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Part 1.

Common Law Constraint
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Some contested lexical items

• “Sandwich”

Is a burrito a sandwich?

• “Potato chip”

Are Pringles potato chips?

• “Vessel”

Is the Super Scoop a Vessel?

• “Employee”

Are Uber drivers employees, or contractors?

• “Trade secret”

Is the Lynchburg Lemonade recipe a trade secret?
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Constraint in the common law

1. Several approaches:

• There is no such thing

• Coherence accounts

• Constraint depends on rules

– The rules are defeasible

– The rules are strict

Rules must be applied as stated

Distinguishing allowed

2. Distinguishing:

Identifying differences between facts of prece-
dent and current cases, to explain why prece-
dent rule should not be applied to current
case, with the result that . . .

. . . the rule is modified
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3. Example:

Case 1: Can Emma watch TV?

Facts: age 9, no dinner, did homework

Rule: at least 9 → TV

Outcome: TV

Case 2: Can Max watch TV?

Facts: age 14, no dinner, no homework

Rule: no homework → no TV

Outcome: no TV

4. A problem:

How can a court be constrained by rules, if
it is able to modify those rules at will?
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5. A solution (Raz/Simpson):

Courts can modify previous rules, but not entirely
at will—subject to two conditions:

• Can only narrow previous rules, by adding fur-
ther restrictions (that distinguish that case from
this one)

• The narrowed rules must continue to yield same
results in the earlier cases

6. A further problem:

Why suppose that courts can modify rules
in exactly this way?

7. My goal:

Answer this question . . .

But then the answer suggests a different
view of common law reasoning
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Factors, reasons, rules, cases

1. Factors for π and δ:

F π = {fπ1 , . . . , f
π
n}

F δ = {f δ1, . . . , f
δ
m}

F = F π ∪ F δ

2. Examples:

In domentic domain:

Age 9 or older

Didn’t eat dinner

Hit sister

Had a bad dentist visit

In trade secrets doman (Rissland, Ashley):

Took measures to protect information

Confidentiality agreement

Information publicly available

Information reverse-engineerable

3. Fact situation:

X ⊆ F

Xπ = X ∩ F π

Xδ = X ∩ F δ
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4. (Factor) reason: X ⊆ F s, where s is π or δ

Example: {fπ1 , f
π
2} is a reason, {fπ1 , f

δ
3} is not

5. When a reason holds:

X |= R iff R ⊆ X

X |= ¬φ iff X 6|= φ

X |= φ ∧ ψ iff X |= φ and X |= ψ

Example: {fπ1 , f
π
3 , f

δ
2, f

δ
3} |= {fπ1 , f

π
3} ∧ ¬{f δ1}

6. Rule: Where Rs is a reason for s and Rs1, . . . R
s
i are

reasons for s, a rule for s has form:

Rs ∧ ¬Rs1 ∧ . . . ∧ ¬Rsi → s

(Rs would be the reason for the decision)

Example:

{fπ1 , f
π
3} ∧ ¬{f δ1} ∧ ¬{f δ2, f

δ
4} → π

Some housekeeping functions:

Prem(r) = Rs ∧ ¬Rs1 ∧ . . . ∧ ¬Rsi

Prems(r) = Rs

Conc(r) = s
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7. Case: c = 〈X, r, s〉, where

Facts(c) = X

Rule(c) = r

Outcome(c) = s

subject to condition that

X |= Prem(r)

8. Example: c1 = 〈X1, r1, s1〉, where

X1 = {fπ1 , f
π
2 , f

π
3 , f

δ
1, f

δ
2, f

δ
3, f

δ
4}

r1 = {fπ1 , f
π
2} ∧ ¬{f δ1, f

δ
5} → π

s1 = π

9. A case base Γ is a set of cases
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The reason model

1. Consider c2 = 〈X2, r2, s2〉, with

X2 = {fπ1 , f
π
2 , f

δ
1, f

δ
2}

r2 = {fπ1} → π

s2 = π

What is the court telling us with c2 ?

Two things:

• Premπ(r2) = {fπ1} is a sufficient reason for π

• Premπ(r2) is stronger than the strongest reason
present for δ

The strongest reason present for δ is:

Xδ
2 = {f δ1, f

δ
2}

Therefore:

Xδ
2 <c2 Premπ(r2)

or

{f δ1, f
δ
2} <c2 {f

π
1}
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2. Continue with c2 = 〈X2, r2, s2〉, with

X2 = {fπ1 , f
π
2 , f

δ
1, f

δ
2}

r2 = {fπ1} → π

s2 = π

So we have Xδ
2 <c2 Premπ(r2) — anything else?

