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ABSTRACT 

The need to make default assumptions is frequently encountered in reasoning'about incompletely 
specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be 
modified or rejected by subsequent observations. It is this property which leads to the non.monotonJcity 
of  any logic of defaults. 

In this paper we propose a logic for default reasoning. We then specialize our treatment to a very 
large class of commonly occurring defaults. For this class we develop a complete proof theory and 
show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under 
which the revision of  derived beliefs must be effected. 

The gods did not reveal, from the beginning, 
All things to us, but in the course of time 
Through seeking we may learn and know things better. 
But as for certain truth, no man has known it, 
Nor shall he know it, neither of the gods 
Nor yet of all the things of which I speak. 
For even if by chance he were to utter 
The final truth, he would himself not know it: 
For all is but a woven web of guesses. 

Xenophanes 

1. Introduction and Motivation 

Various forms of default reasoning commonly arise in Artificial Intelligence. 
Such reasoning corresponds to the process of deriving conclusions based upon 
patterns of inference of the form "in the absence of any information to the 
contrary, a s s u m e . . . " .  Reasoning patterns of this kind represent a form of 
plausible inference and are typically required whenever conclusions must be 
drawn despite the absence of total knowledge about a world. 

Artificial Intelligence 13 (1980), 81-132 
Copyright © 1980 by North-Holland Publishing Company 



82 X. R~tT~ 

In order to fix some of these ideas, we begin by surveying a number of instances 
of default reasoning as they often occur in the Artificial Intelligence literature. 
Most of  the examples are adapted from those in Reiter (1978a). 

1.1. Some examples of default reasoning 

1.1.1. Defaults and exceptions 
A good deal of what we know about a world is 'almost always" true, with a few 
exceptions. Such facts usually assume the form "Most  P ' s  are Q's"  or "Most  P ' s  
have property Q". For  example most birds fly except for penguins, ostriches, 
the Maltese falcon etc. Given a particular bird, we will conclude that it flies unless 
we happen to know that it satisfies one of  these exceptions. How is the fact that 
most birds fly to be represented ? The natural first order representation explicitly 
lists the exceptions to flying: 

(x) .BIRD(x) A -aPENGUIN(x)  A -aOSTRICH(x) A " ' "  :2 FLY(x). 

But with this representation one cannot conc!ude of 'a 'general' bird that it can fly. 
To see why, consider an attempt to prove FLY(tweety) where all we know of 
tweety is that it is a bird. Then we must establish the subgoal 

-aPENGUIN(tweety) A -aOSTRICH(tweety) ^ . . -  

which is impossible given that there is no further information about tweety. 
We are blocked from concluding that tweety can fly even though intuitively we 
want to deduce just that. 

What  is required is somehow to allow tweety to fly by default. How is this 
default to be interpreted ? We take it to mean something like " I f  x is a bird, then 
in the absence of any information to the contrary, infer that x can fly". The 
problem then is to interpret the phrase "in the absence of any information to the 
contrary". The interpretation we adopt is " I t  is consistent to assume that x can 
fly". Thus " I f  x is a bird and it is consistent to assume that x can fly, then infer 
that x can fly". We represent this more formally as the following default rule: 

BIRD(x) • MFLY(x) , (1.1) 
FLY(x) " 

Here H is to be read as "it  is consistent to assume". The exceptions to flight are 
then given a standard first order representation. 

(x) .PENGUIN(x)  :2 ~FLY(x )  

(x). OSTRICH(x) :2 ~ FLY(x) 

etc. 

Notice that if FLY(tweety) is inferred by default then the assertion FLY(tweety) 
has the status of a belief; it is subject to change, say by the subsequent discovery 

t In plain text we use the notation BIRD(x): MFLY(x) I FLY(x). 
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~hat tweety is a penguin. We can then reinterpret the default rule (1.1) as saying 
"If  x is a bird and it is consistent to believe that x can fly then one may believe that 
x can fly". 

There still remains a problem of interpretation. For exactly what is meant by 
the consistency requirement associated with a default ? Consistent with what ? 
Providing an appropriate formal definition of this consistency requirement is 
perhaps the thorniest issue in defining a logic for default reasoning, and we defer 
this question to Section 2. For the time being a good intuitive interpretation is to 
view this consistency requirement with respect to all of the first order facts about 
the world, together with all of the other beliefs sanctioned by all of the other 
default rules in force. 

Notice that we have provided a representation for the 'fuzzy' quantifier 'most' or 
'almost all' in terms of defaults, without appealing to frequency distributions or 
fuzzy logics. 

Notice also that the dual 'fuzzy' quantifier 'few' has a dual representation as a 
default. For example "Few Americans are socialists" has the representation 

AMERICAN(x) : M -aSOCIALIST(x) 
-a SOCIALIST(x) 

1.1.2. Frames, knowledge representation languages and defaults 

Default reasoning plays a prominent role in the influential frames proposal of 
Minsky (1975). See also Hayes (1977). At least two knowledge representation 
languages, FRL (Roberts and Goldstein (1977)), and KRL (Bobrow and Winograd 
(1977)) have been designed as attempts, in part, to computationaUy represent some 
of Minsky's proposals. Not surprisingly, both FRL and KRL provide for default 
assignments. For example, in KRL the unit for a person in an airline travel system 
has the form: 

[Person UNIT Basic 

(hometown {(a City) Palo Alto; DEFAULT}> 
!]. 

This declaration can be regarded as an instruction to the KRL interpreter to 
proceed as follows: 

Whenever x is a person, then in the absence of any information to the contrary 
assume hometown(x) = Palo Alto. 

In view of the previous discussion, this can be represented by the following 
default rule: 

PERSON(x) : M hometown(x) = Palo Alto 
hometown(x) = Palo Alto 
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1.1.3. The  closed world  assumption 

Deductive question-answering systems often implicitly appeal to a particular form 
of default reasoning in the process of answering queries. As an illustration of the 
default involved, consider a data base representing an airline flight schedule, 
and the query "'Does Air Canada flight 113 connect Vancouver with New York?" 
A deductive question-answering system will typically treat the data base together 
with some general knowledge about the flight domain as a set of premises from 
which it will attempt to prove CONNECT(ACI 13,Van,NY). If this proof succeeds, 
then the system responds "yes". The interesting case is when this proof fails, for 
then such a system will typically respond "no", i.e. it will conclude -nCONNECT 
(ACll3,Van,NY). Failure to find a proof has sanctioned an inference. Now 
CONNECT(ACII3,Van,NY) is not provable iff -aCONNECT(ACll3,Van,NY) 
is consistent with the data base so that the derivation of -a CONNECT(AC113, 
Van,NY) by failing t9 prove CONNECT(ACll3,Van,NY) is justified by the 
following closed world default rule: 

: H - a C O N N E C T ( x , y , z )  

-a C O N N E C T ( x , y , z )  " 

In general, if R is an n-ary relation, then the following is a closed wor ld  default  
for R: 

: t4 " a R ( x l , . . . ,  x , )  

"a R ( x  l , . . ., x , )  " 

If this default is in force for all relations R of some domain, then reasoning is 
being done under the closed world  assumption (Reiter (19781))). In effect, the dosed 
world assumption says that for any relation R, and any individuals x l , . . . ,  xn one 
can assume - '1R(xl, . . . ,  xn) whenever it is consistent to do so. 

Reasoning about a wolld t~nder the dosed world assumption considerably 
simplifies the representation of that world. In effect, only positive information 
about the world need be explicitly represented in the data base. Negative informa- 
tion is not so represented, but is inferred by default. Since in general the amount of 
negative knowledge about a world vastly exceeds the positive things known about 
it, there is a considerable computational and representational advantage to 
reasoning under the closed world assumption. For example, in the airline data 
base we would not have to represent the facts that AC113 does not connect London 
and Bombay, or Toronto and Boston, or New York and Paris, etc. 

There are a number of other settings in Artificial Intelligence where the closed 
world assumption is made. Reiter (1978a) discusses two of these in some detail, 
specifically blocks world problem-solving, and reasoning about taxonomies (IS-A 
hierarchies). 
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1.1.4. The frame default 

The frame problem (Raphael (1971)) arises in the representation of dynamic 
worlds. The problem stems from the need to represent those aspects of the world 
which remain invariant under certain state changes. For example, moving a parti- 
cular object or switching on a light will not change the colours of any objects in 
the world. In a first order representation of such worlds, it is necessary to explicitly 
represent all of the invariants under all state changes. These are referred to as the 
frame axioms for the world being modelled. Thus, to represent the fact that 
painting an object does not alter the locations of objects would require, in the 
situational calculus of McCarthy and Hayes (1969) a frame axiom something like 

(x y z s c)LOCATION(x,y,s) ~ LOCATION(x,y,paint(z,c,s)), 

where s is a state variable, x and z are objects, c is a colour, and y is some location. 
The problem is that in general a vast number of such axioms will be required, 

e.g. object locations also remain invariant when lights are switched on, when it 
thunders, when someone speaks, etc. so +,here is a major difficulty in even articulat- 
ing a deductively adequate set of frame axioms for a given world. 

A solution to the frame problem is a representation of the world coupled with 
appropriate rules of inference such that the frame axioms are neither explicitly 
represented nor explicitly used in reasoning about the world. We will focus on a 
proposed solution in Sandewall (1972). A related approach is described in Hayes 
(1973). Sandewall proposes a modal operator, UNLESS, which takes a first order 
formula as argument. The intended interpretation of UNLESS(W) is "W can not 
be proved" or in terms of consistency, "-1 W is consistent." Sandewall proposes a 
single 'frame inference rule' which, in our notation for defaults, can be paraphrased 
as a default schema: For all relations R which take a state variable as an argument, 
and for all state transition functions f 

R(x,s) : MR(x,f(x,s)) 
R(x,f(x,s)) " 

Intuitively this default schema formalizes the so-called 'sTrips assumption' 
(Waldinger (1975)): Every action (state change) is assumed to leave every relation 
unaffected unless it is possible to deduce otherwise. 

1.2. The non monotonic character of default reasoning 

A fundamental feature of first order logic is that it is monotonic, i.e. if A and B 
are sets of first order formulae and A I- w then A u B i- w. What was valid in 
the presence of information A remains valid when new information B is discovered. 
In contrast, any logic which presumes to formalize default reasoning must be non- 
monotonic. To see why consider a simple theory consisting of the single default 
: MA]B. Thus B may be believed. If subsequently -1A is discovered to hold (say 
through some observation) we then have the new theory : MA[B, -1A in which B 



86 R. R~'ER 

cannot be believed. One extremely interesting approach to the formalization of  a 
non-monotonic logic of  beliefs is described in McDermott and Doyle (1978). 

This last example also demonstrates the need for some kind of  mechanism for 
revis;,ng beliefs in the presence of  new information. What this amounts to is the 
need to record, with each derived belief, the default assumptions made in deriving 
tha~. belief. Should subsequent observations invalidates the default assumptions 
supporting some belief, then it must be removed from the data base. The Truth 
Maintenance System of Doyle (1978) is an heuristic implementations of  just such 
a system for belief revision. 

1.3. Defaults and incomplete lmowledge 

Consider the following natural pair of  defaults which should be capable of  peaceful 
co-existence: 
"Assume a person's hometown is that of his/her spouse." 

SPOUSE(x,y) ^ hometown(y) - z:  M hometown(x) -- z 
hometown(x) - z 

"Assume a person's hometown is where his/her employer is located." 

EMPLOYER(x,y)  ^ location(y) = z:  M hometown(x) - z 
hometown(x) - z 

Suppose Mary's spouse lives in Toronto while her employer is located in Vancouver. 
By the first default, Mary's hometown is Toronto, and by the second it is Vancouver. 
To believe both is inconsistent since hometown is a function. If  first we derive 
Toronto, we are then blocked from deriving Vancouver. On the other hand if we 
first derive Vancouver then the derivation of Toronto is blocked. We can derive 
one or the other, but not both simultaneously. From the point of  view of con- 
ventional logical systems this is a perplexing~ seemingly incoherent situation. 
From our intuitive perspective that default assumptions lead to beliefs, the example 
makes perfect sense; one can choose to oelieve that Mary's hometown is Toronto 
or that it is Vancouver, but not both. 2 It would seem that defaults can sanction 
different sets of  beliefs about a world. 

Now a point of view that begins to make formal sense of this example is the 
following: 

Imagine a first order formalization of what it is we know about any reasonably 
complex world. Since we cannot know everything about that world--there will 
be gaps in our knowledge--this first order theory will be incomplete. Nevertheless, 
there will arise situations in which it is necessary to act, to draw some inferences, 

2 There is another possibility, which is to believe the proposition hometown(Maw) = Toronto 
v hometown(Maw) -- Vancouver. In terms of the theory which we develop in the remainder of 
this paper, this possibility amounts to refusing to choose between the Toronto extension and the 
Vancouver extension. See the following disc;~sion. 
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despite the incompleteness of the knowledge base. That role of a default is to fill 
in some of the gaps in the knowledge base, i.e. to further complete the underlying 
incomplete first order theory, so as to permit the inferences necessary to act. 
Defaults therefore function somewhat like meta-rules; they are instructions about 
how to create an extension of this incomplete theory. Those formulae sanctioned 
by the defaults and which extend the theory can then be viewed as beliefs about 
the world. Now in general there are many different ways of extending an incomplete 
theory, which suggests that the default rules may be nondeterministic. Different 
applications of the defaults yield different extensions and hence different sets of 
beliefs about the world. 

As an example of this point of view, consider the closed world assumption. 
This fully completes the underlying first order theory. Thus, the theory p v q 
under the closed world defaults : H-apI-ap and : M"aql-aq has two different 
complete extensions, {p,~q} and {rap, q}. In the first we choose to believe -aq 
by invoking the second default, whence we are forced to believe p. In the second 
we choose to believe -ap by invoking the first default. 

It is this point of view--that defaults are rules for extending an underlying 
incomplete first order theory--which is adopted in this paper, and which motivates 
the subsequent development. The rest of this paper is devoted to articulating a 
logic for default reasoning. We see a two-fold task for such a logic: 

(1) To provide a formal definition of the extensions to an underlying first order 
theory induced by a set of defaults. 

(2) To provide a proof theory in the form of a procedure which, given a formula 
w, determines whether w can be believed, i.e., whether there is an extension induced 
by the defaults which contains w. 

In this paper we propose a definition for the first task. The second will turn out 
to be intractable for default theories in general. However, by focusing upon a 
special class of defaults called normal defaults, we can provide a proof theory. 
Fortunately the class of normal defaults embraces a broad spectrum of naturally 
occurring defaults, for instance all of the examples of this section. In addition to 
providing a proof theory for normal defaults, we obtain the pessimistL result that 
in general the beliefs of a theory are not recursively enumerable. Finally, we 
determine conditions under which it is necessary to revise a set of derived beliefs 
when confronted with some new observations about a world. 

