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Abstract. Human detection under occlusion is a challenging problem
in computer vision. We address this problem through a framework which
integrates face detection and person detection. We first investigate how
the response of a face detector is correlated with the response of a person
detector. From these observations, we formulate hypotheses that capture
the intuitive feedback between the responses of face and person detectors
and use it to verify if the individual detectors’ outputs are true or false.
We illustrate the performance of our integration framework on challeng-
ing images that have considerable amount of occlusion, and demonstrate
its advantages over individual face and person detectors.

1 Introduction

Human detection (face and the whole body) in still images is of high interest
in computer vision. However, it is a challenging problem due to the presence of
variations in people’s poses, lighting conditions, inter- and intra- person occlu-
sion, amongst others. Occlusion, in particular, poses a significant challenge due
to the large amount of variations it implies on the appearance of the visible parts
of a person.

There are many human detection algorithms in the literature. In general,
they fall into two categories: subwindow-based and part-based approaches. In the
former category, features extracted from subwindows located within a detection
window are used to describe the whole body. Subwindow-based approaches can
be based on different types and combinations of features, such as histograms
of oriented gradients (HOG) [1], covariance matrices [2], combination of several
features [3], and multi-level versions of HOG [4]. On the other hand, part-based
approaches split the body into several parts that are detected separately and,
finally, the results are combined. For instance, Wu and Nevatia [5] use edgelet
features and learn nested cascade detectors for each body part. Mikolajczyk et
al. [6] divide the human body into seven parts, and for each part a cascade
of detectors is applied. Shet and Davis [7] apply logical reasoning to exploit
contextual information augmented by the output of low level detectors.
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Fig. 1. Image where occlusion is present and fusion of detectors can increase detection
accuracy. Face of person b is occluded. Once the legs and torso are visible, results from
a part-based person detector can be used to support that a human is present at that
location. On the other hand, the legs of person c are occluded, in such a case, face
detector results can be used to reason that there is a person at that particular location
since the face of person c is perfectly visible.

Subwindow-based person detectors present degraded performance when parts
of the body are occluded; part-based approaches, on the other hand, are better
suited to handle such situations because they still detect the un-occluded parts.
However, since part-based detectors are less specific than whole body detec-
tors, they are less reliable and usually generate large numbers of false positives.
Therefore, to obtain more accurate results it is important to aggregate infor-
mation obtained from different sources with a part-based detector. For this, we
incorporate a face detector.

Face detection is an extensively studied problem, and the survey paper [8]
provides a comprehensive description of various approaches to this problem.
For example, Viola and Jones [9] use large training exemplar databases of faces
and non-faces, extract feature representations from them, and then use boosting
techniques to classify regions as face or non-face. Other algorithms, for instance
Rowley et al. [10], uses a neural network to learn how the appearance of faces dif-
fer from non-faces using training exemplars, and then detect faces by seeing how
well the test data fits the learned model. Another class of approaches, exempli-
fied by Heisele et al. [11], uses a part-based framework by looking for prominent
facial components (eyes, nose etc), and then uses their spatial relationship to
detect faces. Although such methods are more robust to image deformations
and occlusions when compared with holistic approaches, the choice of feature
representations and accurate characterization of the relationships between the
facial components is still a challenge.

The question that arises naturally is then, how to fuse these two sources
to improve overall detection performance. Specifically, is it possible to use the
response profiles of the two separate detectors, to reinforce each other, as well as
provide a basis to resolve conflicts? This is the question we address in our work.
Figure 1 motivates the utility of combining face and person detectors. First,
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while the lower half of person c is occluded, the face detector can still detect the
face of the person, whereas the person detector might fail. Nevertheless, we can
try to explain the response of the person detector based on the response of the
face detector, and conclude that a person is present. Another case is the reverse
situation such as b and d in Figure 1 whose faces are partially occluded while
the body parts are completely visible. Such situations occur often in real-world
scenarios, and motivates exploring feedback between face and people detectors.

2 Face and Person Detection

In this section we give a synopsis of our algorithms for face detection and person
detection. We also provide detection results of applying the individual algorithms
on standard datasets, showing that these detectors individually achieve results
comparable to state-of-art methods. However, a point to keep in mind is that
these standardized datasets do not have considerable amounts of occlusion, which
is the main problem that we address in our work.

