t is denoted by S t. The transition between these states is governed by a Markovian model

parameterized by the state transition probability P(S t |S t−1). The observation at each time instant qt is statistically

dependent on the state S t according to an observation probability density function f (qt |S t). A common choice for

this density function is a mixture of Gaussians. The model parameters are learnt using the standard Baum-Welch

algorithm [67]. This ensures that the state transition and observation density functions are optimized in the maximum

likelihood sense.
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Figure 3: A graphical model of unfolding a standard continuous state HMM

To the best of our knowledge, most of the published work on graphical models such as HMM studies modeling

time-series data on Euclidean spaces. However, several challenges appear if we want to generalize these methods to

time-series data on special manifolds. One of the challenges is that in order to solve for the optimal parameters in the

maximum likelihood sense, we need to provide an analytical form for the observation density functions and compute

the gradient of the likelihood of a sequence in terms of the parameters of these functions.
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In order to avoid the mathematical difficulty of directly learning a graphical model on the Riemannian manifold,

we propose to decouple the two problems of learning the abstract state transitions and learning the observation dis-

tributions. This is accomplished by introducing a new layer of intermediate observations Xt in the form illustrated in

Figure 4. The resulting model in this case is similar to the decoupled exemplar-based HMM presented in [44]. The

difference is that we will learn these exemplars to represent different clusters of data on the shape manifold. We will

also learn the observation density functions as a non-parametric density function for each cluster on that manifold.
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Figure 4: A graphical model of unfolding the exemplar-based HMM used in modeling the gesture dynamics

In our approach we model the dynamics of each gesture as a Markov model of L hidden abstract states H(1),H(2), · · · ,H(L).

Let S t denotes the state of the system at time t. The state of the system is emitting an intermediate discrete observation

representing the cluster (exemplar) of the system and denoted by xt. This observation can take any value in the set

X = {xk |k = 1, · · ·K}, where K is the number of the learnt clusters on the shape manifold. Hence, the system dynamics

is determined by the state transition P(st |st−1), and the exemplar observation probabilities P(xt |st).

The final observation qt corresponds to the contour curve velocity function for a certain frame, and represents a

point on the shape space S. These observations are modeled using a mixture distribution such that the observation

probability for an observation qt at time t given the state of the system st can ba calculated as

f (qt |st) =
K∑

k=1

f (qt |xt = xk)P(xt = xk |st) (8)

where, f (qt |xt = xk) represents the non-parametric probability density function for cluster k on the shape space S.

Learning the model for each gesture includes learning the state transition probabilities P(S t |S t−1), the exemplar

clusters observation probabilities P(xt |S t), and the shape observation density functions given each cluster f (qt |xt = xk).

We follow a decoupling approach for learning these parameters. We first cluster the gesture shape points into several

clusters and build a non-parametric statistical model for the data points in each cluster to represent the observation

density function. The state transition and cluster observation probabilities are then learnt from the training samples

using the standard forward-backward technique commonly used in applications that use discrete observation HMMs.
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4.2.1. Clustering of gesture shapes

The clustering of the shape points to learn the exemplar clusters can be done directly on the quotient shape space

S by using a stochastic simulated annealing approach to search for the optimal cluster assignment in the configuration

space [42]. However, this method requires a high computation burden and is not guaranteed to converge to a globally

optimal solution. We use a simpler and computationally efficient AP clustering approach on the matrix of the pairwise

geodesic distances to find the cluster assignment.

Affinity Propagation is an unsupervised clustering technique presented by Frey and Dueck in [43]. It finds a set

or exemplar points to represent the data and assigns every data point to one of these exemplars. The search for these

exemplars is performed in an iterative manner using a message passing algorithm on a graph, where each data point

is represented by a node on this graph. This method was proven superior to other clustering approaches in many

applications such as clustering images of faces, detection of genes in micro-array data, and identification of cities that

are efficiently accessed by airline travel. It was also shown to be more computationally efficient in terms of processing

time and handling sparse data.