2. Default Theories and their Extensions 

In this section we provide a precise notion of a default theory, and then proceed to 
formally define the concept of an extension for such a theory. In view of the 
discussion of Section 1.3 these extensions are meant to formally specify the set of 
beliefs induced by a set of defaults, as a way of further completing some underlying 
incomplete collection of facts about a world. 
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2.1. Formal preliminaries 

We shall be dealing with a first order language LA consisting of the usual well 
formed formulae (w~) over an alphabet A of variables, function and predicate 
letters, logical constants, and suitable punctuation signs. 0-ary function letters 
will sometimes be called constant letters. More specifically, L~ is the set of first 
order wffs which can be formed using an alphabet A consisting of countably 
many variables x,y,z, x l , y l , z , . . . ,  countably many function letters a,b,c,f,,g,h,..., 
countably many predicate letters P,Q,R, . . . ,  the usual punctuation signs, and 
the standard logical constants ~ (not), ^ (and), v (or), = (implies) and quantifiers 
(x) (for all x), (Ex) (there exists an x). As the alphabet A will usually remain fixed 
throughout this paper, we will generally write L instead of L~ for the first order 
language. 

As usual, a wff is said to be closed iff it contains no free variables. For any set 
of closed wffs S, and any closed wff w, $ I- w means that w is first order provable 
from premises S. For any set of closed wffs S _c L, define ThL(S) = {w I w ~ L, 
w is closed, and S !- w}. 

A default is any expression of the form 

w(x) 

where u(x),//:(x),...,//m(x),w(x) are wffs whose free variables are among those of 
x = x l , . . . ,  xn. u(x) is called the prerequisite of the default, and w(x) is its 
consequent. A default is closed iff none of u,/~l,..., Pm,W contains a free variable. 
None of the defaults of Section 1 is closed. An (artificial) example of a closed 
default is 

(x)(P(x) v Q(x)):H(Ey)(z)R(y,z) A P(y),M(Ey)Q(y) 
(x)(Ey)R(x,y) ^ P(x) 

A default theory is a pair (D, W) where D is a set of defaults and W a set of closed 
wffs. Notice that D and/or W need not be finite; they will be at most countably 
infinite however, in view of the countability of L. A default theory (D, W) is closed 
iff every default of D is closed. 

2.2. The extensions of a closed default theory 

We begin by defining the concept of an extension for closed default theories only. 
Later, in S~tion 7, we shall suitably generalize this notion for arbitrary theories. 

The intuitive idea which must be captured is that of a set of defaults D inducing 
an extension of some underlying incomplete set of first order wffs W. In view of 
the discussion in Section 1.3 we cannot expect this extension to be unique. Any 
such extension will be interpreted as an acceptable set of beliefs that one may hold 
about the incompletely specified world W. There are three properties which can 
reasonably be expected of such an extension E: 
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(I) It should contain W; W _ E. 

(2) It should be deductively closed; ThL(E) = E. 

(3) Suppose (u: FI/~I,..., H/3Jw) is a default. If u e E and "aPl,..., "IPm ~ E 
(so that each of/~i, • •.,/~m is consistent with E) then w e E. Thus, if • is believed, 
and if each of/~1, • •., Pm can be consistently believed, then w is believed. 

This motivates the following definition: 

Definition I. Let A = (D, IV) be a closed default theory, so that every default of D 
has the form (u: Flpl,..., Hpm[W) where u,/~1,...,/~m,W are all closed wffs of L. 
For any set of closed wffs S __. L let r(s) be the smallest set satisfying the following 
three properties: 
DI. W=_ r(s) 

D2. ThL(F($))= F(S) 

D3. If (u: FI/~I,..., M/$m]W ) e D and ~ e r(s), and -a/~x,..., -I/~m ¢ S then 
w.'e r(s). 

A set of closed wffs E ~ L is an extension for A ill r(E) = E, i.e. iff E is a fixed 
point of the operator r. 

The next theorem provides a more intuitive characterization of extensions. 

Theorem 2.1. Let E ~_ L be a set o f  closed wffs, and let A --- (D,W)  be a closed 
default theory. Define 

Eo = W 

and for  i >~ 0 

{ Et+l = ThL(E() u w 
W 

~:ol 1 
where u e Et and "7/~1, . . . ,  "1/~m ¢ • 

Then E is an extension for  A iff  
oo 

E =  u E t .  
i=O 

Proof. We begin by observing that ~ ' - o  Ei enjoys the following properties: 
oo 

DI' .  W _~ u E~ 
l - 0  

D2'. (=o) =o ThL E : E~ 
! i 

D3'.  If  oc: M P l , . . . ,  M~= e D and 0c e u E~ and 
W i=0 

then w ¢ u Et. 
i = 0  

3 Note the occurrence of E in the definition of E~+t. 
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Hence, by the minimality of F(E), we have 

r (E)  ~ ,., E,. (~.~) 
iffiO 

(=~) We inductively prove E~ _~ E for all i >I 0, whence U?'ffio E~ ~_ E. Clearly, 
since E = V(E), Eo ~- E. Assume El ~-- E and consider w e E~+~. If w ¢ ThL(Ei), 
then since E i _  E we have w e T  h e ( E ) =  E. Otherwise there is a default 
(u: M/~ , . . . ,  M/~m[w) ~ D, where u ~ El and - l / h , . . . ,  -~/~, ¢ E. Then since 
Ei ~ E, u ¢ E -- F(E). Hence u, ¢ F(E) by D3 of Definition 1 and since I'(E) = E, 
we have w ~ E. 

Thus U~'=o E~ ~ E. By (2.1) and the fact that E = F(E) we have E = [.)Tffio Ei. 

( ~ )  We inductively prove E~ ___ F(E) for all i i> 0, whence E = L)~'ffio E~ ~_ F(E). 
By invoking (2.1) we will then have E = F(E) whence E is an extension for A. 

Clearly Eo ~- F(E), so assume El ~- F(E) and consider w ¢ E~+I. If w ¢ ThL(Ei), 
then since El ~ F(E) we have w ¢ ThL(F(E)) = F(E). Otherwise there is a default 
(~: M/~1,..., M[$m[W) ~ D where u ¢Ei  and -a / I t , . . . ,  -l/~m ~ E. Then since 
Ei ~ F(E), o~ ¢ F(E). Hence w ~ F(E) by D3 of Definition I. Hence Ei+1 ~- F(E). 

Example 2.1. 

D = Y :MA 
( A ' 

W = {B ::, -~A ^ ~ C }  

This has two extensions given by 

Ex = Th(W u {A, C}) E2 = Th(W u {B}). 

Ex.'unple 2.2. 

{:MC :MD :ME 
D = T.T,  W = 0. 

This is example (26) of McDermott and Doyle (1978) which is a variant of an 
example in Sandewall (1972). This theory has one extension given by 

E = Th({-7 D,-~F})  

Example 2.3. 

This is example (27) of McDermott and Doyle (1978). This theory has two 
extensions: 

E~ -- Th({-1C}) E2 -- Th({~D}). 



A LOGIC FOR DEFAULT REASONING 91 

Example 2.4. 

D = { ~ ,  B ' M C  D ^ A ' M E  
C ' E ' 

W =  {B, C = D v A , A  A C = -3E} 

This has three extensions: 

E~ = Th(Wu {A,C}) E 2 = Th(W u {A,E}) 

Example 2.5. 

= fA'._ M(Ex)P(x), • MA : M "aA} 
D [ (Ex)P(x) A '  

C ^ E:M mA, M(D v A)~. 

F 

W = 0  

Ea = Th(W u {C, E, F}). 

This has two extensions: 

~'1 = Th({-aA}) E2 = Th({A, (Ex)P(x)}). 

What is interesting about this example is that in the second extension, the existence 
of some individual is believed, while this belief is not held in the first extension. 
Different extensions for the same default theory can support different ontoloyies. 
Defaults leading to an ontological commitment of some kind are quite common 
For example, "Most  American adults have a car". 

AMERICAN(x) A ADULT(x):M(Ey)CAR(y) A OWNS(x,y) 
(Ey)CAR(y) A OWNS(x,y) 

Unfortunately, there are default theories with no extensions. 

Example 2.6. 

D = ( n A j  W = O  

This theory has no extension. 

It is easy to see that in general default theories are non-monotonic. By this we 
mean that if A = (D,W)  is a default theory with an extension E, D' is a set of 
defaults and W' is a set of first order wffs then A' = (D u D', W u W' )may  have 
no extension E '  such that E _ E'. 

We shall say that a ~losed default theory has an inconsistent extension iff one 
of its extensions is the set of all dosed wffs of L. As immediate corollaries of 
Theorem 2.1 we have: 

Corollary 2.2. A closed default theory (D, W) has an inconsistent extension iff W is 
inconsistent. 

Corollary 2.3. I f  a closed default theory has an inconsistent extension then this is 
its only extension. 
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A closed default theory is consistent iff it has a consistent extension. By Corollary 
2.2 if (D,W)  is consistent then W is consistent. 

Theorem 2.4 (Minimality of Extensions). I f  E and F are extensions for a closed 
default theory (D,W) and i f  E ~ F, then E = F. 

Proof. By Theorem 2.1, E = UY-oE~, F = UY-oF~. We inductively prove 
Fi  c:ir _~E~ for all i t> 0, whence F c E whence E -- F. 

Trivially .Fo ~ Eo. Assume Fi ~-- E~ and consider w ¢ Ft+t. If w ¢ Th~.(F~) then, 
since Fi _'E~, w ~ ThL(E~) _ E~+x. Otherwise there is a default (u : Pi#~, . . . ,  Pip,)] 
w) ¢ D where • ¢ Fi and ~ p l , . . . ,  -1/~m ~ F. Since F~ ~ E~ and E _ F we have 

~ E~-and ~/~x, • •., "l/~m ~ E. Hence w ¢ E~+I. 

Definition 2. Suppose A = (D, B0 is a closed default theory and E is an extension 
for A. The set of generating defaults for E with respect to A is defined to be 

GD(E,A) = {~:lvl/~t'~ "' '  m~meDlo~¢E and - ~ / ~ , . . . , - I ~ E } .  

If D is any set of defaults (not necessarily closed) then 

CONSEQUENTS(D) -- {w(x) [ ~(x): M' l(x) '"  " "' M'm(X) D} 
W(X) ~ 9 

i.e., it is the set of consequents of the defaults of D. 

The next theorem justifies the terminoMgy of 'generating default'. 

Theorem 2.5. Suppose E is an extension for a closed default theory A -- (D, W). Then 

E = ThL(W u CONSEQUENTS(GD(E, A))) 

Proof. Using Theorem 2.1 we inductively prove that El ~- RHS for all i >I 0, 
whence E = O Y=o Ei -~ RHS. Trivially Eo G RHS. Assume E~ c_ RHS and let 
0 e E~+t. If 0 ~ Th~(E~) then since Th~(E~) G RHS, 0 ¢ RHS. Otherwise 0 is w where 
(~ : M[~, . . ., Mflm[w) c D, ~ ¢ E~ and ~f l t ,  . . ., ~ =  ¢ E. Since o~ ¢ E~, ~ ¢ E. 
Hence (~" M/~ , . . . ,  M/~=]w) ~ GD(E,A) so that 

0 ¢ CONSEQUENTS(GD(E,A)) c_ RHS. 

Next we prove RHS ~_ E. It is clearly sufficient to prove 

W u CONSEQUENTS(GD(E,A)) __ E since The(E) = E. 

Obviously W _c E so it is sufficient to prove CONSEQUENTS(GD(E,A)) c_ E. 
If w ¢ CONSEQUENTS(GD(E,A)) then there is a default (u : M/~, . . . ,  M/$~[w) ¢ D 
such that u ¢ E and -~/~1,..., ~/~, ~ E. Since, by Theorem 2.1, E = L)Y=0 E~ 
then • ¢ E~ for some i which means w ¢ E~+~ c_ E. 

We shaft later require the following result: 

Theorem 2.6. Suppose that E is an extension for a closed default theory (D, W),  
and that B c_ E. Then E is also ~ extension for ( D , W  u B). 
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Proof. By Theorem 2.1, E = dT=o Ei. Let Fo = W u B and for i >t 0 

f 
Fi+l = Thr(Fi) U w "' e D, 

W 

e F~ and "nil..,..., -'lflm ~ Eto where 

We prove that d?o=o Fi = E whence E will be an extension for (D,W u B). An 
easy inductive proof establishes that E~ ~ F~ for all i >f 0 so that E ~_ [.J?°=o Fv 
To prove d~'-o F~ ~ E we inductively prove that for each i I> 0 there is a k >1 0 
such that F~ ~ E k. N o w  B c: E = dTO=o E~ so B =_ E k for some k. Since W ~ Ej  
for all j t> 0, Fo = W w B ~ Ek. The inductive step is straightforward. 

There are a number of close parallels between default logic and the non- 
monotonic logic of McDermott and Doyle (1978). The necessary translation from 
our logic to theirs is to map a default ~(x): i~1fll(x),..., Mflm(X)]W(X) into the 
modalized formula 

^ ^ . . .  ^ M/ m(X) W(X). (2.2) 
Default theories thus map into a special class of non-monotonic theories, namely 
those non-monotonic theories whose moralized formulae all have the form (2.2). 
The approach of McDermott and Doyle is therefore far more general than ours, 
since they admit arbitrary modalized formulae into their theory. However, "hen 
relativized to formulae of the form (2.2) non-monotonic logic has many similarities 
with default logic. The e~tensions of a default theory obviously correspond to the 
fixed points of a non-monotonic theory. Both admit theories with no extensions 
and fixed points respectively. Corollaries 2.2 and 2.3, and Theorem 2.4 have their 
anologues in non-monotonic logic. 

A major distinction between the two approaches arises from the different 
ways that extensions and non-monotonic fixed points are defined. While both are 
defined to be fixed points of certain operators, these operators differ significantly. 
As a result there are default theories whose extensions differ from the fixea points 
of the corresponding non-monotonic theories, even when the modalized dements 
of the latter are ignored. As an example, consider the default theory A = ({.4 : MB] 
B, C: MDID}, {A v C}). This has the unique extension Th({A v C}). The 
corresponding non-monotonic theory is {A ^ t'lB ~ B, C ^ MD ~ D, A v C} 
and this has a unique fixed point which contains B v D. In some instances there 
are default theories which have an extension while the corresponding non- 
monotonic theory has no fixed point. An exar~lple is given following the proof of 
Theorem 3.1 below. 

There are also some significant differences in emphasis between our two 
approaches. We avoid modal logic or any modal concepts entirely and work only 
within a first order framework. For us defaults function as meta-rules whose role 
it is to further complete an underlying incomplete first order theory whereas for 
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McDermott and Doyle defaults are formulae of a modal logic. In addition they 
introduce the notion of the theorems of a non-monotonic theory as the intersection 
of all of the fixed points of that theory and they proceed to give a proof theory 
for the sentential case. While we could analogously define the theorems of a default 
theory as the intersection of its extensions, we choose not to pursue this point of 
view. Instead our position is that the purpose of default reasoning is to determine 
o n e  consistent set of beliefs about a world, i.e. o n e  extension, and to reason within 
this extension until such time as the evidence at hand forces a revision of those 
beliefs, in which case a switch to a new extension may be called for. This seems 
also to be the point of view of the Truth Maintenance System of Doyle (1978). 
Accordingly, the proof theory developed in the next few sections, is not for theorem- 
hood but for 'believability'. By this we mean a proof theory which, given a wit r ,  
determines whether or not there is an extension containing/~, rather than determin- 
ing whether fl is in all extensions. 