Yes. If W weaker than Xδ
2 and Z is stronger than

Premπ(r2), we have:

W <c2 Z

Example: since

{f δ1, f
δ
2} <c2 {f

π
1}

we have

{f δ1} <c2 {f
π
1 , f

π
4}

3. Preference derived from a case c = 〈X, r, s〉:

W <c Z iff W ⊆ Xs and Prems(r) ⊆ Z
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4. Preference derived from a case base Γ:

W <Γ Z iff there is c in Γ such that W <c Z

5. The case base Γ is inconsistent iff there are reasons
X and Y such that

X <Γ Y and Y <Γ X

The case base is consistent iff it is not inconsistent

6. The reason model of constraint:

Given Γ and new fact situation X, the rea-
son model of constraint requires a decision
based on some rule r for outcome s such
that Γ ∪ {〈X, r, s〉} consistent.
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7. Example: Γ = {c2}, where

c2 = 〈X2, r2, s2〉, with

X2 = {fπ1 , f
π
2 , f

δ
1, f

δ
2}

r2 = {fπ1} → π

s2 = π

New fact situation

X3 = {fπ1 , f
δ
1, f

δ
2, f

δ
3}

Suppose court wants to decide this case for δ on
the basis of {f δ1, f

δ
2}, leading to

c3 = 〈X3, r3, s3〉, with

X3 = {fπ1 , f
π
2 , f

δ
1, f

δ
2}

r3 = {f δ1, f
δ
2} → δ

s3 = δ

Then new case base is Γ′ = {c2, c3}, but this is
inconsistent:

{f δ1, f
δ
2} <c2 {f

π
1}

{fπ1} <c3 {f
δ
1, f

δ
2}

and both c2, c3 ∈ Γ′

So decision ruled out by reason constraint
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8. Another path: Γ = {c2} again, where

c2 = 〈X2, r2, s2〉, with

X2 = {fπ1 , f
π
2 , f

δ
1, f

δ
2}

r2 = {fπ1} → π

s2 = π

New fact situation

X4 = X3 = {fπ1 , f
δ
1, f

δ
2, f

δ
3}

Now decide this case for δ on the basis of {f δ1, f
δ
3},

leading to Γ = {c2, c4}, where

c4 = 〈X4, r4, s4〉, with

X4 = {fπ1 , f
π
2 , f

δ
1, f

δ
2}

r4 = {f δ1, f
δ
3} → δ

s4 = δ

This case base is consistent, with constraints

{f δ1, f
δ
2} <c2 {f

π
1}

{fπ1} <c4 {f
δ
1, f

δ
3}

9. Hypothesis: this is how case law develops—by
building up a stronger and stronger ordering on
reasons
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10. Now: two models of precedential constraint

Standard model:

• What’s important is rules

• Constrained to make decisions that can
be accommodated by rule modification,
in accord with Raz/Simpson conditions

• As law develops, rules become more com-
plicated

Reason model:

• What’s important is ordering relation on
reasons

• Constrained to make decisions consistent
with this ordering

• As law develops, ordering becomes stronger

What is the relation between them?
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11. Central result (equivalence):

Given Γ and a new situation X, a decision
based on some rule r favoring s satisfies the
standard model of constraint iff it satisfied
the reason model of constraint
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Quasi-technical issues

1. Preference ordering is not transitive. Consider Γ =
{c5, c6, c7}, where

c5 = 〈X5, r5, s5〉, with

X5 = {fπ1 , f
δ
1}

r5 = {fπ1} → π

s5 = π

c6 = 〈X6, r6, s6〉, with

X6 = {fπ1 , f
δ
2}

r6 = {f δ2} → δ

s6 = δ

c7 = 〈X7, r7, s7〉, with

X7 = {fπ2 , f
δ
2}

r7 = {fπ2} → π

s7 = π

Then have

{f δ1} <Γ {fπ1} <Γ {f δ2} <Γ {fπ2}

But not

{f δ1} <Γ {fπ2}

18



Solution: replace <Γ with its transitive closure in
definition of inconsistency

Old version:

The case base Γ is consistent iff there are
no reasons X and Y such that

X <Γ Y and Y <Γ X

New version:

The case base Γ is consistent iff there are
no reasons X and Y such that

X ≺Γ Y and Y ≺Γ X

where ≺Γ is the transitive closure of <Γ

Question: do we want the solution??
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2. Our definitions assume consistency of background
case base. But even it it’s inconsistent, we can
modify definitions to require that new decisions
introduce “no more” inconsistency

Old version:

Given Γ and new fact situation X, the rea-
son model of constraint requires a decision
based on some rule r for outcome s such
that Γ ∪ {〈X, r, s〉} consistent.

New version:

Given Γ and new fact situation X, the rea-
son model of constraint requires a deci-
sion based on some rule r for outcome s
such that: whenever Y <Γ∪{〈X,r,s〉} Z and
Z <Γ∪{〈X,r,s〉} Y , we also have Y <Γ Z and
Z <Γ Y .
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3. The law is not the rules

Example: recall Γ = {c2}, where

c2 = 〈X2, r2, s2〉, with

X2 = {fπ1 , f
π
2 , f

δ
1, f

δ
2}

r2 = {fπ1} → π

s2 = π

Recall that

X3 = {fπ1 , f
δ
1, f

δ
2, f

δ
3}

could be decided for δ on the basis of {f δ1, f
δ
3},

leading to Γ = {c2, c3}, where

c3 = 〈X3, r3, s3〉, with

X3 = {fπ1 , f
δ
1, f

δ
2, f

δ
3, }

r3 = {f δ1, f
δ
3} → δ

s3 = δ

and so imposing constraints

{f δ1, f
δ
2} <c2 {f

π
1}

{fπ1} <c3 {f
δ
1, f

δ
3}

21



But suppose that, prior to facing X3, the court
confronted the situation

X8 = {fπ1 , f
π
2 , f

δ
1, f

δ
3}

and decided for π through an application of the
rule r2, leading to Γ = {c2, c8}, where

c8 = 〈X8, r8, s8〉, with

X8 = {fπ1 , f
π
2 , f

δ
1, f

δ
3}

r8 = {fπ1} → π

s8 = π

so imposing the constraint

{f δ1, f
δ
3} <c8 {f

π
1}

But with this new constraint, the c3 decision is no
longer possible

Upshot: the sequence

c2, c3

is allowable, but the sequence

c2, c8, c3

is not, even though c8 results simply from an ap-
plication of the c2 rule

22



Semantics of the contested lexicon

1. Idea: Same theory, but instead of

π, δ

focus on

v, v

where v is some contested lexical item

2. Example (Super Scoop):

v = vessel

with factors

f v1 = subject to Coast Guard regulations

f v2 = captain and crew

f v3 = navigation lights

f v4 = ballast tanks

f v5 = galley for crew

f v1 = no self-propulsion

f v2 = primary business not navigation

f v3 = not moving at time
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Previous case (the Betty F):

c9 = 〈X9, r9, s9〉, with

X9 = {f v1, f
v
2, f

v
3, f

v
4, f

v
1 , f

v
2 , f

v
3}

r9 = {f v2, f
v
3} → v

s9 = v

So Γ = {c9} and have

{f v1, f
v
2, f

v
3, f

v
4} <Γ {f v2, f

v
3}

New fact situation (the Super Scoop):

X10 = {f v1, f
v
2, f

v
3, f

v
4, f

v
2 , f

v
3}

Court constrained to decide for v, leading to Γ′ =
{c9, c10} with

c10 = 〈X10, r10, s10〉, with

X10 = {f v1, f
v
2, f

v
3, f

v
4, f

v
2 , f

v
3}

r10 = {f v2, f
v
3} → v

s10 = v
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3. Example (Super Scoop, modified):

As before Γ = {c9} with

c9 = 〈X9, r9, s9〉, with

X9 = {f v1, f
v
2, f

v
3, f

v
4, f

v
1 , f

v
2 , f

v
3}

r9 = {f v2, f
v
3} → v

s9 = v

So

{f v1, f
v
2, f

v
3, f

v
4} <Γ {f v2, f

v
3}

Imagine (modified Super Scoop):

X ′
10 = {f v1, f

v
2 , f

v
3 , f

v
4, f

v
5, f

v
2, f

v
3}

Now court can decide for v on basis, say, of

{f v5} → v

leading to

{f v2, f
v
3} < {f v5}

But is that sensible??
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Part 2.