2.1 Face Detection

We use a feature-based approach to detect faces from still images. Our approach,
motivated by [12], is based on using an optimal step edge operator to detect
shapes (here, the facial contours are modeled as ellipses). The crux of the algo-
rithm is then to obtain the edge map of the image using a derivative of double
exponential (DODE) operator, and fit various sized ellipses to the edge map.
Image regions that have high response to ellipse fitting signify locations that
likely contain faces.

We then conduct post-processing on these short-listed regions by comput-
ing three different cues - color [13], histogram of oriented gradients [1], and
eigenfaces [14], and combine the three feature channels using support vector
machines [15] to decide whether a face is present or not. The motivation behind
the choice of these descriptors is: (i) the human face has a distinct color pattern
which can be characterized by fitting Gaussian models for the color pattern of
face regions, and non-face regions; (ii) the histogram of oriented gradients cap-
ture the high interest areas in faces that are rich in gradient information (eyes,
nose and mouth) that are quite robust to pose variations, and (iii) eigenfaces
captures the holistic appearance of the human face. These three feature channels
capture a mix of global and local information about the face, and are robust to
variations in pose.

Our algorithm was tested on the MIT+CMU face dataset [10]. This dataset
has two parts. The first part (A) has 130 frontal face images with 507 labeled
faces, the second part (B) has 208 images containing 441 faces of both frontal
and profile views. The results of our algorithm are presented in Figure 2(a).
Most other algorithms that are evaluated on this dataset do not provide the full
ROC, but rather provide certain points on the ROC. Since Viola and Jones [9]
quote their ROC for part A of this dataset, we have compared our ROC with
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Fig. 2. Experimental results for face and person detection.

theirs; even otherwise, it can be observed that our performance is comparable
to the ROC points of other algorithms (like Rowley et al. [10]). Since we are
interested in detecting partially occluded faces we also compare our approach
to the OpenCV implementation of Viola and Jones [9] method on the internally
collected maritime dataset in Figure 2(b).

2.2 Person Detection

For person detection we use a method that combines HOG [1] and features
extracted from co-occurrence matrices [16]. For each detection window, fea-
tures extracted from HOG and co-occurrence matrices are concatenated and
projected onto a set of latent vectors estimated by the partial least squares
(PLS) method [17] in order to reduce the dimensionality of the input vector.
The vector obtained after dimensionality reduction is used as the feature vector
to describe the current detection window. Finally, the feature vector is classified
by a quadratic classifier as either human or non-human sample. As a result, we
obtain a probability estimate. Figure 2(c) shows comparisons using the INRIA
person dataset [1]. Like face detection, the person detection approach used also
achieves results comparable to state-of-art person detectors [1, 2, 4].

Since part-based approaches are better suited to handle situations of occlu-
sion, we split the person detector into seven different detectors, which consider
the following combinations of regions of the body: (1) top, (2) top-torso, (3)
top-legs, (4) torso, (5) torso-legs, (6) legs, and (7) full body, as illustrated in
Figure 3. Therefore, at each position in the image the person detector estimates
a set of seven probabilities. The training for these detectors was performed using
the training set of the INRIA person dataset.

As discussed in the literature survey, part-based approaches for person de-
tection have been employed previously. Here, we use a part-based approach in
tandem with a face detector creating a small number of intuitive case-based
models for overall person detection.

Although the face and person detectors present results comparable to the
state of the art on these datasets, these algorithms face difficulties when there is
significant occlusion. To this end, we explore how to overcome this problem by
combining the responses of the individual detectors.
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Fig. 3. Parts of a detection window used to train multiple detectors.

3 Integrating Face and Person Detection

In this section we present our algorithm for integrating the response profiles of
face and person detectors. We model observations of the individual detectors, and
generate hypotheses that capture intuitive relationships between the responses
of the face detector and the person detector. Specifically, we describe a set of
situations where the output of one detector can be logically combined with the
other detector’s output to eliminate false alarms or confirm true positives.