In general the relationship between default and non-monotonic logics appears 
to be complex. A few results relating the two will be contained in a forthcoming 
paper (Reiter (1980)). 

In an attempt to formalize the ideas in Sandewall (1972), Kramosil postulated a 
logic which admits deduction rules with 'negative premises' (Kramosil (1975)). 
In their intended interpretation these deduction rules correspond in a straight- 
forward way to our closed defaults. Unfortunately, Kramosil's notion of theorem- 
hood for his logic fails to capture a suitable intuitive interpretation of a default 
rule with the result that he is lead to the conclusion that either the default rules are 
irrelevant, or the resulting theory is meaningless. 

3. Normal Default Theories 

The fact that some default theories have no extension is not very encouraging for 
a general theory of default reasoning. In view of this, it is natural to seek out 
restricted default theories for which extensions can be proved to exist. Fortunately, 
a very large and natural class of such default theories immediately presents itself. 
To emphasize the common pattern which defines this class we review the examples 
of Section 1. 

The Closed World Default: 

: M - ] R ( x I , . . . ,  xn) 
~R(x~,..., x,) 

for each n-ary relation R of the data base. 

Exceptions: 

BIRD(x): MFLY(x) 
FLY(x) 
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The Frame Default Schema: 

R(x,s) : MR(x,f(x,s)) 
R(x,f(x,s)) 

for each relation R and state transition function f. 

KRL's  Palo Alto Default: 

PERSON(x): Mhometown(x) = Palo Alto 
hometown(x) = Palo Alto 

The Hometown Example: 

SPOUSE(x,y) A hometown(y)= z: Mhometown(x) = z 
hometown(x) = z 

EMPLOYER(x,y) A location(y,z) : Mhometown(x) = z 
hometown(x) = z 

All of these examples share a common pattern; they all have the form 
~(x): Mw(x)]w(x). In fact I know of no naturally occurring default which cannot 
be represented in this form. Accordingly, we propose to focus attention on such 
defaults. A normal default is one which has the above form for wffs ~(x), w(x) ~ L. 
Notice that, although in each of the examples the wff w(x) is a literal, we are 
adopting a more general point of view in which w(x) is any wff, possibly involving 
quantifiers, whose free variables are among x. Similarly, ~(x) is arbitrary. A default 
theory (D,W) is normal iff every default of D is normal. 

The rest of this section deals with properties of closed normal default theories, 
i.e. theories all of whose defaults have the form ~'Mw/w for closed wffs ~ and w. 
Although this seems not to be a very interesting class, (None of the examples of 
Section 1 is dosed.) the results which are derived for it will all generalize in Section 
7. 

3.1. Closed normal default theories 

In this section we derive a variety of results about closed normal default theories 
which will provide some insight into their structure. The most important such 
result is the following: 

Theorem 3.1. Every closed normal default theory has an extension. 

Proof. Let A = (D, W) be a closed normal default theory. If  W is inconsistent then 
by Corollary 2.2, A has an (inconsistent) extension. Hence assume W is consistent. 
We construct an extension for A as follows: Let Eo = W. For i i> 0 let T~ be a 
maximal set of closed wffs such that 

(1) E~ u T~ is consistent, and 

(2) If u ~ Ti then for some (~ : Mw]w) ~ D, u is w, where ~ e El. 
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Define E~+I = ThL(E~) u Tl and E = U~'=o E~. We prove E is an extension for A 
by proving that 

Tj = w ~ cD,  w h e r e 0 [ ¢ E i a n d - a w ~ E  
w 

and invoking Theorem 2.1. 

Clearly T~ ~_ RHS. Assume T~ # RHS so there is a wff u ~ RHS-T~.  By the 
maximality of T~ we must have that E~ u T~ u {u} is inconsistent, i.e. ThL(E~) u 
T, u {u} is inconsistent, i.e. Ei+l u {u} is inconsistent, and, since E~+~_ E, 
E u {u} is inconsistent. Since clearly ThL(E) = E we must have -au ¢ E which 
contradicts the fact that u ¢ RHS. 

For the benefit of those familiar with the non-monotonic logic of McDermott 
and Doyle (1978) it is worth pointing out that ~Paeorem 3.1 does not hold for their 
logic in the sense that there are 'normal non-monotonic theories' with no fixed 
point. The simplest counterexample I know of is the following: 

• ,. Mw, Mw2 "w2 : Nw3 }o 
W t =D 0[ 2 W 2 ::30~ 3 W 3 =:3 011 ~ W  

J wt = -aw2 w2 = -aw3 w3 = -awl 

This closed normal default theory has the unique extension Th(W). The correspond- 
ing non-monotonic logic would represent the defaults by 

~t A MWt ~ Wl 0C 2 A MW2 ~ W2 0[3 A IWlw3 ~ W3 

and these together with W define a non-monotonic theory with no fixed point. 

Theorem 3.2. (Semi-monotonicity). Suppose D and D' are sets o f  closed normal 
defaults with D' ~_ D. Let E'  be an extension for the closed normal default theory 
A' = (D', W) and let A = (D, W). Then A has an extension E such that 

(1) E '  __ E and 

(2) GD(E',A') G GD(E,A). 

Proof. If W is inconsistent then by Corollaries 2.2 and 2.3 E'  is inconsistent and 
we can take E = E'. In this case the theorem trivially holds. Hence, assume W is 
consistent, whence E '  is consistent. 

By Corollary 2.2, (D,E') has a consistent extension E. Trivially, E '  _c E so if 
we prove that E is an extension for A then the first half of the theorem will be 
established. 

Towa~'ds that end, define Fo = W and for i >f 0 

{ F~+I = ThL(F~) U w 
 :Mw 

W 
¢ D, where 0[ e F~ and "-1 w ~ E} 



A LOGIC FOR DEFAULT REASONING 97 

We shall prove that E = UT°=o Ft in which case by Theorem 2.1 E will be an 
extension for A. First, however, we prove that E '  ~ U?°=o Ft. Since E '  is an extension 
for (D ' ,B0,  then by Theorem 2.1, E '  = 0~°=o E '  where E~ = W and for i i> 0 

E~+ ~ = ThL(E~) LI w ~ ~ D', where ~ ¢ E~ and -aw ~ E'  . 
w 

We inductively prove that E[ ~ Ft for all i >1 0. Trivially, E~ ~ Fo. Assume 
E" ~_ Ft and consider w ~ E '+t .  If  w e ThL(E[) then, since E[ ~_ F~, w,~. ThL(Fi) 

Fi+t. Otherwise, for some (~" Mwlw) ~ D', o~ ~ E" and -aw 6 E' .  Since D' __= D 
and E" __ Ft then ~ ~ Ft and (~" Plwlw) ~ D. We prove -aw e E whence w ~ Fi+~. 
For if -1 w e E, then since w e El+ ~ _ E '  _~ E, E would be inconsistent, a contra- 
diction. 

Hence E '  G U~°=o Fv We now prove E = U?°_o Fi. Since E is an extension for 
(D,E') then by Theorem 2.1, E = (3~'=o El, where Eo = E '  and for i ~> 0 

E~+ ~ = Th,.(E3 O w ~ s D, where e ~ E~ and "nw ~ E • 
If  

We first inductively prove that for all i I> 0 Et -~ (37'-o Ft, whence E = U?°=o E~ 
~7°--.o Fv We have already proved that Eo = E '  G UT°_o F~. Assume E a G ~°_o F~ 
and consider w ¢ Ej+I. If  w e  ThL(E~) then since U?°_o Ft is dosed under Thz, 
w e U?°-o/7/. Otherwise, for some (a:  Mwlw) ~ D, ¢z ~ Ej and -aw 6 E. Hence 

¢ UT°=o Ft so that ~ ¢ Fi for some i. Since -aw 6 E, w e Ft+l c U?o_o Fv 
Hence E _~ UT°_o Ft. The opposite inclusion, (37°-o F~ _~ E has a simple induc- 

tive proof based upon F~ ~_ Et for all i i> 0. 
There remains to prove GD(E' ,A')  =_. GD(E,A). To that end, suppose (a : Mwlw) 

e GD(E',A') .  Then (~ : Mw]w) ¢ D', cz ¢ E' and - lw 6 E' .  Since D' _ D and 
E '  _ E, (~: Mwlw) e D and ~ e E. It remains only to prove that -1 w 6 E. Now by 
Theorem 2.5, 

E' --" T h L ( W  u CONSEQUENTS(GD(E' ,A ' ) ) ) .  

Hence w ~ E'. Since E' ~_ E and since E is consistent, --1 w ~ E. 
Theorem 3.2 is a surprising and fortuitous result, one which of course is not true 

for arbitrary default theories. As we shall see in Section 4, it makes possible a 
proof  theory which is local with respect to the defaults entering into the proof. 
To see what is meant by this, consider the usual first order proof  theory. If  A is 
some set of first order axioms, and if we determine a proof  of some wff T using 
only a subset A' of A then we know that T is a tt.eorem of the first order theory A. 
This of  course is nothing else but a restatement of the monotonicity property of  
first order logic. It is precisely this property which admits a local proof theory 
for first order logic, local in the sense that one need not necessarily compute on all 
of the axioms in A to determine a proof of T. 

Now default theories (D,W) in general are non-monotonic in both D and W, 
i.e. by augmenting either D or W we can so change the extensions of (D, W) that 
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none of these is a subset of any extension of the augmented theory. This means 
that any proof procedure for general default theories must necessarily compute on 
all of the defaults of D and all of the wffs of Wmno locality is possible. Indeed, 
the sentential non-monotonic proof theory of McDermott and Doyle (1978) has 
precisely this global characteristic; every axiom must be taken into account before 
an attempted proof can succeed. 
What Theorem 3.2 tells us is that for closed normal default theories there is a 
proof procedure which is local with respect to the defaults so that proofs can be 
constructed which ignore some of the defaults. Indeed, the proof procedure of 
Section 4 and its refinement in Section 5 have just this property. In view of the 
large number of defaults which are likely to be in force in the representation of any 
interesting domain of knowledge this is a very real computational advantage. 
Of course this kind of locality cannot be expected with respect to W for otherwise 
closed normal default theories would be monotonic. And in fact the proof theory 
of Section 4 requires a satisfiability test involving all of W, which is precisely the 
kind of global property on W one would expect. 

The following theorem tells us that one can attempt to simultaneously hold 
beliefs in two distinct extensions only at the risk of inconsistency. 

Theorem 3.3 (Orthogonality of Extensions). I f  a closed normal default theory 
( D, W) has distinct extensions E and F then E u F is inconsistent. 

Proof. By Theorem 2.1, E = U~=o E~ and F = U~=o Fi where Eo = W and for 
i>~0 

{i ,"w } Ei+ t = ThL(Ei) U w ~ ¢ D, where u e E~ and -~w ~ E 
t¢ 

Similarly for the Ft. 
Since E and F are distinct, there is a least integer i such that E~+x ~ F~+~ in 

which case E~ = F~. Hence for some (~: Hw]w) ~ D it is the case that u ¢ E~ = F~, 
- l w  ~ E and w ¢ E~+~ but w ¢ F~+~. But if  u ¢ F~ and w ~ F~+x then - l w  e F. Hence 
w e E and -1 w e F so E u F is inconsistent. 

Corollary 3A. Suppose A = (D,W) is a closed normal default theory such that 
W • CONSEQUENTS(D) is consistent. Then A has a unique extension. 

Proof. Suppose on the contrary that A has two distinct extensions El and E2. 
By Theorem 2.5, 

E~ = ThAW u CONSEQUENTS(GD(E~,A))) for i = 1,2. 

By Theorem 3.3, Ex u E2 is inconsistent. Now 

E~ ~_ ThAW u CONSEQUENTS(D)) for i = 1,2 

since GD(E~,A) ~_ D. Hence 

Et u E2 ~ ThL(W u CONSEQUENTS(D)) 
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But W u CONSEQUENTS(D) is consistent, by hypothesis, and this contradicts 
the inconsistency of E~ u E2. 

Theorem 3.5. Suppose A = (D,W) is a closed normal default theory, and that 
D' ~ D. Suppose further that E~ and E~ are distinct extensions of  (D',W). Then A 
has distinct extensions E1 and E2 such that E~ ~_ E1 and E~ ~_ E2. 

Remark. This theorem has the interesting interpretation that the addition of new 
closed normal defaults to a closed normal default theory (D',W) can never lead 
to a default theory (D,W) with fewer extensions than the original. The number of 
extensions of a closed normal default theory is monotone non-decreasing under the 
addition of closed normal defaults. 

Proof. By Theorem 3.2 there are extensions E1 and E2 for A such that El ~- Ex 
and E~ ~_ E2. Suppose that El = E2. Then El u E~ _ El. But by Theorem 3.3, 
E~ u E~ is inconsistent. Hence El is inconsistent so by Corollary. 2.2 W is 
inconsistent. But this contradicts the fact that (D', W) has distinct extensions El 
and E2, by Corollary 2.3. 

4. Proof Theory: Closed Normal Default Theories 

In this section we provide a proof theory for closed normal default theories. By a 
proof theory here we mean a method for answering the question "Given fl, can fl 
be believed 7". We interpret this as the following formal task: 

Given a closed normal default theory A and a closed wff fl ~ L, determine 
whether A has an extension E such that fl¢ E. 

Having devised such a proof theory we shall discover that no procedure exists 
which, for every A and fl such that fl is a legitimate belief with respect to A, will 
determine a proof of fl, i.e. in general beliefs are not recursively enumerable. 

4.1. Default proofs 
We shall require the following notation: If D is a finite set of closed normal 
defaults, define PREREQUISITES(D) = A ~ where the conjunction is taken over 
all wits • such that (a : Mw/w) ~ D. Thus PREREQUISITES(D) is the conjunction 
of all of the prerequisites of the defaults of D. 

Definition 3. Let A = (D,W) be a closed normal default theory, and/~ e L a closed 
wff. A finite sequence Do , . . . ,  Dk of finite subsets of D is a default proof of/3 with 
respect to A iff 
P1. W u CONSEQUENTS(Do) F 

P2. For 1 ~< i~< k 
W u CONSEQUENTS(D~) k PREREQUISITES(D~_I). 

P3. Dk = 0 
k 

P4. W u U COHSEQUENTS(Dj) is satisfiable. 
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Example  4.1. A = (D,  W) has defaults 

E v F : H ( A  A F) A : M B  
61 = A A F 6z = B 

A ^ E : M C  : M ' a E  
63= 64= 

C -aE 

W =  { C ~  D, A A B ~ E ,  E v  D , D ~ F }  

Then {63}, {61,6z}, {61}, { } is a default proof of D with respect to A. So is 
{64}, { }. Notice that {6z,64}, {61,62}, { } is not a default proof of D A ~E,  
for, while it satisfies conditions P1-P3, it fails to satisfy P4. 