Default Logic
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Fixed priority default theories

1. Example:

Tweety is a bird

Therefore, Tweety is able to fly

Why? There is a default that birds fly

Tweety is a penguin

Therefore, Tweety is not able to fly

Because there is a (stronger) default that penguins
don’t fly

2. Another example:

I promised to meet Ann for lunch

Therefore, I ought to meet Ann for lunch

Why? I should do what I promise, by default

I see a drowning child

Therefore, I ought to rescue the child
(and so) not meet Ann for lunch

Because there is a (stronger) default that favors
rescuing the child
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3. Default rules: X → Y

Example: B(t) → F(t)

Instance of: B(x) → F(x) (“Birds fly”)

4. Premise and conclusion:

If δ = X → Y , then

Prem(δ) = X

Conc(δ) = Y

If D set of defaults, then

Conc(D) = {Conc(δ) : δ ∈ D}

5. Priority ordering on defaults (strict, partial)

δ < δ′ means: δ′ stronger than δ

6. Priorities have different sources:

Specificity

Reliability

Authority

Our own reasoning

For now, take priorities as fixed, leading to . . .
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7. A fixed priority default theory is a tuple

〈W ,D, <〉

where W contains ordinary statements, D contains
defaults, and < is an ordering

8. Example (Tweety Triangle):

W = {P,P ⇒ B}
D = {δ1, δ2}
δ1 = B → F
δ2 = P → ¬F
δ1 < δ2

9. Another example (Drowning child):

W = {P,D,¬(M ∧R)}
D = {δ1, δ2}
δ1 = P →M
δ2 = D → R

δ1 < δ2
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10. Main question: what can we conclude from such
a theory?

11. An extension E of 〈W ,D, <〉 is a belief set an ideal
reasoner might settle on, based this information

Usually defined directly, but we take roundabout
route . . .

12. A scenario based on 〈W ,D, <〉 is some subset S of
the defaults D

13. A proper scenario is the “right” subset of defaults

14. An extension E based on 〈W ,D, <〉 is a set

E = Th(W ∪ Conc(S))

where S is a proper scenario
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15. Returning to example: 〈W ,D, <〉 where

W = {P,P ⇒ B}
D = {δ1, δ2}
δ1 = B → F

δ2 = P → ¬F
δ1 < δ2

Four possible scenarios:

S1 = ∅
S2 = {δ1}
S3 = {δ2}
S4 = {δ1, δ2}

But only S3 proper (“right”), so extension is

E3 = Th(W ∪ Conc(S3))
= Th({P, P ⊃ B} ∪ {¬F})
= Th({P, P ⊃ B,¬F}),

16. Immediate goal: specify proper scenarios
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Binding defaults

1. Defined through preliminary concepts:

Triggering

Conflict

Defeat

2. Triggered defaults:

TriggeredW ,D,<(S) = {δ ∈ D : W ∪ Conc(S) ` Prem(δ)}

3. Example: 〈W ,D, <〉 with

W = {B}
D = {δ1, δ2}
δ1 = B → F

δ2 = P → ¬F
δ1 < δ2

Then

TriggeredW ,D,<(∅) = {δ1}
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5. Conflicted defaults:

ConflictedW ,D,<(S) = {δ ∈ D : W ∪ Conc(S) ` ¬Conc(δ)}

6. Example (Nixon Diamond):

Take 〈W ,D, <〉 with

W = {Q,R}
D = {δ1, δ2}
δ1 = Q→ P
δ2 = R → ¬P
< = ∅.

Then

TriggeredW ,D,<(∅) = {δ1, δ2}
ConflictedW ,D,<(∅) = ∅

But

ConflictedW ,D,<({δ1}) = {δ2}
ConflictedW ,D,<({δ2}) = {δ1}
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7. Basic idea: A default is defeated if there is a
stronger reason supporting a contrary conclusion

DefeatedW ,D,<(S) = {δ ∈ D : ∃ δ′ ∈ TriggeredW ,D,<(S).

(1) δ < δ′

(2) Conc(δ′) ` ¬Conc(δ)}.