There are two main advantages of using AP for our problem. The first is that this method only requires a notion

of similarity between every pair of data points and does not assume a Euclidean space. Therefore, we can use the

negative of the geodesic distance between the shape points as a geometrically accurate similarity measure, resulting

in accurate clustering on the shape manifold. The second advantage is that this method does not require any prior

knowledge of the number of clusters and the final clustering is not dependent on the initialization as in K-means

clustering.

Given all of the training data shape points, we run the AP algorithm on the matrix of the pairwise similarity

between shapes, calculated as the negative of the geodesic distance between theses shapes on the shape space S. The

output of the algorithm is a set of K exemplar shapes q1, q2, · · · , qK , and an assignment of each data point to one of

these exemplar. An example of these exemplar shapes for different clusters of the control gesture data set is shown in

Figure 5. We observe that some similar shapes may be split between two close clusters. This may be a problem with

clustering. However, our HMM dynamic model is robust to these errors as each state can be associated with many

exemplar states.

An important question in this step is the amount of data to use for learning these exemplar clusters. We have two

choices. The first is to make these clusters gesture dependent by using the shape data corresponding to each gesture

to learn a different set of clusters. The second choice is to perform the clustering on all the training data for all the

gestures which result in a shared set of exemplars for all the different HMM’s. Although the first choice may reduce

the computational complexity as we need to calculate significantly fewer geodesic distances, we adopt the second

approach for the following reasons. First, the physical nature of the problem suggests that usually many gestures

share a set of poses which are similar or very close in shape. The second reason is that global clustering results in

more data points per cluster which helps in providing a better estimate for the non-parametric observation density
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Figure 5: Some exemplar shapes representing clusters computed on the shape manifold using AP.

functions. Finally, the global clustering approach has also the intuitive idea of representing the whole manifold as a

mixture of distributions representing our observation model. Our experimental analysis also proves the superiority of

global clustering approach as will be shown in the result section.

4.2.2. Building the observation model

Given the clustering result of the AP algorithm, we learn a non-parametric density function f (qt |xt = xk) for each

cluster xk. This density function captures the variability between the different samples of the cluster and determines

the main mode of variation within each cluster. However, the learning of these density functions on the shape space is

difficult, mainly because of the two problems of nonlinearity and infinite dimensionality of the shape space S.

We deal with these challenges using the method described in [42] and summarized in Algorithm 2. The problem

of nonlinearity is avoided by building these distributions on the tangent space TµkS to S at the mean shape of the

cluster µk rather than on S itself. This approximation is valid because the data within the cluster are very close to each

other and will be in a small neighborhood around µk. Therefore, for every shape q ∈ S in the kth cluster we compute

a tangent vector g ∈ TµkS, where g represents the initial velocity of the geodesic path between the mean shape µk and

the shape q.

The problem of dimensionality is solved by assuming that the variations in the tangent vectors g are mostly

restricted to an m dimensional subspace. We use PCA to learn these low-dimensional subspaces for each cluster. Each

of the m coefficients representing the low-dimensional projections g̃ is then modeled with a non-parametric density

function using kernel density estimation (with a Gaussian kernel) technique.

4.2.3. Learning the dynamical model

For each gesture, we want to train a HMM that captures the underlying dynamics of transition between the states

(state transition probabilities P(S t |S t−1)), and the intermediate (cluster) discrete observation probability P(xt |S t). This
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Algorithm 2 Learning the observation non-parametric density function for the k-th cluster f (qt |xt = xk) from the

clustered shape points q1, q2, · · · qz

1: Compute the intrinsic mean µk for the z data points using (2)

2: for i=1 to z do

3: Compute the tangent element gi ∈ T k
µ(S), such that geodesics from µk reaches qi in unit time

4: end for

5: Perform a local PCA on the data points g1, g2, · · · , gz to learn an m-dimensional subspace

6: for i=1 to z do

7: Project the data point gi into g̃i on the m-dimensional subspace learnt

8: end for

9: Learn a non-parametric density function for each of the m coefficients of g̃i, i = 1 : z

is a standard problem in HMM and we solve it this using the Baum-Welch method for discrete output HMM [29].