The notion of a default proof does not actually provide a proof procedure in 
the conventional sense of that term. For it gives no method for determining the 
D~, not does it specify a first order proof procedure for verifying P1 or P2. Nor 
for that matter does it specify how to verify condition P4. In fact most readers 
will have already balked at P4 given that the first order satisfiable wffs are not 
recursively enumerable. The best way to view this definition is as a bare bones set 
of conditions on a sequence of default sets D o , . . . ,  Dk. As we shall see, whenever 
these conditions are satisfied the wff # can be believed. Conversely, as we shall 
also see, whenever # can be believed then some sequence of defaults will satisfy 
these conditions. Once this completeness result has been establisb.-.d, we will 
proceed to fill in some of the obvious computational gaps in this computationally 
spare notion of a default proof. 

Accordingly, we now proceed to prove the completeness of default proofs for 
dosed normal default theories. 

Lemma 4.1. Suppose (D,W) is a closed normal default theory with (~ : My[v) e D. 
I f  W F ~ and W u {v} is consistent, then any extension for the default theory 
(D, W u {v}) is also an extension for (D,W). 

Proof. Suppose (D,W u {v}) has an extension E. By Theorem 2.1, E = U~°ffio E~, 
where Eo = W u {v} and for i t> 0 

{  :Mw E} E~+ 1 = Th,(Ei)  U w ~ ~ D, where ~ ~ Ei and -a w 
W 

Define Fo = W and for i >I 0 

{ ~:Mw E} Fi+ 1 = ThL(Fi) U w ~ ~ D, where ~ e Ft and -aw ~ . 
W 

We prove E = 0~°:o Fi whence by Theorem 2.1 E is an extension for (D,W). 
Clearly, F~ _ E~ for all i >i 0, so that Ur:o Fi ~_ [.)~°:0 Ei = E. We inductively 

prove that for all i, Et ~- Fi+2 whence Ur:o Eg _~ Ur:o Ft. 
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To prove E o - - F 2  it is obviously sufficient to prove v e F2. Since W k fl, 
/ /e  Thr.(Fo) c F1. Since W u {v} is consistent, and since E is an extension for 
(D, W u {v}), then by Corollary 2.2, E is consistent. Since v e E, --aV ~ E. Hence 
f ieF1,  -a v q~ E so v e F2. 

For the inductive step, assume E~ __q Fi+2 and consider w e Ei+t. If  w e Thr~(E~) 
then w eThL(Fi+2)_ Fi+a. Otherwise for some (c~: t4w/w)e D, ~xeEf and 
"1 w ~ E so that ~ e ~+2 and "-1 w ¢ E whence w ~ Fi+a. 

Corollary 4.2. Suppose (D,W) is a closed normal default theory, and that 
D' ~_ D such that W u CONSEQUENTS(D') is consistent and such that W k 
PREREQUISITES(D'). Then any extension for  the default theory (D, W u  
CONSEQUENTS(D')) is also an extension for (D, W). 

The next theorem provides one half of the completeness result we seek for default 
proofs. 

Theorem 4.3. Let A = (D, W) be a closed normal default theory, and let [3 ~ L be a 
closed wff. I f  fl has a default proof D o , . . . ,  Dk with respect to A, then A has an 
extension E such that fl e E. 

Proof. Consider the closed normal default theory A' = (Uf=o D~,W). We prove 
that A' has an extension E'  such that f le E'. Since U~=o D~ ~_ D, then by semi- 
monotonicity (Theorem 3.2) we will be assured that A has an extension E such 
that E'  ~_ E, from which the theorem will then follow. 

Now by property P2 of default proofs W w CONSEQUENTS(Dk) V PRE- 
REQUISITES(Dk_1) and since D R --" O, W [" PREREQUISITES(DR_l). Also, 
from property P4 of default proofs it follows that W u CONSEQUENTS(Dk_I) 
is consistent. Hence by Corollary 4.2, any extension for A~ = (Uk=o DI, W u 
CONSEQUENTS(Dk_t)) is also an extension for A', and since A't is a closed 
normal default theory it has such an extension, by Fheorem 3.1. 

Again by property P2 of default proofs W u CONSEQUENTS(Dk_I)I- 
PREREQUISITES(Dk_2) and by property P4 W u CONSEQUENTS(.gk_I) u 
CONSEQUENTS(Dk_2) is consistent so again by Corollary 4.2: 

,) A~ = Di, W O CONSEQUENTS(Dk_t) O CONSEQUENTS(Dk_2 
i 

has an extension which is also an extension for A~ and hence which is also an 
extension for A'. 

We can continue in this way, finally arriving at a default theory 

A~, = Da W U u CONSEQUENTS(D~_ , 
1--0 i--1 

which has an extension E'  which is also an extension for A'. Since clearly W w 
CONSEQUENTS(Do) _~ E' and since W w CONSEQUENTS(Do) k fl, then 
/ ~  E'. 
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Suppose that p has a default proof Pp = D o , . . . ,  Dk. Then the default support 
of this proof is defined to be DS(Pp) = ~t_. o D~. The default support of a proof 
is simply the set of all default rules which are invoked in that proof. Notice that 
condition P4 in the definition of a default proof Pp is the same as the requirement 
that W u CONSEQUENTS(DS(Pp)) be satisfiable. 

Lemma 4.4. Suppose that A = (D, W) is a closed normal default theory, and that 
[3', [3" e L are closed wffs. Then [3' ^ [3" has a default proof with respect to A, iff [3' 
and [3" have default proofs Pp, and Pp. respectively with respect to A, such that 
W u CONSEQUENTS(DS(Pp.) u DS(Pp,.)) is satisfiable. 

Proof  (=~). Suppose P is a default proof of/l '  A /l" with respect to A. Then trivially 
P is also a default proof of/~' and of/~" and the result immediately follows. 

(~) .  Assume Pp. = D [ , . . . ,  Dm and PB" = D ~ , . . . ,  D~' and suppose n >I m, 
Then dearly 

P = D[ U D~, . . . ,  D~, U D~,, D~,+, , . . . ,  D~,' 

is a default proof of ~' A ~" with respect to A. 

Corollary 4.5. Suppose that A -- (D, W) is a closed normal default theory, and that 
01, . . ., 0, have default proofs Po,,. -.,Po. respectively with respect to A. Suppose 
further that W u CONSEQUENTS ( ~ f - i  DS(Pe,)) is satisfiable. Then 0~ ^ . . .  
^ O, has a default proofP with respect to A, such that DS(P) - ~ [ - t  DS(P0,). 

Proof. Notice that, in the proof of the ~ half of Lemma 4.4, the default proof P 
of / l '  A p" has the property that DS(P)=  DS(Pp,)u DS(Pp,,). The corollary 
easily follows from this. 

Lemma 4.6. Suppose ~ has a default proof P~ with respect to a closed normal default 
theory A = (D,W). Suppose further that the wff ~ = p is valid. Then P~ is also a 
default proof of  p with respect to A. 

Proof. Suppose P~ = D o , . . . ,  Dk. Then W u CONSEQUENTS(Do) !- ~. Since 
= / I  is valid, I-u = / / s o  trivially W u CONSEQUENTS(Do)I-u = p. Hence 

by modus ponens, W u CONSEQUENTS(Do) I-/l so that P~ is also a default 
proof of p. 

The next theorem provides the remaining half of the completeness result for 
default proofs. 

Theorem 4.7. Suppose that E is an extension for a consistent closed normal default 
theory A = (D, W), and that [$ e E. Then/$ has a default proof with respect to A. 

Proof. By Theorem 2.1, E = ~°__ o Ei, where Eo = W and for i i> 0. 

{I } E/+ t = ThL(E~) U w e D, where ~ ¢ E~ and -aw ~ E . 
W 
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Since fl ~ E, fl e E~ for some i. We shall inductively prove the following result, for 
all i ~> O: 

If 0 e E~, then there is a default proof Po of 0 with respect to A such that 
DS(Po) ~_ GD(E,A). 

The case i = 0 is trivial; if 0 e Eo then since W is consistent (Corollary 2.2), 
Ps = 0 is a definite proof of 0 with DS(Ps) = 0. 

Now assume the induction hypothesis for all wffs of E/and consider 0 e E/+~. 

Case 1.0 e Th~.(E i) 

Then there exist finitely many wffs 0~ , . . . ,  0,~ E~ such that {0~,. . . ,  0,} I-0. 
By the induction hypothesis, each 0j has a default proof Poj such that DS(Poj) ~_ 
GD(E,A). Hence ~ _  ~ DS(Poj) ~ GD(E,A). By Theorem 2.5 

E = ThL(W u CONSEQUENTS(GD(E, A))) 

and since E is consistent so is W u CONSEQUENTS(GD(E,A)). Hence, so is 

W U CONSEQUENTS(~.= DS(Poj)) 

so by Corollary 4.5, 0x ^ • • • ^ 0, has a default proof P such that 
r 

DS(P) - u DS(Pej) ~- GD(E, A). (4.1) 
J=l 

Since {0~, ..., 0,} l- 0, 0~ ^ ... ^ 0, = 0 is valid. Hence by Lemma 4.6 P is also 
a default proof of 0, and by (4.0 DS(P) ~_ GD(E,A). 

Case 2. 0 is w where (~ : Hw/w) e D, o~ e E~ and "-i w ~ E. 

By the induction hypothesis, • has a default proofP~ = Do,..., Dkand DS(P,) _~ 
GD(E,A). Consider the sequence P~- {o~:t4w]w}, Do,..., Dk. This clearly 
satisfies conditions PI-P3 of the definition of a default proof of w. Now (~ : Flw/w) 
e GD(E,A), and since DS(Pffi)_ GD(E,A), then DS(Pw)~ GD(E,A). Moreover, 
by the same argument as in Case I, we have that W u CONSEQUENTS(DS(Pw)) 
is consistent. Hence Pw satisfies property P4 so that P~ is a default proof of w. 

By combining Theorems 4.3 and 4.7 we obtain the following completeness 
result: 

Theorem 4.8. Let f l¢ L be a closed wff. A consistent closed normal default theory A 
has an extension E such that fl¢ E iff fl has a default proof with respect to A. 

While this completeness result is gratifying we still have no computationally 
reasonable way of deriving default proofs. We shall defer this question to Section 5. 
In the interim we show that in a very real sense, default proofs cannot always be 
derived, even when they exist. 



104 R. REITER 

4.2. The extension membership problem 

It is known that there is no decision procedure for the vafidity problem of first 
order logic (Church (1936)). What this amounts to is that there is no algorithm 
which, when presented with a closed first order wig, will determine whether or not 
~hat wff is valid. The validity problem is, however, semidecidable, i.e. there is a 
procedure (namely first order proof theory) which will confirm the validity of a 
closed wig (by finding a proof for it) if that wff is valid, but which fails to terminate 
on some non-valid wffs. Another way of expressing this state of affairs is by saying 
that the closed valid wffs are recursively enumerable, but that there is no recursive 
enumeration of the closed non-valid wffs. From this it follow~; that the set of 
closed satisfiable wffs is not recursively enumerable. 

Now the definition of a default proof appeals, in condition P4, to a test for the 
satisfiability of some set of first order wffs. In view of the facl ~. that the closed 
satisfiable first order wffs are not recursively enumerable, this suggests that there 
may not be a recursive enumeration of the set of beliefs of an arbitrary closed 
normal default theory, i.e. that the extension membership problem is not even 
semi-decidable. By the extension membership problem we mean th~ following: 

Given a closed default theory A and a closed wffp ~ L, is tTaere an extension 
for A which contains fl? 

We now confirm this intuition that the extension membership prbblem for closed 
normal default theories is not semi-decidable, or what amounts to the same thing, 
that the union of the extensions of an arbitrary closed normal default theory is not 
recursively enumerable. 

Given a default theory A, let B(A) = u E where the union is taken over all 
extensions E of A. Let wl, w2,..., be a recursive enumeration of the closed wits of 
L. For i = 1, 2 , . . . ,  let At be the closed normal default theory ({: Hwdw~}, 0) so 
that As has the single default rule : Hwi/w~, and no first order axioms. Then clearly 
As has a unique extension Ei. Es and therefore B(A~) is empty if w~ is unsatisfiable, 
and is ThL({w~} ) if w~ is satisfiable. Hence ~F-1 E~ = ~?°_ 1 B(A~) is the set of 
closed satisfiable wffs of L. 

We shall argue that there is no recursive enumeration of B(A) for arbitrary 
closed normal default theories A. For if there were, then there is a recursive 
function f(A,i), defined on closed normal default theories A and nonnegative 
integers i, such that range(f(A,-))= B(A). In particular, range(f(Aj,.))= B(Aj). 
Then it is known (see e.g. Rogers 1967)) that there is a recursive function g(i) 
defined on the nonnegative integers i such that range(g)= UT=I B(Aj), i.e. 
UTffi i B(Aj), the set of closed satisfiable wffs of L, is recursively enumerable, a 
contradiction. 

Theorem 4.9. The extension membership problem for closed normal default theories 
is not semi-decidable. 
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This result assures us that the appeal to satisfiability in condition P4 of the 
definition of a default proof is not merely an accidental feature of our particular 
brand of proof theory. Rather, any proof theory whatever for closed normal 
default theories must somehow appeal to some inherently non-semi-decidable 
process. This extremely pessimistic result forces the conclusion that any computa- 
tional treatment of defaults must necessarily have an heuristic component and will, 
on occasion, lead to mistaken beliefs. Given the faulty nature of human common 
sense reasoning, this is perhaps the best one could hope for in any event. 

Of course there are decidable subcases of the extension membership problem. 
It is not difficult to see from the definition of a default proof that provided 

W U ~ c D  U w ~ e D  
W 10 

belongs to a decision class for first order provability then the extension membership 
problem will be decidable. In particular then, this problem is decidable for the 
sentential case, i.e. when each ~ and w and each formula of W is a sentential wff. 
It is also decidable in the monadic case, i.e. when each of these is a formula of the 
monadic predicate calculus. 

It is also of some interest to contrast Theorem 4.9 with the corresponding result 
for first order theories. It is well known that the set of theorems of any first order 
theory is recursively enumerable. If the elements of the extensions of a default 
theory are viewed as the 'theorems' of that theory, then Theorem 4.9 tells us that 
the 'theorems' of an arbitrary default theory are not recursively enumerable. 
This then provides another major distinction between default logic and first order 
logic, in addition to that of the non-monotonicity of default logic. 

5. Top Down Default Proofs: Interface with a Resolution Theorem 
Prover 

The definition of a default proof naturally admits both top down and bottom up 
search procedures. The top down approach can be loosely described as follows: 
given/~, determine a subset Do of the defaults such that W u CONSEQUENTS 
(Do) F #. For i I> 1, if D~_I has been determined, then determine a subset D~ of 
the defaults such that 

W u CONSEQUENTS(D~) i- PREREQUISITES(D~_I). 
k - 1  If, for some k, W I- PREREQUISITES(Dk_I) and if W Vi=o CONSEQUENTS 

(D~) is satisfiable, then a proof of/1 has been found. 