8. Example of defeat (Tweety, again):

〈W ,D, <〉 where

W = {P,P ⇒ B}
D = {δ1, δ2}
δ1 = B → F
δ2 = P → ¬F
δ1 < δ2

Here, δ1 is defeated:

DefeatedW ,D,<(∅) = {δ1}
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9. Finally, binding defaults:

BindingW ,D,<(S) = {δ ∈ D : δ ∈ TriggeredW ,D,<(S)

δ 6∈ ConflictedW ,D,<(S)

δ 6∈ DefeatedW ,D,<(S)}

10. Stable scenarios: S is stable just in case

S = BindingW ,D,<(S)

11. Example (Tweety, yet again): four scenarios

S1 = ∅
S2 = {δ1}
S3 = {δ2}
S4 = {δ1, δ2}

Only S3 = {δ2} is stable, because

S3 = BindingW ,D,<(S3)
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Three complications

1. Complication #1: Can we just identify the proper
scenarios with the stable scenarios?

Almost . . . but not quite

2. Problem is “groundedness”

Take 〈W ,D, <〉 with

W = ∅
D = {δ1}
δ1 = A→ A
< = ∅.

Then S1 = {δ1} is a stable scenario, but shouldn’t
be proper

The belief set generated by S1 is

Th(W ∪ Conc(S)) = Th({A})

but that’s not right!
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3. Solution:

Let

ThS(W) =
Formulas provable from W when ordi-
nary inference rules supplemented with
defaults from S

Then given theory 〈W ,D, <〉, define scenario S as
grounded in W iff

Th(W ∪ Conc(S)) ⊆ ThS(W)

Finally, given 〈W ,D, <〉, define S as proper scenario
based on this theory iff

S is (i) stable and (ii) grounded in W
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4. Complication #2: Some theories have no proper
scenarios, and so no extensions

Example: 〈W ,D, <〉 with

W = ∅
D = {δ1, δ2}
δ1 = > → A
δ2 = A→ ¬A
δ1 < δ2

5. Options:

Syntactic restrictions to rule out “vicious
cycles”

Move to argumentation framework and opt
for “preferred” extensions
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6. Complication #3: Some theories have multiple

proper scenarios, and so multiple extensions

Example (Nixon Diamond, again):

Take 〈W ,D, <〉 with

W = {Q,R}
D = {δ1, δ2}
δ1 = Q→ P

δ2 = R → ¬P
< = ∅.

Then two proper scenarios

S1 = {δ1}
S2 = {δ2}

and so two extensions:

E1 = Th({Q,R, P})
E2 = Th({Q,R,¬P})
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7. Consider three options:

A. Choice: pick an arbitrary proper scenario

Sensible, actually

But hard to codify as a consequence rela-
tion

B. Brave/credulous: give some weight to any con-
clusion A contained in some extension

• Endorse A whenever A is contained in some
extension

Example: P and ¬P in Nixon case

• Endorse B(A)—A is “believable”—whenever
A is contained in some extension

Example: B(P) and B(¬P) in Nixon case

C. Cautious/“Skeptical”: endorse A as conclusion
whenever A contained in every extension

Defines reasonable consequence relation:
supports neither P nor ¬P in Nixon case

Note: most popular option, but some prob-
lems . . .
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8. Complication #3 is not a problem for normative
interpretation

Given a default theory ∆, two option for natural
deontic logic:

Conflict account: Accept ©A iff A ∈ E for
some extension E of ∆

(This generalizes van Fraassen)

Disjunctive account: Accept ©A iff A ∈ E
for some extension E of ∆

(This generalizes Kratzer)
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9. Example (Dinner with twins):

Take 〈W ,D, <〉 with

W = {A1, A2,¬(D1 ∧D2)}
D = {δ1, δ2}
δ1 = A1 → D1
δ2 = A2 → D2
< = ∅.