Given N realization of each gesture, where each m-point realization is in the form Q = q1, q2, · · · , qm, qi ∈ S, we

assign each of these points to one of the learnt clusters to obtain a sequence of cluster assignments x̂1, x̂2, · · · , x̂m, x̂ ∈

X. These sequence of clusters are used as discrete observation vectors in the Baum-Welch algorithm to learn the model

for each gesture.

The way we assign each shape observation to a cluster can largely affect the performance and accuracy of the

model. A simple choice for this assignment is to use a nearest-neighbor rule where the shape point is assigned to its

nearest cluster, which is calculated by computing the geodesic distance between this point and all the cluster means,

and picking the cluster with the minimum geodesic distance. This can be formulated in the following way

x̂i = minK
j=1d(qi, µ

j), f or i = 1 : m (9)

where µ j is the intrinsic mean for the jth cluster computed on the shape manifold, and d(., .) is the geodesic distance

on S.

Although nearest neighbor assignment performs relatively well, it sometimes produces wrong assignments as it

only uses the mean point as a representative of each cluster and ignores the statistical variations within the cluster.

These wrong assignments result in inaccurate HMM model parameters.

Therefore, in order to fully utilize the information we learnt about the statistical properties of the data within each

cluster we use ML assignment. In this method we use the cluster observation models learnt in the previous steps

f (qt |xt = xk) and assign qt to the most likely cluster as follows

x̂i =
K

max
j=1

f (qi|xt = x j), f or i = 1 : m (10)
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4.2.4. Classification of a test sequence

Given a sequence of observation shapes Q = q1, q2, · · · , qm, qi ∈ S and a set of M HMM models corresponding

to M different gestures, we first compute the conditional observation likelihood f (qt |st) using the learnt cluster density

functions f (qt |xt = xk) and the exemplar clusters observation probabilities p(xt = xk |st). This is calculated by summing

over all possible clusters as shown in (8).

Given these observations likelihood and the state transition probabilities p(S t |S t−i), computing the likelihood of

the test sequence is a simple HMM evaluation problem. We solve it using the standard forward technique and dynamic

programming [29]. The test sequence is then classified using the maximum likelihood rule.

5. Experimental Results

We carried out an extensive set of experiments to evaluate and verify the effectiveness of using the contour curve

shape manifold and the two proposed methods in modeling and recognition of human actions and gestures. The

experiments also investigate the effect on performance with changing some of the system choices like the cluster

assignment method and whether the clusters are shared among different gesture models or not.

These experiments were performed using two different datasets representing the human action and control gesture

scenarios respectively. As in all silhouette based methods, we assume the availability of a relatively clean background

subtracted images representing the silhouettes. In order to avoid dealing with low-level processing steps such as back-

ground subtraction and object segmentation, the existence of such images was an important criteria in choosing the

datasets used in these experiments. For both datasets, background subtracted images with relatively good resolution

and quality were available. We used these images to extract the contour of the human as the boundary of the main

binary silhouette in the images.

5.1. UMD Common Actions Dataset

In the first set of experiments we use the UMD common activity dataset [68] to perform action modeling and

recognition. This dataset consists of 10 common activities with 10 different instants of each activity performed by the

same actor, which brings the total number of sequence to 100 sequences. Each of these sequences is 80 frames long,

which means a total of 8000 frames are in the whole dataset.

5.1.1. Template-Based approach

We first use the dataset to evaluate the template based approach presented in Section 4.1. We split the dataset into

two disjoint sets, of five sequence each. We used the even sequence for learning the template trajectory on the shape

manifold while we tested using the remaining five odd sequences per gesture. Figure 6-a shows the 10 x 50 similarity

matrix between each of the test sequences and each of the learnt action models. Each of these distances corresponds

to the warping distance computed on the shape manifold between the test sequence and the model templates. Each
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Figure 6: Results of using the template based method for classification on the UMD action dataset (a) The 10 x 50 similarity matrix between the

50 test sequences and the 10 action models learnt (better viewed in color) (b) The confusion matrix for action classification

row corresponds to a single action model, while each column corresponds to a different test sequence. The strong

block diagonal nature of the similarity matrix indicates that the modeling is accurate and is effective for recognition.

We use this similarity matrix to perform an action recognition experiment, where we assign each test sequence to

the model with the smallest warping distance. The resulting confusion matrix for this experiment is shown in Figure

6-b, showing an correct recognition rate of 98%.