The bottom up approach is as follows: given ~, determine whether W I-/~. If so, 
and if W is satisfiable return success. Otherwise, determine a subset Do of the 
defaults such that W I-PREREQUISITES(Do). If  W u CONSEQUENTS(Do) 
I- p and if W u CONSEQUENTS(Do) is satisfiable, return success. Otherwise, 
for i >i 1, assuming that D~_I has been determined, determine a subset D~ of the 
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i - 1  defaults such that W u Uj=o CONSEQUENTS(Dj) F PREREQUISITES(De). 
If  W u U~=o CONSEQUENTS(Dj) I- p and if W u U}=o CONSEQUEHTS(Dj) 
is satisfiable, return success. 4 

The bottom up search procedure does not appear to be computationally very 
promising. We shall focus instead on the top down approach. At first blush this 
does not look too promising either. How, for exampb, are we to determine a Do 
such that W o COHSEQUENTS(Do)I- p?  Are we to simply randomly select 
subsets Do of D and try each in turn ? The solution ties with the appropriate choice 
of a first order proof procedure. For if a top down theorem prover is used, then the 
goal wff/ /can help to select out a suitable subset Do of D. 

Ro Co 

, 

,- R2 

R# 
FIG. 1. A linear resolution proof. 

Linear resolution (Loveland (1970), Luckham (1970)) provides just such a top 
down theorem prover. A linear resolution proof of ~ from some set of clauses S 
has the form of Fig. 1, where 

(1) The top clause, Ro, is a clause of =lp. 

(2) For 1 ~< i ~< n, R~ is a resolvent of Rt-x and C~_x. 

(3) For 0 g i ~< n -  1, Ce ¢ S or C~ is a clause of - lp  or Cz is Rj for some j < i. 

(4) Rn - r-l, the empty clause. 

Linear resolution is known to be complete. It is also a suitable generalization of 
conventional incomplete back-chaining (subgoaling) proof procedures which 
reason backward from a goal p until a suitable set of premises is reached. 

Now the idea is to use linear resolution to allow the goal wff p to help select out 
a suitable subset Do of D. To do this requires an appropriate representation of 
a closed normal default theory (D, IV). Specifically, assume with no loss of generality 
that W is a set of clauses. In addition we shall require a special clausal form of 
the consequents of each default of D. If 6 -- (~: HwJw) e D, suppose C1 , . . . ,  Cr 

4 This bottom up approach is not immediately apparent from the definition of a default proof. 
It can be shown to follow from that definition. We omit the details. 
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are all of the clauses of w. Then for 1 ~< i ~< r the ordered pair (C~,{6}) is called a 
consequent clause of the default 6. In effect, a consequent clause of 6 will function 
as an ordinary clause of w indexed by the name of the default giving rise to that 
clause. 

Example 5.1. Consider a closed normal default theory A = (D, IV) with defaults 

: MA (Ex)(Ey)B(x, y): MC 
61 = 62 = 

A C 

D v A: ME C ^ E: M(Ex)(y)F(x, y) ^ G(x) 
63 = 64 = 

E (Ex)(y)F(x, y) ^ G(x) 

Suppose the clausal form of W is 

C1 = B(x,f(x)) C2 = ~ C  v D v A C3 = ~ C  v ~ E  v -~A. 

The consequent clauses are: 
(A,{6x}) 
(F(a,y),{64}), (G(a),{6~}); 

a is a Skolem constant introduced in forming the clausal form of the consequent 
of 64. 

If A = (D,W) is a closed normal default theory, where W is a set of (ordinary) 
clauses, define 

CLAUSES(A) = 
{(C,{6}) 1 6 e D and (C,{6}) is a consequent clause of 6} 

u { ( c , ( } )  I c w}. 

In general, we shall refer to an ordered pair (C,D) where C is a clause and D a 
set of defaults as an indexed clause; C will be said to be indexed by D. Thus the 
elements of CLAUSES(A) are all indexed clauses, where each clause is indexed by 
the default which gave rise to it. In what follows, we shall usually not distinguish 
between (C,{ }) i.e. a clause C indexed by the empty set of defauRs, and C itself. 

Now we propose to invoke linear resolution as the first order theorem proving 
component of a default theorem prover. The representation of A to be used by 
the linear resolution theorem prover will be CLAUSES(A), i.e. ~ set of indexed 
clauses. Hence the notion of a resolvent of two indexed clauses must be defined. 
If  (C1,DI) and (C2,Dz) are indexed clauses, and if R is a usual resolvent of C1 and 
C2, then (R, DI u D2) is a resolvent of the indexed clauses (C1,DI) and (C2,D2). 
Then a linear resolution proof of a wff/ / f rom some set $ of indexed clauses is the 
same as that using ordinary (non-indexed clauses) except that all of the clauses in 
the proof are indexed, i.e. it has the form of Fig. 1, where 

(1) The top clause, Ro, is a clause of -1 p. 

(2) For 1 ~< i g n, R(_I and C(_~ are indexed clauses and R( is a resolvent of 
these indexed clauses. 
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(3) For 0 ~< i ~< n -  1, C~ e S or C~ is a clause of -1 fl or C~ is Rj for some j < i. 
(4) Rn = (F'I,D) for some set of defaults D. 

We shall say that such a linear resolution proof of fl returns D. 

Now recaU the original problem: Given fl and a closed normal default theory 
A = (D,W) how are we to determine a Do such that W u CONSEQUENTS(Do) 
l- fl? Suppose we can determine a linear resolution proof of ,q from the set of 
indexed clauses CLAUSES(A), and that this proof returns Do. Then it is im- 
mediately apparent that W u CONSEQUENTS(Do) I-/L 

Now having determined Do, there will in general be the problem of determining 
Dx such that W u CONSEQUENTS(D,) I- PREREQUISITES(Do). Again, we 
can proceed in a top down fashion by determining a linear resolution proof of 
PREREQUISITES(Do) from CLAUSES(A) and this proof will return the required 
D1. And so on. 

These considerations motivate the following definition: 

Definition 4. A top down default proof of fl with respect to a dosed normal default 
theory A = (D, W) is a sequence of linear resolution proofs L o , . . . ,  Lk such that 

(1) Lo it a linear resolution proof of p from CLAUSES(A). 
(2) For 0 ~< i <~ k, Li returns Di. 

(3) For 1 <~ i ~< k, L~ is a linear resolution proof of PREREQUISITES(Di_,) 
from CLAUSES (A). 

(4) Dk = 0. 
(5) W u U~-o CONSEQUENTS(DI) is satisfiable. 

Example 5.2. This is the closed normal default theory of Example 4.1, which has 
two extensions given by 

Ex = Th(W u {A A F, B, C}) 
= T h ( W u  {A ^ F, - iE}) ,  

both of which contain D. Figure 2(a) gives a top down default proof of D as an 
element of Ez, and Fig. 2(b) is a proof of D as an element of Ex. 
Example 5.3. This is the default theory of Example 5.1. It has three extensions: 

E, = Th(W u {A,C}), 

E2 = Th(W u {A,E}), 

E3 = T h ( W u  {C,E,(Ex)(y)F(x,y) ^ G(x)}). 

Clearly, (Ex)G(x)e Ea. Figure 3(a) represents a top down default proof of 
(Ex)G(x). This does indeed represent a default proof since 62, 5a and 6a are all of 
the defaults which enter into the proof and W u CONSEQUENTS({62,6a,64}) 
= W u {C,E,(Ex)(y)F(x,y) ^ G(x)} is satisfiable. 
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(a) 

~ D  E v D  

E (TE, {~,,}) 
L . . . J  / 

(D, {~,,}) 

D a 

~ D  - 7 C  v D 

~ c  (c, {:,h }) 

(D, {,h}) 

-hA v ~ E  ~ A  v ~ B v  E " 

~ A  v ~ B  (B, {62}) 

(-~A, (A, {~}) 

(D, {5~, ~}) 

"3A v -3E b E v D 

"7A v D ~ D v  F 

-1A v F -aA v -aF 

"TA (A, {5,}) 

(D, {,~, }) 

~ E  E v D  

L /  
D ~ D v F  

F -11;" . 

D 

FIG. 2. 

a Since the prerequisite of 84 is T, the identically true clause, its negation is D, which completes 
the proof. 

bThis is one of the clauses of the negation of PREREQUISITES ({81, 8z}) -- A A (E V F). 
¢ This is the other clause of the negation of PREREQUISITES ({81, 8z }). 
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(a) 

(r~, {6,}) 

(b) 

-~c v -~E ..(E, {~}) 

("1C, {63} ) ~ .  (C, {62} ) 

(O, {6~, 63}) 

~B(x , y )  v mDa "aC v D v A 

"IB(x, y) v "-ICv A ~' lB(x,  y) V "-IA b 

~B(x, y) v ~ ~ ( c ,  {a2}) 

(-1 B(x, y) v - a ~  B(x, f(x)) 

(r~, {,5~}) 

(~A, {,~,}) (,t, {,~,}) 

(n ,  {~,, ~,}) 

-1B(x, y) 

rq 

B(x,f(x)) 

FIG. 3. 

a This is one of the clauses of the negation of PREREQUISITES({82, 83 }) -- (Ex)(Ey)B(x, y) A 
( o r  ,4). 
b This is the other clause of the negation of PREREQUISITES({82, 8s }). 

Notice that no extension contains A ^ (Ex)G(x). To see how an attempted top 
down default proof of this wff gets blocked, consider Fig. 3(b), which is the initial 
linear refutation of -1A v -1G(x). Sin~ PREREQUISITES({61,64})- C ^ E 
we would next construct a linear refutation of -1C v -1E. We have already done 
this in Fig. 3(a). The refutation there derives ([2],{62,63}) as its terminal node. 
There is no need to proceed further since W u CONSEQUENTS({61,64,6z,63}) 
is unsatisfiable, so the attempted top dowa default proof of A ^ (Ex)G(x) fails. 

It is not difficult to show, using the completeness of linear resolution for first 
order logic, that ~ has a default prc~f iff there is a top down default proof of p. 
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This result, when coupled with the completeness of default proofs (Theorem 4.8) 
yields the following- 

Theorem 5ol (Completeness of Top Down Default Proofs). Let A = (D,W) be a 
consistent closed normal default theory and let f l~ L be a closed wff. Then A has an 
extension containing fl i f f  there is a top down default proof  o f  fl with respect to A. 

This result is of some computational importance. Top down default proofs 
provide a coherent method for determining the necessary defaults to invoke in 
establishing a wff ft. Moreover, at each stage the current goal (i.e. fl or PRE- 
REQUISITES(D~_I)) provides guidance in a top down fashion in the selection of 
the defaults ne~ssary for establishing that goal. Another important feature of 
top down default proofs is that they can be implemented in such a way as to 
favour 'defitult free' proofs of r ,  i.e. the linear proof Lo can seek first to establish 
fl using W alone, only introducing consequent clauses when this fails. Such wffs r,  
free of default assumptions, have a much firmer status than those which rest 
upon one or more default assumptions. For example they have a monotonic 
character in the sense that they need never be retracted under the addition of new 
first order facts about the world. And they need never take part in the process of 
belief revision which is required whenever inconsistencies arise. (See Section 6 for 
a discussion of this issue).) Finally, top down default proofs may invoke any of a 
variety of complete linear resolution strategies, among which some quite restrictive 
methods are known e.g. C-ordered linear resolution (Reiter (1971)) and SL 
resolution (Kowalski and Kuehner (1971)). 

It is of some interest to reflect upon the nature of top down default proofs in 
view of the discussion following the proof of Theorem 3.2. For one can see quite 
dearly how it is that the top down linear resolution proofs L~ select out a subset of 
all of the defaults. Any default not selected out in this way is irrelevant to the 
proof and need not be further considered. This is precisely the property of locality 
with respect to the defaults referred to in that discussion. We also pointed out there 
that no such locality principle can be expected with respect to W. This expectation 
is realized in the final defining property of top down default proofs, namely that 
W u ~ = o  CONSEQUENTS(Di) be satisfiable, for satisfiability is dearly a 
global property. 

6. Closed Normal Default Theories and the Revision of Beliefs 

The point of view of this section is that the role of a default reasoning program is 
to successively derive new beliefs in response to some task at hand. Now an 
extension specifies one coherent view of an incompletely specified world; moreover 
many such coherent views are possible, one for each extension of the default 
theory. We are free to choose any one of these extensions as our current view of 
the world; the particular choice made will usually be conditioned by some overall 
objective, e.g. some task to be performed, some decision to be made, etc. 
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From this perspective, the default reasoner cannot entertain just any set of 
derived beliefs; they must all belong to some common extension. This requirement 
gives rise to a variety of problems: 

(1) How can one determine when a set of  derived beliefs is a subset of some 
extension 7 

(2) Suppose given a set B of derived beliefs all of which belong to some common 
extension of (D, W). Now imagine updating W with some new facts (observations, 
perhaps) about the world. How can one determine whether B is a subset of some 
extension of this new default theory? That is can we continue to entertain our 
previously held beliefs in the presence of new information about the world ? 

(3) This is the same as (2), except that D is updated rather than W. Can we 
continue to entertain our previously held beliefs in the presence of new defaults ? 

It is the purpose of this section to provide answers to these questions. 

6.1. Derived beliefs: maintaining a common extension 

We envisage a default reasoning program as functioning in the following way" 

Initially, some closed normal default theory Ao = (D,W) is specified. The 
default reasoner then determines some default proof Ppo with respect to Ao. 
Now that #o has been derived, it should be made available as a premise for future 
derivations, i.e. the 'current default theory' becomes AI - (D,W u {#o}). If  now 
a default proof Pp, is determined with respect to Ax then both derived beliefs Po 
and #x should be available as premises for future derivations so that the 'current 
default theory' becomes A2 = (D,W u {Po,#x}). And so on. In effect, we want to 
view derived beliefs as lemmas to be subsequently used in the derivation of new 
beliefs. What is required is that the default reasoner, by proceeding in this way, 
will be generating 'an approximation' to some extension for the original default 
theory Ao, i.e. the set of derived beliefs {#o,//1,...,} must be a subset of some 
extension for Ao. The following example demonstrates that this requirement is not 
always fulfilled: 

Example 6.1. 

) a0 : {A = B} . 
A ' -aA J '  

Then #o = B is a derived belief of Ao. Also Pl = -aA is a derived belief of 

At =(I "MA B:M'~A~, ) 
A ' I {.4 = B, B} , 

yet #1 is not  in any extension for the original default theory Ao. 

Some care must therefore be exercised in using derived beliefs as lemmas. The 
following theorem provides a sufficient condition for the proper use of derived 
beliefs as lemmas in the derivation of new beliefs. 
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Theorem 6.1. Let Ao = (D,W) be a closed normal default theory. In general, 
suppose As has been determined and that PPt is a default proof of/3~ with respect to 
A v Let Al+ 1 = (D,W u {/~o, • •.,/~}). For any n >I O, i f  

It 

W O u CONSEQUENTS(DS(Pa,) ) is consistent (6.1) 
i - 0  

then Ao has an extension Eo such that {/~o,...,/~,} -~ Eo. 