3.1 Modeling the Response Profiles of the Individual Detectors

To integrate person and face detectors’ output we first create models according to
the probability profile resulting from individual detectors (the seven probabilities
from part-composition person detector and one from the face detector).

For the person detector, we summarize the probability profile obtained by the
seven probabilities into a set of four models that inherently capture situations
in which various combinations of face and person parts are detected with high
probability. Specifically,

Model M1: all body parts are visible
Model M2: top is visible, torso and legs may or may not be visible. This cor-

responds to the typical situation in which a person’s legs are occluded by
some fixed structure like a desk, or the railing of a ship.

Model M3: top is invisible, whereas torso and legs are visible
Model M4: all body parts are invisible

Given the set of seven probabilities estimated by the person part-combination
detectors, we define probability intervals that characterize each model. The esti-
mation of the intervals for models M1 and M4 can be done automatically by eval-
uating probability of training samples from standard person datasets. However,
probability intervals for models M2 and M3 only can be estimated if a training
set containing partially occluded people were available. Due to the absence of
such dataset, we define the probability intervals for M2 and M3 manually.

Figure 4 shows the probability intervals for each model. A model Mi fits a
detection window if all seven estimated probabilities fall inside the probability
intervals defined by Mi. We also estimate a degree of fit of a detection window
to each model by simply counting the number of probability intervals satisfied
by the response profile:
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(a) M1: all parts are vis-
ible
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(b) M2: top part is visi-
ble and torso is visible
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(c) M2: top part is visi-
ble and legs are visible
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(d) M3: top part is in-
visible
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(e) M4: all parts are in-
visible

Fig. 4. Models designed considering the output profile of the person detector. The
x-axis has the seven detectors and the y-axis the probability interval for each one
according to the model. Note that M2 has two sub-cases, shown in (b) and (c).

f(Mi) =
7∑

j=1

{
1 if ui,j ≤ Pj ≤ li,j

0 otherwise
(1)

where Pj denotes the probability estimated by the j-th detector, ui,j is the
upper bound for the j-th interval defined for Mi and li,j denotes the lower
bound. Therefore, we can rank the models according to how well they fit a given
detection window. We say that a model Mi has a rank higher than Mj when
f(Mi) > f(Mj).

For the face detector, the observations are characterized by the probability
values indicating the presence of face for a given detection window. According
to this probability we define three models. We say that a face is present if
the probability exceeds a certain threshold (model F1). We also consider the
case when the probability is smaller than the threshold but not negligible (i.e.
face might be partially occluded), we refer to this as model F2. Model F2 is
interesting when the person detector gives a response that supports the low (but
not negligible) confidence of the face detector. Finally, we say that a sample fits
model F3 if the probability of face detector is very low.

3.2 Generating Hypotheses to Integrate Detectors

Now that we have designed models according to the response profiles to capture
occlusion situations, we create a set of hypotheses (rules) to characterize the
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relation between the detector responses so that these different sources of infor-
mation can be used to verify each other’s output. We separate the possibilities
into five different hypotheses. The first two hypotheses describe the scenario
where the person detector (PD) is used to verify the output of the face detector
(FD), and the remaining three hypotheses deal with the alternate scenario of
using face detector to verify the person detector outputs. The hypotheses are
described in the form of conditional rules as follows.

H1 : [(f(M1) ∧ f(M2)) > (f(M3) ∧ f(M4))|F1] Given that the face detector
provides high response for a detection window, we look at the models that
characterize the person detector output. Since the face is visible, the output
of PD should better fit models M1 or M2 than M3 and M4 since we expect
the top (head and shoulder) features to be detected by the person detector.
If that is the case, then PD output verifies that the FD output is correct.
Thus, a person is present at that location.

H2 : [(f(M3)∨f(M4)) > (f(M1)∧f(M2))|F1] The alternate case is, given high
response for the face detector, if the output of PD fits either M3 or M4, then
PD indicates that the face is not visible, and hence the output of the FD is
a false alarm.

H3 : [(F1|(f(M1) ∨ f(M2)) > (f(M3) ∧ f(M4))] Given that the rank of M1 or
M2 is greater than M3, if FD gives a high response, then the face detector
is reinforcing the output of the person detector. Thus, we conclude that a
person is present at the corresponding location.