5.1.2. Graphical-Model Based Approach

We used the same dataset to test the graphical model approach presented in Section 4.2. In the first stage we use

AP to cluster the data points on the manifold using the pairwise geodesic distances between every pair of shapes. We

use the preference parameter value, as mentioned in [43], to change the number of clusters to check the effect of this

change on our performance. As in the template-based method experiment, we use the data corresponding to the odd

sequences for learning the clusters and their statistical observation density functions.

The clustering results along with statistical models of each cluster are used to learn the dynamics of each action

as presented in Section 4.2. We first assign the gesture data from the training set into different clusters and use the

cluster assignment streams to learn the HMM dynamics of the action. We used two different assignment approaches

as described in Section 4.2. In the NN assignment method we assign the shape points into the nearest cluster in terms

of the geodesic distances with the mean of the cluster, while in the ML assignment we use the learnt statistical model

to assign the shape observation into the most likely cluster in terms of the likelihood function.

Figure 7 shows the correct classification rates for two validation experiments under different number of clusters and

different assignment methods. The first experiment, shown in Figure 7-a, is similar to the template-based experiment,
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Figure 7: UMD common activity dataset action classification results. (a) Classification rates for splitting the data into training and testing sets. (b)

Classification rates for leaving-one-out experiment.

where we split the data sequences into two disjoint set and use the first set for training and use the second for testing.

The second experiment, shown in Figure 7-b), is using the leave-one-out cross validation method, where we test each

sequence using a model learnt using all the other sequences.

The performance results are very close, however we can note a couple of observations:

1. The NN assignment method performs slightly poorly with increasing number of clusters. On the other hand,

the ML performance slightly increases with the same number of clusters change. This can be due to the fact

that with more clusters the NN assignment can easily assign similar shapes to different clusters, while the ML

method does not make the same mistake.

2. Although both assignment methods are performing well, the ML method is performing slightly better with

average recognition rate of 99.67% in both experiments, while NN assignment methods achieved an average

recognition rate 96.67% and 95.67% in the first and second experiments respectively. This is expected because

the statistical model allows for learning the modes of variation within each cluster, which result in a more

accurate modeling of the within cluster variation.

We grouped the recognition rates for all of our experiments in Table 1. We also include the results reported in [35]

on the same data set. We can note that our HMM approach has a comparable result to the perfect recognition rate

reported in [35].

5.2. Control Gesture Dataset

The UMD action dataset has been used in several publication on action modeling and recognition. However, the

level of variability within the dataset is very limited by the single actor performing the actions. For this reason, we

carried out another set of experiments using a different dataset of human control gestures recently introduced in [46].

The dataset consists of 14 arm control gestures performed by three different actors with different clothes and body
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approach evaluation method recog. rate %

Template-based approach split 98

Graphical-based approach with NN assignment split 96.67

Graphical-based approach with NN assignment leave one out 95.67

Graphical-based approach with ML assignment split 99.67

Graphical-based approach with ML assignment leave one out 99.67

Veeraraghavan et al [35] leave one out 100

Table 1: A summary of the recognition results of our various approaches and evaluation methods on the UMD common actions dataset as compared

to the results reported in [35] on the same dataset.

frames. Each person repeats a gesture for 3-5 cycles. The length of each cycle varies a lot between 80 and 250 frames

for the shortest and longest sequences respectively. Figure 8 shows the different gestures in the dataset performed by

the first person with an overlay of the extracted contour curves captured every 10 frames.

For this dataset, the authors provided us with a set of background subtracted frames with good resolution. How-

ever, the quality of background subtraction was not consistent within all the frames, with the result of added back-

ground pixels and poor contour extraction as shown in Figure 9. Our method, as in most silhouette-based methods,

assumes a relatively clean background subtraction. However, we did not manually fix these errors and use it to test

the robustness of our approaches. Another issue was that the different cycles for each person performing a gesture is

provided in terms of a long continuous sequence of frames. We had to manually perform a temporal segmentation of

the data in order to obtain a separate sequences for each cycle. The quality of such segmentation was crucial for the

DTW template-based approach, where we will show the results before and after fixing the segmentation errors in the

next section.