Preof. Let 

A~)---(j--~)0 DS(PaJ)' W) 

and 

A ~ - / ( ~  DS(Ppj), W u {Po, . . . ,  Pi-1}] \ for l n.  
k J  - o  / 

We first inductively prove that for 0 ~< i ~< n 

W U {/~o,...,/~-1} U u CONSEQUENTS(DS(Ppj)) is consistent. 
j=O 

The case i = 0 is simply the hypothesis (6.1). Assume the result for i and consider 
n 

W U {/~o,...,/~} U u CONSEQUENTS(DS(Paj)) (6.2) 
1=0 

Now PPi is a default proof of/~j with respect to Av Hence 

W u { t o , . . . ,  fit-t} u CONSEQUENTS(DS(Pa,)) k fit. 

Thus, the consistency of (6.2) reduces to that of the induction hypothesis. 
This result coupled with Corollary 3.4 assures us that for 0 ~< i ~< n A[ has a 

unique extension El. Since Pat is a default proof of fl~ with respect to Aj it is also a 
default proof of fl~ with respect to A~ and since Ef is the unique extension for A~, 
fl~e E~. Hence to e E6, so by Theorem 2.6 E~ is an extension for A~. Since Ai 
has a unique extension El then E6 = E~. Since fl~ ~ E~ we can apply Theorem 2.6 
again to conclude that El is an extension for A6 and again by uniqueness El = E~. 
We can continue in this way to obtain E6 = E~ = . . . =  E~ and since, for 
0 <~ i ~< n, fli ~ E" we have { t o , . . . ,  fin} ~- E6. 

Finally, since U~=o DS(Ppj)G D, then by Theorem 3.2, Ao = (D,W) has an 
extension Eo such that E6 ~- Eo. 

This last theorem provides a mechanism by which a default reasoning program 
can be assured that all of its current beliefs have a common extension: Let B be 
the current set of derived beliefs. For each/~ ~ B let Pa be the default proof of/J. 
Pa may invoke other ~'s of B as lemmas. Then the members of B all share a 
common extension if W u Ua~e DS(Pp) is consistent. 

The question arises "How does the default reasoner proceed in the event its 
derived beliefs B do not satisfy this consistency property?" This raises some quite 
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complex issues which we do not address in this paper. However, the basic flavour 
of the required approach is clear. To restore the consistency property, the system 
must initiate a process of belief recision as follows: 

(1) Attempt to rederive some minimal subset of the derived beliefs B in order 
that the resulting new set of default proofs has the consistency property. 

(2) Failing this, reject some minimal subset of B. 

This process of belief revision is one of the tasks performed by the Truth 
Maintenance System of Doyle (1978). 

6.2. Derived beliefs and the assimilation of new information 

Section 1.2 noted the need for belief revision in the event that a belief depends 
upon some default assumptions which are subsequently violated by new first order 
facts about a world. Our purpose now is to make this idea precise, and to formulate 
a condition under which belief revision will not be necessary. 

Theorem 6.2. Let Ao = (D,W) be a closed normal default theory, andlet {j0o, • •., ~n} 
be a set o f  derived beliefs determined as in the statement of  Theorem 6.1. Suppose 
further that F ~_ L is a set o f  closed wffs. I f  

n 

W u F u U CONSEQUENTS(DS(Pp,)) is consistent (6.3) 
i = 0  

then (D,W u F) has an extension E such that {/~o, • •.,/~n} G E. 

Proof. Let 

= (D, W u  
and 

A" = (D,W u F u {Po, . . . , /~H})  for ! ~< i ~< n. 

Now Pp, is a default proof of p~ with respect to A~. By the consistency property 
(6.3), W. u F u CONSEQUENTS03~(Pp,)) is consistent so that Pp, is also a 
default proof of Pi with respect to A[. Hence, ~ ~y Theorem 6.1, A'o = (D,W u F) 
has an extension E such t, liOt {~o , . . . ,  P~} - I .  

Theorem 6.2 provides a mechanism with which a default reasoning program can 
be assured that all of its current beliefs {/~o,. . . , /~} with respect to a theory 
(D,W) have a common extension in the theory (D,W uF)obtained by updating W 
with some new facts F about the world. Again, the problem of belief revision 
arises whenever the consistency property (6.3) fails to hold. 

6.3. Derived beliefs and the ass|inflation of new defaults 

We consider here the problem of updating a closed normal default theory with 
new defaults, and how this may influence our confidence in some set of previously 
derived beliefs. 
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Theorem 6.3. Let Ao = (D,W) be a closed normal default theory, and let {flo, • •., ft,} 
be a set of  derived beliefs determined as in the statement of  Theorem 6.1. Suppose 
further that D' is a set o f  closed normal defaults. I f  (D, W) has an extension E such 
that {flo,..., fin} ~ E then (D u D',W) has an extension E' such that {flo,.. . ,  fin} 

E'. 

Proof. The proof is a simple consequence of semi-monotonicity (Theorem 3.2). 

Theorem 6.3 provides the only truly comforting result vis ~ vis belief revision. 
It guarantees that provided the derived beliefs ~o , . . . ,  ~, have a common extension 
in (D,W)then  they will continue to have a common extension in (D u D',W). 
Updating a closed normal default theory with new defaults cannot affect old 
beliefs. 

7. Arbitrary Default Theories 
The technical results of the previous sections have been derived for closed default 
theories, i.e. theories all of whose defaults have the form ~-M/~t, . . . ,  M~mlw, 
where a , /L , . . . ,  Pm,W are all closed first order wffs. In view of the examples of 
Section 1, none of which is a closed default, the genuinely interesting cases involve 
open defaults. An open default has the form u(x)'M~l(x),...,MPm(X)]W(X) 
where at least one of a(x),/~l(x),..., [3m(X),W(X) contains free variables in x. The 
purpose of this section is to generalize our earlier results on closed default theories 
to the case of open defaults. We do this by first defining the notion of an extension 
for default theories with open defaults. Then we focus upon normal default 
theories and generalize the proof theory of Section 5 for this case. Finally, the 
results of Section 6 on belief revision are suitably generalized. 

7.1. The extensions for arbitrary default theories 
The first task at hand is to suitably generalize the concept of an extension from 
closed default theories to arbitrary theories. Intuitively, we want to interpret the 
open default ~(x)" Mpt(x), . . . ,  MSm(X)/W(X) as saying something like: "For all 
individuals x t , . . . ,  x,, if ~(x) is believed and each of ~ l (x) , . . . ,  ~m(X) can be 
consistently believed, then one is permitted to believe w(x)." The initial problem 
then is to specify exactly what are the individuals of a default theory. 

To begin with a default theory is defined over the language LA whose alphabet 
is A. If F ~_ .4 is the set of all function letters of A (including the 0-ary function 
letters, or constant letters) then any term constructable using the function letters 
of F should count as an individual of the default theory, so that the free variables 
of an open default should at least be seen as ranging over these terms. This seems 
fine with respect to these explicitly nameable individuals. However, there will 
generally be implicitly defined individuals which are introduced via existential 
quantifiers. For example, the theory 

i 

• M e ( x )  
(Ex)Q(x) "aP(a) 

e(x) 
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has an explicitly named individual a, together with an implicitly defined individual 
which satisfies Q. Intuitively one would expect of this implicitly defined individual 
that it satisfy P in the extension for this theory. In order to accommodate this 
intuition, we introduce a new constant letter 0~ distinct from any element of F to 
denote this implicitly defined individual and replace (Ex)Q(x) by Q(0c). This 
immediately yields P(u) in the extension whence (E ~. Q(x) ^ P(x) is in the 
extension. 5 

What the previous discussion amounts to is the suggestion that each wff of W 
be replaced by its Skolemized form. If E is the set of Skolem functions so intro- 
duced, then we would like to view the individuals constructable from the elements 
of F u E as the individuals of the default theory, and the free variables of an open 
default as ranging over these individuals. 

While this feels closer to the truth, there still remains the problem of implicitly 
defined individuals which may be introduced by default. For example, in the 
theory 

: H(Ex)P(x) : HQ(x) 
Q(x) 

there is an implicitly defined individual which is introduced by the first default, 
and which satisfies P. One would expect, by the second default, that this individual 
will also satisfy Q, i.e. one would expect (Ex).P(x) ^ Q(x) to be in the extension. 
As before, we introduce a new constant letter • to denote this individual, and 
represent the first default by its Skolemized form : HP(~)[P(,). This immediately 
yields P(~) in the extension and then, by the second default, Q(~) is in the extension, 
and hence so is (Ex).P(x) ^ Q(x). 

In general then, if~E is the set of Skolem functions introduced by Skolemizing IV 
as well as all of the defaults, then we shall view the individuals constructable 
from the elements of F u Y~ as the individuals of the default theory, and the free 
variables of an open default as ranging over these individuals. We proceed to 
make these ideas precise. 

Let w be a closed wfl" of Ls. With no loss in generality assume w is in prenex 
form. Then the Skolemizedform of w is obtained as follows (Robinson (1965)): 
replace each existentially quantified variable y of w by ¢(xl, • •., xn) where (x l ) , . . . ,  
(x,) are all of the universal quantifiers preceding (Ey) in the prefix of w. ¢ must be 
a new function letter distinct from any in the alphabet A and distinct from any 
other such function letters previously introduced. Do this for all existentially 
quantified variables of 14,, and then "zlete all of w's quantifiers. The result is a 
quantifier free formula. The new func'ion letters ¢ so introduced are called 
Skolem functions. 

5 It would appear from the definition of a fixed point in McDermott and Doyle (1978) that 
(Ex). Q(x) ^ P(x) is not in the fixed point of this theory, which suggests some fundamental 
differences between default logic and their non-monotonic logic. 
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We also require the notion of the Skolemizedform of a default 

• (x): M#,(x) , . . . ,  M#m(X) 
w(x) 

This is obtained by replacing the wit w(x) by the Skolemized form of (X)W(X). 
For example the Skolemized form of 

(Ey)(z)P(x,y,z) : M(Ey)Q(x,y) 
(E y)(z)(Ew)R (x,y,z, w) 

is 
(E y)(z)P(x,y,z) " M(E y) Q(x,y) 

R ( x , f ( x ) , z , g ( x , z ) )  ' 

wherefand g are Skolem functions. Notice that the 'top half' of a default remains 
unchanged in converting it to its Skolemized form. 

A default theory (D, W) is in Skolemizedform iff all of the defaults of D, and all 
of the wffs of W are in Skolemized form. 

Let G be a set of function letters. Then H(G) is the smallest set of terms such that 
a ¢ H(G) for all constant letters a ~ G, and if t l , . . . ,  tne H(G) and g ~ G is an 
n-ary function letter then g(tl, • •., tn) ¢ H(G). H(G) is simply the set of all terms 
constructable using the function letters of G. 

Suppose A = (D,W) is a Skolemized default theory (not necessarily normal). 
Suppose further that l~ is the set of Skolem functions of A, and that F is the set 
of function letters of the alphabet A. Define 

CLOSED-DEFAULTS(A) 
= {6(g) J 6(x) e D and g is a tuple of ground terms of H(F u Y~) } 

Thus CLOSED-DEFAULTS(A) is the set of all ground instances over H(F U Y.) 
of the defaults of D. Notice that each such ground instance of a default is a closed 
default. The extensions for a general (not necessarily closed) default theory can 
now be defined as follows" 

Dennltion 5. E is an extension for A = (D, W) iff E is an extension for the closed 
default theory CLOSED(A) = (CLOSED-DEFAULTS(A),W). 
There are several points worth noting about this definition" 

(1) The set CLOSED-DEFAULTS(A) will in general be countably infinite so 
that CLOSED(A) is a closed default theory with countably infinitely many defaults. 
Since the entire preceding development for closed default theories (Sections 2-6) 
makes no finiteness assumption about the number of defaults, these results apply 
equally to CLOSED(A). In particular then, the definition of an extension for A as 
being that for CLOSED(A) makes sense. 

(2) Initially we began with an unskolemized default theory defined over a first 
order language La whose alphabet A contains a set of function letters F. In Skolem- 
izing this theory, we introduced a new set of function letters ~, the Skolem functions 
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of the theory, and CLOSED(A) is a dosed default theory over the first order 
language LAv z. Thus the extensions for A consist of closed wffs of the extended 
language L~ ~ z, not of the original language L~. 

(3) In view of the observation in (2), the notion of an extension for a general 
default theory A is not quite a generalization of this notion for closed default 
theories. For if A is closed to begin with, then its extensions will be subsets of 
LAv z whereas in the definition of an extension for closed theories given in Section 2 
these extensions are subsets of LA. This is not a substantive issue, however• We can 
easily modify the definition of extension given in Section 2 so that these are subsets 
of LAv z rather than of La, without affecting the subsequent theory. The effect of 
this modification is merely to admit into extensions certain wffs containing Skolem 
terms of the original closed default theory. 

7.2. Normal default theories: proof theory 

Before defining a proof procedure for general normal default theories we shall 
modify the top down default proofs for closed normal theories of Section 5 to a 
form that is more appropriate for generalization to the case of open normal 
defaults. The principal change is that we shall require the notion of a linear 
resolution proof of an arbitrary wff where this wff is indexed by some set of 
defaults. 

Definition 6. A linear resolution proof of([3,D~) from some set S of indexed clauses 
has the form of Fig. 4, where 

(1) The top indexed clause (Ro,D~) is such that Ro is a clause of -ap. 

(2) For 1 ~< i ~< n, (R~,D~) is a resolvent of the indexed clauses (Rt_I,D~_I) and 
(Ci-x,Dt-0. 

FIG. 4. 

(Ro, D~) (Co, Do) 

(R2, D~) 

(Rn-I, D~-l) (C.-I, D._I) 

(R., 
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(3) For 0 < i ~< n -  1, (Ci, D~) ~ S or C~ is a clause of -lfl and Di = D[, or 
(Ci,Di) is (Rj,Dj) for some j < i. 

(4) Rn=U1. 

As before, we say that such a proof returns D,. The clauses (Ci, D3 are called the 
side clauses of the proof. For 1 <~ i ~< n, the clauses (Ri, D;) are called centre 
clauses. 

Suppose L is a linear resolution proof from CLAUSES(A). If (C,{fi})~ 
CLAUSES(A) is a side clause of L, then the default 6 is said to have been introduced 
into L. 

Definition 7. A top down default proof of fl with respect to a closed normal default 
theory A = (D,W) is a sequence of linear resolution proofs Lo, . . . ,  Lk such that 

(1) Lo is a linear resolution proof of (fl,{ }) from CLAUSES(A), 

(2) For 0 ~ i ~< k, Li returns Di, 

(3) For 1 ~< i ~< k, let Do-t)  be the set of defaults introduced into L~_I. Then 
Li is a linear resolution proof of (PREREQUISITES(Dti-1)), Di-1) from 
CLAUSES(A). 

(4) The set of defaults introduced into Lk is empty. 

(5) W u CONSEQUENTS(Dk) is satisfiable. 