H4 : [(F2|f(M3) > (f(M1) ∧ f(M2) ∧ f(M4))] A slightly different case from
H3 is when FD has low response, but still has some probability higher than
0 but not high enough to conclude the presence of face. In this case, if for
the person detector the rank of M3 is higher than M1, M2, and M4, then
we still decide that there is a person whose face is partially occluded. This
is because M3 captures the situation where the face is occluded, while the
torso and legs are visible.

H5 : [F3|(f(M1) ∨ f(M2) ∨ f(M3)) > f(M4)]: This final hypothesis deals with
the case where the output of person detector fits either M1, M2, or M3, and
the probability outputted by the face detector is negligible, so that it cannot
come under H4. In such a case, since the face is completely invisible, we
decide that the PD output is a false alarm.

Essentially, the above hypotheses are built on the fact that the presence
of the face implies the presence of a person and vice-versa. We do need some
confidence value for the presence of face to make decisions on the output of the
person detector. This is based on our observation that the presence of just the
torso and legs with no information regarding the face is not a strong cue to
detect a person. This condition gives rise to many false alarms.

4 Experimental Results
In this section, we demonstrate with experiments how our integration framework
improves detection under occlusion, as well as reduces the false alarms. We tested
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Results on images from maritime dataset (better visualized in colors).

our algorithm on challenging images taken from an internally collected maritime
dataset. It contains images of 3008× 2000 pixels, which is suitable for face and
person detection, unlike standard datasets used for person detection, which in
general contain images with resolution too low to detect faces. This dataset is
a good test-bed since it provides challenging conditions wherein the individual
face/person detector might fail, thereby emphasizing the need to fuse information
obtained by these detectors.

We now present several situations where the integration framework helps to
detect humans. In the image shown in Figure 5(b) a person detector would fail to
detect people seated since the lower body is occluded. However, our framework
combines face information with the presence of the top part of the body (head
and shoulders) captured by the person detector. Therefore, it concludes that a
person is present. Additionally, Figures 5(c), (e), and (f) contain people who
are partially occluded. Such conditions would reduce significantly the probabil-
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Fig. 6. Detection error tradeoff comparing the integration to individual face and person
detectors. The proposed framework outperforms the individual detectors for all points
on the curve.

ity estimated by an independent person detector, whereas the integration helps
resolve this problem.

Next, if the face is partially occluded, then the person detector output will
belong to model M3, whereas face detector’s output will have some small value
that is not very high and not negligible either. In this case, the person detector
results can be used to identify the presence of the face. For example, Figures 5(d)
and (f) contain people whose faces are occluded. In these cases a face detector
would fail to give a high response, but the proposed framework overcomes this
problem by aggregating information from body parts.

Essentially, since we are using two separate detectors, if the observations of
the person detection and face detection provide conflicting information, then our
framework mitigates false positives. A typical example is when hypothesis H2 is
satisfied, which can be used to correct the false alarm of the face detector, and
when hypothesis H5 is satisfied, that helps in reducing the false alarms of the
person detector. Additionally, if both individual detectors denote the presence
of a person, detection is more reliable than when relying on only one detector.

We tested our algorithm on 20 images containing 126 people. Figure 6
presents the detection error tradeoff of our integration method and compares
its results to individual detectors. It can be seen that the use of the proposed
method results in a substantial improvement in detection accuracy/false alarm
suppression. To generate the curve for the our algorithm, we fix the threshold for
the face detector and for the person detector we measure how well each model
fits a sample by

g(Mi) =
1
7

7∑

j=1





|Pj − ui,j | if Pj > ui,j

|Pj − li,j | if Pj < li,j

0, otherwise
. (2)

With this equation we obtain values of g(Mi) for every sample. Then, varying a
threshold value from zero to one we are able to evaluate which hypotheses are
satisfied at each step.
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5 Conclusions

We have described a framework that combines the observations of face and per-
son detector into different models, and makes decisions based on the hypotheses
derived from those models. We then demonstrated our algorithm on several chal-
lenging images with considerable occlusion, which illustrates the advantages of
exploiting feedback between the response profiles of face and person detectors.
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