5.2.1. Template-Based approach

We ran our template-based approach for learning a template for each gesture and used that template for recognition.

Figure 10 shows the correct classification rates for the different experiments we performed. In the first experiment,

we achieved a very poor recognition rate of 42%, although we have been using all the sequences for training. After

carefully inspecting the resulting templates, we found out that poor segmentation of the sequences results in poor

performance. This shows the importance of using cleanly segmented sequences for learning templates when the

DTW method is used. In experiment 2, we fixed the segmentation issue, which improved the classification rate to

around 60%.

In the last two experiments, we changed the way we initialize the computation of the mean trajectory. Instead of

initializing using a random trajectory of the training sequences, we compute the DTW between each training sequence

as a model and the rest of the sequences. We initialize the mean trajectory computation using the sequence with the

smallest average DTW error to all the other sequences. This change resulted in increasing the correct classification rate
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Figure 8: The different control gestures in the data set used in our gesture recognition experiment [46]. (1) Turn Right, (2) Turn Left, (3) Attention

Right, (4) Attention Left, (5) Flap, (6) Stop Right, (7) Stop Left, (8) Stop Both, (9) Attention Both, (10) Start Engine, (11) Go back, (12) Close

Distance, (13) Speed up, and (14) Come Near.

(a) (b) (c) (d)

Figure 9: Some of the errors in the background subtraction errors in the control gesture dataset resulting in inaccurate silhouette extraction.

to around 69% while using all the sequences for training and testing as a baseline experiment. In the last Experiment

(experiment 4), we perform a leave-one sequence-out cross validation, where we build a model for each test sequence

with a training set that exclude that sequence and use all the remaining sequences. Surprisingly, this performed better

than the baseline results of using all the data for training, with a correct classification rate of 72%. The similarity

matrix and confusion matrix corresponding to the different experiments are shown in Figures 11 and 12 respectively.

We further analyzed the classification results by examining the correct recognition rate for each gesture and each

person individually, these results are shown in Figure 13-a and 13-b respectively. From these figures, we can note

the recognition rate varies dramatically across different gestures. For example the Go Back gesture was recognized

correctly in only 10% of the cases, while the Flap, Stop Left, and Stop Right gestures achieved perfect recognition

rates in most of the experiments. This is due to the fact that some gestures are more distinguishable using only the

silhouette information than other gestures. On the other hand, the recognition rates were very close for different

persons performing the gestures.
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Figure 10: The correct classification results for using the template-based approach on the gesture dataset. Experiment 1: Bad segmentation of

sequences and random initialization. Experiment 2: Correct segmentation of sequences and random initialization. Experiment 3: Initialization

using the best sequence, all sequence used for training. Experiment 4: Initialization using the best Sequence, leave-one-out cross validation

5.2.2. Graphical-Model Based Approach

We repeated the same experiments performed on the UMD action dataset for the control gestures dataset but

with a slight variation in the setup. Experiment 1 represents a baseline experiment where we use all of the training

sequence for learning the model. This should perform really well and it can point out to any problems within the

modeling itself regardless of the generalization of the model to unseen sequences. Experiment 2 represents the same

leave-one-sequence-out experiment performed previously for the UMD action dataset. Due to the fact that we have

three different persons performing each gesture, we performed a third experiment representing a leave-one-person-out

cross validation, where we exclude all the sequences corresponding to one person from training the model used for the

test sequences corresponding to that person. This will test the generalization capabilities of our model for new body

frames that have not been used in the training phase. This can be a very challenging problem because of the limited

number of training sequences remaining after excluding all the sequences for one person.

Figures 14 and 15 shows the correct classification rates using HMM with five and seven states respectively. The

figures shows the performance variations while using different number of clusters and switching between ML and

NN cluster assignment methods. Figure 16 shows the overall confusion matrix for these experiments combining the

results for each experiment and assignment method under different number of clusters and HMM states.