Example 7.1. In Example 5.2, Fig. 2(b) represented a top down default proof of D. 
Fig. 5 is the corresponding proof under the current modified notion of a top 
down default proof. 

Example 7.1 should make it clear that there is no essential difference between 
the present notion of a top down default proof and that of Section 5. The only 
distinction is that in the current notion, each subproof L~ carries along with it all 
of the defaults introduced into the subproofs Lo, . . . ,L~_t,  so that the final 
subproof Lk returns Dk, the set of all of the defaults introduced into all of the 
subproofs. For closed default theories this modified notion is of no consequence. 
In fact the earlier notion of Section 5 was rather more transparent. However, for 
the purpose of generalizing a proof theory to the case of open normal defaults, the 
modified version of top down default proofs is just what is needed. We now proceed 
with this generalization. 

Let A = (D,W) be a normal default theory, assumed Skolemized. With no loss 
in generality, assume W is a set of clauses. If 6 (x)=  (~(x):Mw(x)[w(x))~ D, 
suppose Ct(x) , . . . ,  C,(x) are all of the clauses of w(x). Then for 1 ~< i <~ r the 
ordered pair (C~(x),{6(x)}) is called a consequent clause of the default 6(x). Define 

CLAUSES(A) = {(C(x),{6(x)})[ 6(x)~ D and (C(x),{6(x)}) is a 
consequent clause of 6(x)} u {(C,{ }) I C e W} 
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(-,D, { }) ~(-~c v D, { 
L.-~-'-" 

(--,c;{ }) ~ ( c ,  {(h}) 
L -  

(Q, {~}) 

}) 

(~A v T~E, {63 } )~ ( 'nA  v ~B v ~, { 
L ~  

(-1,4 v ~ ~  (g {(~2}) 
I . . . . . - - - ' - - -  

(~A, {~:,,~_~}) _......(A, {~, }) 

(D, {,~,, ~;, ,h}) 

}) 

(-~A v - ~ E , ~ ( E  v D, { }) 

(-~A v D, {,h, ~:, ~})  . I ( ' ~ D  v i~, { }) 

(-1,4 v F, {a,, ,h, a~}) (-~A v ~F, {~,, a:, a3}) 

(-~A, { ~ , ~ A ,  {,~,}) 

(r-l, {~,, ~i2, 63}) 

(-~E, { a , ~ ( E  v D, { }) 
t - - - - - - - ' -  

(D, {~,, ~, ~}) .(-~D .v F, { }) 

(F, {ai, a:, a,}) (-~F, {a,, a2, a3}) 

([11, {,h, a~, 63}) 

Fro. 5. 
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As before, an ordered pair (C,D) where C is a clause and D a set of defaults is 
called an indexed clause. If (C1,D1) and (C2,D2) are indexed clauses, define their 
resolvent as follows: 

Let (C~,D'x) and (C(~,D'2) be obtained by uniform renamings 6 of the variables 
occurring in (CI,D~) and (C2,D2) respectively such that (C~,D'I) has no variable it-. 
common with (C(~,D'2). Suppose R is an ordinary resolvent of C~ and C~ under 
most general unifier (mgu) ~. Then (R,(D~ u D'2)¢) is a resolvent of the indexed 
clauses (C1,D0 and (C2,D2). 

With this notion of the resolvent of two indexed clauses the definition of a 
linear resolution proof of (fl, D~) from a set S of indexed clauses is the same as 
before. The only difference is that here the defaults taking part in the proof have 
free variables and these will become instantiated during the course of the proof. 

Consider a linear resolution proof of the form of Fig. 4. Assume that (R~,D~) 
and (Ci, Dl) are variable disjoint, and that their resolvent (Rt+I,D'+I) is formed 
under m g u ¢ ,  so that D~+x = (D~ u D~)¢. If 6(t)~ D~ for some terms t, then 
60) cr ~ D'+I. This occurrence of 6(t)~ in D~+ x is said to be a descendant of the 
occurrence of 6(0 in D'. Similarly, if 6(t) ¢ Di, then again 6(t)cr ~ D'+~ and this 
occurrence of 6(t)¢ in D'+ 1 is a descendant of the occurrence of 6(t) in D/. Finally, 
for i < j < k, if an occurrence of 6(t) in D~ is a descendant of an occurrence of 
6(s) in D} which in turn is a descendant of an occurrence of 6(r) in D' or in D~, 
then 6(0 is a descendant of the occurrence of 6(r) in D' or D i. 

The descendants of an occurrence of a default in the tree of Fig. 4 are simply 
the successive instances of that default created under successive resolution 
operations. If a default occurs at node (Ct, Dl), then it will have descendants at 
each successor node (R~+I,D~+I),..., (Rn,R~). Likewise if a default occurs at node 
(R ,DD. 

We are now almost in a position to propose the necessary generalization to open 
defaults of the top down default proofs for closed normal default theories. The 
following notion comes very close to what is needed. 

Definition 8. Let A = (D, W) be a normal default theory, assumed Skolemized, and 
suppose ~ is the set of Skolem functions of A. A sequence of linear resolution 
proofs Lo,.  •., Lk is an admissible proof sequence for/~ with respect to A ifl" 

(1) Lo is a linear resolution proof of ~ ,{  }) from CLAUSES(A). 

(2) For 0 ~< i ~< k, L~ returns D~. 

(3) For 1 ~< i ~< k, let D ¢i- 1~ be the set of those defaults in D~_I which are 
descendants of the defaults introduced into L~_I. Then Li is a linear resolution 
proof of (PREREQUISITES(DO- 1)),Dr_l) from CLAUSES(A). 

(4) The set of defaults introduced into Lk is empty. 

e By a uniform renaming of the variables of (C, D) we mean that if x is renamed as y, then 
every occurrence of x in C as well as in D is replaced by y. 



122 R. R~-TF.R 

(5) There is a ground substitution y over H(F u ~) such that DkY has the following 
two properties: 

(i) Each default instance occurring in Dry is a ground instance over H(F u ~), 
i.e. if 6(g) ~ D~, then each component gi of the tuple of ground terms g is an 
element of H ( F  u ~).7 

(ii) W u CONSEQUENTS(D~y) is satisfiable. 

We call the set of ground defaults Dr? the default support of the admissible 
proof sequence. Notice that by footnote 7 the default support is a subset of 
CLOSED-DEFAULTS(A). 

Example 7.2. Consider the normal default theory A with defaults 

P(x): M(Ey)Q(x, y) ^ R(x, y) 
61(X ) = (Ey)Q(x, y) ^ R(x, y) 

or, in Skolemized form, 

~x(x) = e(x): M(Ey)Q(x, y) ^ R(x, y). 
Q(x, f (x)) A R(x, f (x)) 

Q(x, y): H(z)s(x, y, z) 
~2~x, y) = (z)S(x, y, z) 

or, in Skolemized form, 

~2(x, y) = Q(x, y): M(z)S(x, y, z). 
S(x, y, z) 

,h(x, y) R(x, y): HV(x) 
= U ( x )  ; W = {P(a)}. 

Fig. 6(a) is an admissible proof sequence for (Ex)(Ey)(z).S(x,y,z) ^ U(x). The 
negation of this is (x)(y)(Ez). -1 $(x,y,z) v "1 U(x) which, after introducing a Skolem 
function g for the existentially quantified z, leads to the clause -1S(x,y,g(x,y)) v 
-1U(x). This is the top clause of Fig. 6(a). For this example ? is the empty substitu- 
tion so the default support for this proof sequence is {ts(a,f(a)), 6z(a,f(a)), 6~(a)}. 

Let us extend the notion of a descendant to admissible proof sequences 
Lo , . . . ,  L~. For 1 ~< i ~ k an occurrence of a default in the top clause of Lt is a 
descendant of its occurrence in the bottom clause of L~_~. And for h ~< i ~ j if an 
occurrence of 6(t) in L i is a descendant of an occurrence of 6(s) in L~ which in turn 
is a descendant of an occurrence of 6(r) in L~, then 6(t) is a descendent of the 
occurrence of 6(r) in L~. 

If one imagines the successive trees Lo , . . . ,  Lk placed vertically, each beneath 
its predecessor, as in Fig. 6(a) then the descendants of a default occurrence are 
simply its successive instances in all of the left hand nodes below the node in which 

7 Notice that by this property 8(g) is a closed normal default, and that 8(g)~ CLOSED- 
DEFAULTS(A). 
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(a) 

(-~S(x,y,o(x,y)) v ~V(x), { } ) ~ ( V C x ) ,  {a,(x,y)}) 

(-~S(x, y, o(x, y)), {,~,(x, z)}) ~ ( - ~ S ( x ,  y, z), {,~=(x, y)}) 

(rq, {,S,(x, z), ,s~(x, y)}) 

('aR(x, z) v "i Q(x, y), {63(x, z), 62(x, y)}~..... (Q(x,f(x)), {61(x)}) 
: L..- 

(mR(x, z), {63(x, z), 62(x,f(x)), 6~(x)}) ~ (R(x,f(x)), {6~(x)}) 

if-l, {63(x,f(x)), 62(x,f(x)), 6,(x)}) 

('aP(x), {6s(x,f(x)), 62(x,f(x)), 6 ~ ( P ( a ) ,  { 

(i-q, {63(a,f(a)), ~52(a,f(a)), 6~(a)}) 

}) 

(b) 

('aS(x, y, g(x, y)) v "-1U(x), { }) ~ (U(a), {cS3(a,f(a))}) 

(-aS(a, y,g(a, y)), {63(a,f(a))}) ~ (-aS(a,f(a),z), {82(a,f(a))}) 

(i-I, {~s(a,f(a)), ~2(a, f(a))}) 

('aR(a,f(a)) v "i Q ( a , f ( a ) ) ~  (Q(a, f(a)), {~l(a)}) 

(~R(a,f(a)), {63(a,f(a)), ~2(a,f(a)), 6~(a)}) ~ (R(a,f(a)), {61(a)}) 

(l'q, {~s(a,f(a)), 62(a,f(a)), di~(a)}) 

(~P(a), {53(a,f(a)), ~2(a,f(a)), 8,(a)}) ~ (P(a), { 

(l"l, {~(a,f(a)), 62(a,f(a)), 6~(a)}) 

}) 

]FIG, 6. 
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it occurs. It follows that if Lo, . . . ,  Lk is an admissible proof sequence then every 
default occurrence has a descendant in (I-I,Dt,), the bottom clause of Lk. Suppose 
6(0 is a default occurrence whose descendant in Dk is 6(s). Then 6(s)y e Dk~/, the 
default support of the admissible proof sequence. We call 6(s)y the terminal 
descendant of the default occurrence ,~(t). By the nature of y (see footnote 7 
associated with the Definition 8) this terminal descendant is a ground instance of 
6(t) and is an element of CLOSED-DEFAULTS(A). 

Example 7.2 (continued). Suppose, in the admissible proof sequence for 
(Ex)(Ey)(z)S(x,y,z) ^ U(x) of Fig. 6(a) we do the following to each indexed clause 
(C,D): if ~ ~ D, instantiate the variables of ~ so that it becomes identical with its 
terminal descendant, and instantiate the corresponding variables of C in the same 
way. The resuR is Fig. 6(b), which is a top down default proof of (Ex)(Ey)(z)S(x,y,z) 
^ U(x) with respect to CLOSED(A), i.e. (Ex)(Ey)(z)S(x,y,z) ^ U(x) is in sortie 
extension for CLOSED(A) and hence by definition is in an extension for A. 

This example indicates the basic intuition behind the notion of an admissible 
proof sequence. Unfortunately, this notion does not quite give us what we want. 

Example 7.3. A has one default 

e(x) v Q(x): HR(x) 
~(x) = R(x) W = {P(a) v e(b)} 

Fig. 7(a) is an admissible proof sequence for (Ey)R(y). But the only extension for 
this theory is Th(W) and this does not contain (Ey)R(y). Notice however that if 
we replace each default occurrence of Fig. 7(a) by its terminal descendant, as we 
did for Example 7.2, we obtain Fig. 7(b) which is not a top down de:Oault proof of 
(Ey)R(y) with respect to CLOSED(A). The basic reason for this is that the terminal 
descendant of the occurrence of ~(x) in the clause (-1P(x),{~(x)}) in Fig. 7(a) is 
~(a), and this is different than ~(b), the termin~! descendant of ~(x) in ('-1Q(x), 
{~(x)}) despite the fact that "aP(x) and --1Q(x) are both of the clauses of -aPRE- 
REQUISITES({6(x)}). 

To obtain a proof theory for open defaults it is necessary to restrict the class of 
admissible proof sequences in order to exclude situations like that of Example 7.3. 

Definition 9. An admissible proof sequence Lo , . . . ,  Lk for I1 with respect to a 
normal default theory A is a top down default proof of ~ with respect to A iff: 

(1) Suppose, for 1 ~< i ~< k, that L~ has top clause (C,D~_I) and a side clause 
(C',Di_I) where C and C' are both clauses of the negation of PREREQUISITES 
(D¢i-1)). Then the terminal descendants of the defaults of D~_~ in the top clause are 
identical with the terminal descendants of the defaults of D~_x in the side clause. 

(2) Suppose, for 0 ~< i ~< k, that (C,D) is a centre clause of L~ which also occurs 
as a side clause of Li. Then the terminal descendants of the defaults of D in the 
centre clause are identical with the terminal descendants of the defaults of D in 
the side clause. 
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Theorem 7.1. Let A = (D,W) be a normal default theory, and let fl ~ La u x be a 
closed wff where Y~ is the set of Skolem functions of A. I f  there is a top down default 
proof of fl with respect to A, then A has an extension which contains ft. 

Proof. Suppose L o , . . . ,  Lk is a top down default proof of fl with respect to A. 
Our plan is to construct a top down default proof L~ , . . . ,  L~ of fl with respect to 
CLOSEU(A). The theorem will then follow by the completeness o f  top down 
default proofs for closed normal theories, and the definition of an extension of 
Section 7.1. 

(a) 

{ (R(x), 
I 

(rq, {6(x)}) 

(b) 

(-leO,'), { })I-- (R(a), ,S(a)}) 

(rq, 

( - a P ( x ) , ~ ( P ( a )  v Q(b), { 

(Q(b), ~ ('a Q(x), {6(x)]-) a 

(r-q, {,S(a), ,S(b)}) 

}) (~P(a),{6(a)})~(P(a) v Q(b), { }) 

( Q ( b ) , ~  (-7 Q(b), {6(b)}) 

(f"l, {6(a), 6(b)}) 

FiG. 7. 
-'1 Q(x) is the other clause of the negation of PREREQUISITES({8(x) }). 

To begin, notice that the defaults in any occurrence of an indexed clause in 
Lo , . . . ,  Lk are functioning as 'answer literals' (Green (1969)). The purpose served 
by the introduction of a default 6(x) into a proof is to record the fact that 6(x) is 
required in the proof, as well as to provide a history of the instances assumed by 
the free variables x during the course of the proof. 

Now consider any linear resolution proofL~ in the sequence Lo,. •., Lk. For any 
occurrence of an indexed clause (C,D) in L~, let ~ be that substitution such that 
for each default 6(0 ~ D, 6(t), is the terminal descendant of this occurrence of 6(t). 
Define (C,D)a to be the g-instance of this occurrence of (C,D) in Li. (Thus to 
obtain the g-instance of (C,D), instantiate the free variables of each default of D 
such that it becomes identical with its terminal descendant, and instantiate the 
corresponding variables of C in the same way.) Now replace each indexed clause 
of L~ by its g-instance. The result is a tree L~. For example Fig. 6(b) is obtained from 
Fig. 6(a) by replacing each indexed clause by its g-instance. 

We first show that L~ is in fact a linear resolution proof, i.e. that successive 
clauses in the tree L~ are indexed resolvents of their immediate predecessors. 
Now Li returns a set of defaults D~ which is the 'answer clause' of the deduction Lv 
Moreover, the set of terminal descendants of the defaults of D~ is an instance of D~, 
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i.e. this set is an instance of the 'answer clause' of L~. It then follows from the results 
in Luckham and Nilsson (1971 ) that "he tree L~ represents a linear resolution proof. 

To prove that L'o,..., L't is a top down default proof o f / l  with respect to 
CLOSED(A) it is necessary to prove: 

(1) L~ is a linear resolution proof of ~,{  }) from CLAUSES(CLOSED(A)). 
(2) For 0 ~< i ~< k -  1, if D ¢i)' is the set of defaults introduced into L" and if L[ 

returns D~ then L~+ 1 is a linear resolution proof of (PREREQUISITES(D(J}~),D'i) 
from CLAUSES(CLOSED(A)). 

(3) The set of defaults introduced into L;, is empty. 
(4) If L~, returns D;, then W u CONSEQUENTS(D;,) is satisfiable. 

Property (3) follows immediately from the corresponding property for Lk. 
To prove (4) notice that by the construction of L~ , . . . ,  L~, it is the case that D~, is 
precisely .the default support of the admissible proof sequence Lo,. . . ,  Lk so by 
the definition of an admissible proof sequence, W u CONSEQUENTS(D~) is 
satisfiable. 

We now prove (1). We begin by proving that L~ is a linear resolution proof of 
(~,{ }) from CLAUSES(CLOSED(A)). We know that L~ is a linear resolution 
proof of (p,{ }) from CLAUSES(A) and L~ is obtained from Lo by replacing 
each indexed clause by its g-instance. If, for some clause Cp of ~/1 (Cp,{ }) is a 
top or side clause of Lo, then it is its own g-instance and (Cp,{ }) is the corres- 
ponding top or side clause of L~. Similarly, if (C,{ }) ¢ CLAUSES(A) (so that 
C ~ W) is a side clause of Lo then it is a side clause of L~ and (C, { }) ¢ CLAUSES 
(CLOSED(A)). Suppose (C(x),{6(x)})¢ CLAUSES(A) (so that C(x) is a clause of 
the consequent of 6(x)) is a side clause of Lo. Then if 6(g) is the terminal descendant 
of this occurrence of 6(x), then (C(g),{6(g)}) is the g-instance of (C(x),{6(x)}) and 
this is the corresponding side clause of L~; clearly (C(g)~{6(g)})¢CLAUSES 
(CLOSED(A)). Finally, suppose (C,D) is a side clause of Lo which is also a centre 
clause of Lo. Then in L~ the corresponding side clause is (C,D)cr, the g-instance of 
the occurrence of (C,D) as a side clause of Lo. Also, in L~ the corresponding 
centre clause is (C,D)~', the g-instance of the occurrence of (C,D) as a centre 
clause of Lo. But by condition (2) of Definition g, ¢r = ¢' so that in L~ the side 
clause (C,D)cr is also a centre clause. This completes the proof of (1). 

It remains to prove (2), i.e. that L~+~ is a linear resolution proof of (PRE- 
REQUISITES(DO~'),D~) from CLAUSES(CLOSED(A)). We already know that 
L;+ 1 is a linear resolution proof. Hence it is sufficient to prove: 

(a) Whenever (C(x),{ })~CLAUSES(A) is a side clause of Ls+t then its 
g-instance, which is identical to itself, is in CLAUSES(CLOSED(A)). This is 
immediate. 

(b) Whenever (C(x),{6(x)})~ CLAUSES(A) is a side clause of L~+x then it~ 
0-instance (C(g),{6(g)}) is in CLAUSES(CLOSED(A)). This is immediate. 
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(c) Whenever (C,D) is a side clause of L~+x which is also a centre clause of Li+z 
then the g-instance of its occurrence as a side clause in L~+I is identical to the g- 
instance of its occurrence as a centre clause in L H .  The proof of this is the same 
as for Lo. 

(d) Whenever (C, Di) occurs in L~+I, either as the top clause or as a side clause, 
where C is a clause of ~PREREQUISITES(D(O), then its g-instance (Ca, Dia) is 
such that Ca is a clause of -~PREREQUISITES(D~O') and D~a = D~. 

To prove (d) we distinguish two cases: 

Case 1. (C,D~) is the top clause of L~+~. 

Now D~a is the set of terminal descendants of the default occurrences in (C, Di), 
the top clause of L~+~. But these are the same as the terminal descendants of the 
default occurrences in (I-I,D~), the bottom clause of Li. Since L; returns D;, this 
latter clause has g-instance (VI,D~). Hence D~a = D~. Moreover, Dcoa is the set 
of  terminal descendants of the defaults introduced into Li and by the construction 
of L~, this is the same as the set of defaults introduced into L~, i.e. D~0cr = D~o'. 
Hence 

PREREQUISITES(D(O)a = PREREQUISITES(D0)a)= PREREQUISITES(D(~}'). 
Since C is a clause of mPREREQUISITES(D(0), Ca is a clause of ~ P R E -  
REQUISITES(D")'). 

Case 2. (C, Di) is a side clause of Li+l. 

Then if (B,D~) is the top clause of L~+I, and (Ba',Dia') its g-instance, then by 
condition (1) of Definition g o = a'  so that D~a = D~a'. By Case 1, D~a' = D'~ 
so D~a = D'~. By the same argument as in Case 1 Ca is a clause of -TPRE- 
REQUISITES(D(O'). 

We shall say, as we did for closed theories, that a default theory is consistent iff 
it has a consistent extension. 

Theorem 7.2. Let A = (D,W) be a consistent normal default theory. I f  A has an 
extension which contains [3 then there is a top down default proof of  fl with respect 
to A. 

Proof. We shall merely sketch a proof. Since A has an extension E containing/3 
then E is an extension for the closed normal default theory CLOSED(A)= 
(CLOSED-DEFAULTS(A),W). CLOSED(A) is consistent since A is. Then by the 
completeness of top down default proofs for closed normal default theories 
(Theorem 5.1), there is a top down default proof L~ , . . . ,  L~, of/~ with respect to 
CLOSED(A). By using standard lifting techniques from resolution theory 
(Robinson 0965)) we can lift this proof L ~ , . . . ,  L~ to a top down default proof 
L o , . . . ,  Lk of/] with respect to A. Essentially this is ~one by first lifting L~ to Lo 
by replacing, in L~, each clause (C(g),{~(g)}) e CLAUSES(CLOSED(A)) by its 
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uninstantiated general clause (C(x),{6(x)})¢ CLAUSES(A) and using thi3 general 
clause to form the resulting resolvent. In the case of a side clause of L~ which is 
also a centre clause, this centre clause will already have been lifted and it is this 
rifted clause which replaces the side clause. In general then, assume L~ , . . . ,  L~ 
have been rifted to Lo , . . . ,  Lz respectively. Assume L~ and Lz return D" and Di 
respectively, and that DOt and D¢o are the defaults introduced into L" and L~ 
respectively. Now to lift L~+I to L~+I first lift its top clause (C',D'). C' is a clause of 
~PREREQUISITES(DtO'). Now D' is an instance of D~ so that (C',D') is an 
instance of a clause (C,D~) where C is a clause of ~PREREQUISITES(DtO). 
Replace (C',D~) in L~+x by (C, Di). Similarly, if (C',D') is a side clause of L~+l 
replace it by (C,D~). To lift the remaining side clauses of L~+x proceed as for L~. 

The resulting lifted proofs L o , . . . ,  Lk have the following properties: 

(1) Lo is a linear resolution proof of (fl,{ }) from CLAUSES(A). 

(2) For 1 ~< i ~< k, L~ is a linear resolution proof of 

(PREREQUISITES(D0-1)),Di_x) from CLAUSES(A). 
(3) The set of defaults introduced into/-,k is empty. 

Moreover, since L~, . . . ,  L[, is a top down default proof of fl with respect to 
CLOSED(A), Di, --- CLOSED-DEFAULTS(A). Since D~, is a ground instance of 
Dk there is a ground substitution y over H(F u Y,), where I; is the set of Skolem 
functions of A, such that D~, = Dk~. Finally, since W u CONSEQUENTS(D~,) is 
satisfiable, so is W w CONSEQUENTS(DkT). We have proved that Lo , . . . ,  Lk 
is an admissible proof sequence for fl with respect to A. 

To see that Lo , . . . ,  Lk is a top down default proof of t ,  notice that if (C',D') is 
a clause of L' which was lifted to a clause (C,D) of Ll, then the terminal descendants 
of the defaults of D are precisely the defaults of D'. From this the result follows. 

The combination of Theorems 7.1 and 7.2 yields the following: 

Theorem 7.3 (Completeness of top down default proofs). Let A be a consistent 
normal.default theory and Y, the set of  Skolem functions of A. Suppose fl ~ LA ~ z is a 
closed wff. Then A has an extension containing fl iff fl has a top down default proof 
with respect to A. 

7.3. Open defaults: other generalizations 

In view of the definition of an extension for default theories with open defaults, 
all of the results of Section 3 continue to hold for normal default theories in 
general. In particular then, any such theory always has an extension, its extensions 
are orthogonal, it will be semi-monotonic, and the addition of new normal defaults 
cannot decrease the number of its extensions. 

To generalize the results of Section 6 on belief revision requires only defining. 
for a top down default proof Pp of t ,  DS(Pp) to be the default support of Pp, i.e, 
with reference to Definition 8 in Section 7.2, DS(Pp) is defined to be D~,. In the 
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case of closed normal default theories DS(P#) is the set of all of the defaults which 
enter into the proof Pp. In the case of normal default theories in general, the 
defaults entering into the proof P# become instantiated during the course of the 
proof. DS(P#) is the set of all of the final instances of these defaults or, in the 
unlikely event that these final instances still contain variables, DS(P#) is obtained 
from these final instances by suitably substituting ground terms of H(F w Z) for 
these variables in such a way that W w CONSEQUENTS(DS(P#)) is satisfiable. 
With this notion of DS(P#) all of the results on belief revision of Section 6 continue 
to hold for normal default theories in general. 

8 Discussion and Further Problems 

Many interesting problems related to default logic remain to be explored. The 
most obvious formal omission in the previous sections is a model theory; the 
concept of an extension is defined proof theoretically. What one would like is a 
model theoretic characterization of the extensions of a default theory (D,W) in 
the following sense: 

We want some way of viewing the defaults of D as restricting the models of W 
such that any resulting restricted set of models of W satisfies all and only the 
wits of an extension for (D,W); and conversely, any extension for (D,W) will be 
the set of wffs satisfied by some such restricted set of models of W. 

An interesting proposal which involves non-monotonic reasoning is the method 
of circumscription described in McCarthy (1977). Briefly circumscription is a 
formalization of the notion of reasoning within the minimal models of some set 
of first order axioms. There appears to be some relationship between circum- 
scription and default logic. What can be proved is that the minimal models for a 
sentential set of wits coincide with the models of the extensions induced on these 
wffs by the closed world assumption. This result suggests some deeper relationship 
between dosed world default theories and the method of circumscription although 
I have been unable to discover just what this might be. 

We have elsewhere (Reiter (1978a)) discussed some relationship between defaults 
and the 'negation' operator of Artificial Intelligence programming languages like 
I'ROLOG (Roussel (1975), Kowalski (1979)) and PLANr~R (Hewitt (i972)). As 
implemented in these languages, NOT((wff)) succeeds iff (wff) is not provable. 
It turns out that there are a number of difficulties with this notion of a procedural 
negation (Clark (1978)), not the least of which is specifying just what 'not provable' 
means in this setting. Accordingly, it might be of some interest to view the proof 
theory of Section 7 for normal default theories as a possible basis for defining the 
semantics of negation in such languages. 

A major computational problem stems from the ubiquitous satisfiability tests 
required in the proof theory as well as in the conditions for belief revision. These 
all have the form of a satisfiability requirement on W u CONSEQUENTS(D') 
for some set of defaults D' _%_= D. While no algorithm exists for this, a variety of 
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heuristics are possible. One such heuristic would be to begin with the wffs of 
CONSEQUENTS(D') and use these as a basis for successive 'forward chaining' 
or bottom up deductions into W, in order to derive new consequence: of these. 
If, after some time bound or forward chaining level bound has been exceedzd, no 
contradiction has been derived then one might assume satisfiability of ~ e  original 
set of wffs. While this appears to be the most general such heuristic it is also apt 
to be the most computationaUy expensive. Clever schemes should be possible. 
One such might involve extensive indexing of the_wffs of W, perhaps along the 
fines of Kowalski (1974). AccessibilRy finks in this index scheme could in some 
instances provide rapid tests for the satisfiability of W with respect to CON- 
SEQUENTS(D'). The whole question of heuristics for testing satisfiability appears 
to be totally unexplored. 

An important pragmatic problem is the specification of techniques for choosing 
between two or more competing extensions. In the hometown example of Section 
1.3 we were faced with choosing between extensions, one in which Mary's home- 
town is Toronto because her spouse lives there, the other in which her hometown 
is Vancouver because her employer is located there. 

One general heuristic would be to rank order conflicting defaults of this kind in 
order of their intuitive plausibility, selecting the highest priority default t~-st in 
attempting a proof for some wff. Only during a process of belief revision ~ould 
lower priority defaults be invoked. While some such static priority scheme might 
well be useful in certain settings, it seems not to work for the example of Mary's 
hometown. There appears to me to be no a priori reason for preferring Toronto 
over Vancouver, or vice versa here. Instead, what seems to be required is some 
dynamic scheme for rationalizing the apparent discrepancy. For example, having 
discovered that Mary's hometown might be both Vancouver and Toronto a 
default reasoning program should seek ways of resolving the conflict by searching 
out suitable detailed information about Mary. Is she separated from her spouse ? 
If so, opt for her employer's location. Is she some sort of area representative for 
her employer? Is that area near Toronto ? If so, choose her spouse's hometown. 
This view of extension selection as a process of rationalizing discrepancies has the 
nice property of avoiding the introduction of fine details, such as the possibility 
of Mary being an area representative, into the default reasoning process itself. 
Such details are taken into consideration only if the default reasoner discovers 
a discrepancy in its derivation of a belief. One can imagine a similar need for 
rationalization whenever belief revision is called for. 

Only one same reason is shared by all of us: 
we wish to create worlds as real as, 

but other than the world that is. 

John Fowles, The French Lieutenant's Woman 
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