Form these graphs we notice the following:

1. The ML assignment method is performing slightly better than the NN rule with maximum recognition rates of

100%, 94%, and 82% for experiments 1,2, and 3 respectively. compared to maximum correct recognition rates

of 99%, 94%, and 76% for the NN assignment methods. Also, the average correct classification rate of ML

assignment was 97%, 90%, and 73% for the experiments 1,2, and 3 respectively, compared to an average rate
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approach evaluation method max recog. rate %

Template-based approach leave one out 72

Graphical-based approach with NN assignment leave one sequence out 94

Graphical-based approach with NN assignment leave one person out 76

Graphical-based approach with ML assignment leave one sequence out 94

Graphical-based approach with ML assignment leave one person out 82

Lin et al [46], shape only leave one out 92.86

Lin et al [46], shape and motion leave one out 95.24

Table 2: A summary of the recognition results of our various approaches and evaluation methods on the control gesture dataset as compared to the

results reported in [46] on the same dataset.

of 91%, 85%,and 70% for the NN assignment method.

2. A careful study of the confusion matrices in Figure 16 shows that certain gestures are very confusing even in

the baseline experiment. which lower the average classification rate. For instance, the two gestures of Go back

and come Near (gestures 11 and 14 in the tables) are usually confused alot. These two gestures are similar

except for the orientation of the palm of the hand and the direction of the motion. This makes them highly

indistinguishable using only the silhouette images, even for an human observer.

3. The recognition rates are very similar when we change the number of states, which suggests that the perfor-

mance does not vary much with the HMM design parameters.

4. The performance is relatively bad in the leave one person out experiment. We believe that this may be mainly

due to the low number of training sequences in this case.

Due to the recent introduction of the dataset, we could only compare our recognition rates to the results reported

in [46]. Table 2 group our results for different approaches and evaluation methods as compared to [46]. We can

note that our method managed to achieve comparable performance with 94% maximum recognition rate as compared

95.24% recognition rate reported in [46]. However, we were able to achieve this results using only the silhouette

of the background subtracted sequences, while [46] was combining both the shape and motion information obtained

using the color images and optical flow computations. In fact, our results exceed the performance reported in the same

paper using only the shape cues for recognition.

6. Conclusion

In this paper, we presented a novel gesture recognition technique using shape manifolds. Contours of the silhouette

are extracted and represented as 2D closed elastic curves parameterized using the square-root parametrization. This

representation is intrinsically invariant to both translation,scale, and re-parametrization of the curve. Each gesture is

modeled as a temporal trajectory on the resulting Riemannian manifold of 2D elastic curves. We proposed template
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and graphical-based HMM approaches for modeling these trajectories. The two approaches capture the statistical

variability of the data, while adhering to the underlying geometry of the manifold. The two approaches were proven

successful experimentally using two data sets of human control gesture and actions. In future, we plan to extend

the proposed approach to other vision problems that can be modeled using dynamical trajectory on differentiable

manifolds.
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Figure 11: The 126 X 14 similarity matrix between all of the test sequences and the 14 gesture models using the template-based approach for

experiments 1-4 are shown in a-d respectively (better viewed in color)
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Figure 12: The confusion matrix for gesture classification using the template-based method for experiments 1-4 are shown in a-d respectively
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Figure 13: Gesture dataset classification results using the template-based approach (a) The correct classification rates for each gestures in different

experiments (b) The correct classification rates for each person in different experiments
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Figure 14: The gesture classification results using the graphical model approach, with 5 states HMM. It show the correct classification rates using

each of ML and NN assignment and with varying number of clusters (a) Using all the sequences for training (b) Leaving one sequence out cross

validation and (c) Leaving one person out cross validation
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Figure 15: The gesture classification results using the graphical model approach, with 7 states HMM. It show the correct classification rates using

each of ML and NN assignment and with varying number of clusters (a) Using all the sequences for training (b) Leaving one sequence out cross

validation and (c) Leaving one person out cross validation
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Figure 16: The combined confusion matrix for the classification experiment using the graphical based approach with NN assignment (left col-

umn) and ML assignment (right column). (a)Experiment 1, NN assignment, (b)Experiment 1, ML assignment, (c)Experiment 2, NN assignment,

(d)Experiment 2, ML assignment, (e)Experiment 3, NN assignment, and (f)Experiment 3, ML assignment
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