Two proper scenarios

S1 = {δ1}

S2 = {δ2}

and so two extensions:

E1 = Th({A1, A2,¬(D1 ∧D2)}, D1)

E2 = Th({A1, A2,¬(D1 ∧D2)}, D2)

The upshot is

Conflict account: ©(D1), ©(D2)

Disjunctive account: ©(D1 ∨D2)
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Elaborating default logic

1. Discuss here only two things:

Ability to reason about priorities

Treatment of “undercutting” or “exclusion-
ary” defeat

2. Begin with first problem

So far, fixed priorities on default rules

But we can reason about default priorities . . . and
then use the priorities we arrive at to control our
reasoning
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3. Five steps:

#1. Add priority statements (δ7 < δ9) to
object language

#2. Introduce new variable priority default theories

〈W ,D〉

with priority statements now belonging to W
and D

#3. Add strict priority axioms to W:

δ < δ′ ⇒ ¬(δ′ < δ)

(δ < δ′ ∧ δ′ < δ′′) ⇒ δ < δ′′

#4. Lift priorities from object to meta language

δ <S δ
′ iff W ∪ Conc(S) ` δ < δ′.

#5. Proper scenarios for new default theories:

S is a proper scenario based on 〈W ,D〉

iff

S is a proper scenario based on 〈W ,D, <S〉
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4. Example (Extended Nixon Diamond):

Consider 〈W ,D〉 where

W contains Q, P

D contains

δ1 = Q→ P

δ2 = R → ¬P

δ3 = > → δ2 < δ1

δ4 = > → δ1 < δ2

δ5 = > → δ4 < δ3

Then unique proper scenario is

S = {δ1, δ3, δ5}
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5. Example (Perfected security interest):

Consider 〈W ,D〉 where

W contains

Possession

¬Documents

Later(δSMA, δUCC )

Federal(δSMA)

State(δUCC )

D contains

δUCC = Possession → Perfected

δSMA = ¬Documents → ¬Perfected

δLP = Later(δ, δ′) → δ < δ′

δLS = Federal(δ) ∧ State(δ′) → δ′ < δ

δLSLP = > → δLS < δLP

Unique proper scenario is

S = {δLSLP, δLP , δUCC}
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6. Undercutting defeat (epistemology), compared to
rebutting defeat

Example:

The object looks red

My reliable friend says it is not red

Drug 1 makes everything look red

7. Exclusionary reasons (practical reasoning)

Example (Colin’s dilemma, from Raz):

Should son go to private school??

The school provides good education

He’ll meet fancy friends

The school is expensive

Decision would undermine public education

Promise: only consider son’s interests . . .

8. How can this be represented?
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9. Four steps:

#1. New predicate Out, so that Out(δ) means that
δ is undercut, or excluded

#2. Introduce new exclusionary default theories as
theories in a language containing Out.

#3. Lift notion of exclusion from object to meta
language: where S is scenario based on theory
with W as hard information

δ ∈ ExcludedW ,D.<(S) iff W ∪ Conc(S) ` Out(δ)

#4. Binding defaults cannot be excluded:

BindingW ,D,<(S) = {δ ∈ D : δ ∈ TriggeredW ,D,<(S)

δ 6∈ ConflictedW ,D,<(S)

δ 6∈ DefeatedW ,D,<(S)

δ 6∈ ExcludedW ,D.<(S)}
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11. Example (Drugs):

Take 〈W ,D〉 where

D contains

δ1 = L→ R

δ2 = S → ¬R

δ3 = D1 → Out(δ1)

W contains L, D1, and δ1 < δ2, δ1 < δ3

(L = Looks red, R = Red, S = Statement by
friend, D1 = Drug 1)

So proper scenario is

S = {δ3}

generating the extension

E = Th(W ∪ {Out(δ1)})
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12. Example (More drugs):

Take 〈W ,D〉 where

W contains L, D1, D2, δ1 < δ2, and δ1 < δ3 < δ4

D contains

δ1 = L→ R

δ2 = S → ¬R

δ3 = D1 → Out(δ1)

δ4 = D2 → Out(δ3)

So proper scenario is

S = {δ1, δ4}

generating the extension

E = Th(W ∪ {R,Out(δ3)})
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13. Example (Colin again):

Let D contain

δ1 = E → S
δ2 = U → ¬S
δ3 = ¬Welfare(δ2) → Out(δ2)

(E = Provides good education, S = Send son to
private school, U = Undermine support for public
education)

The default δ3 is itself an instance of

¬Welfare(δ) → Out(δ),

Let W contain E, U , and ¬Welfare(δ2)

Then proper scenario is

S = {δ1, δ3}

generating the extension

E = Th(W ∪ {S,Out(δ2)})
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14. Example (The officers):

P = Some action to perform (or not)

A = Captain’s command to perform P

B = Major’s command not to perform P

C = Colonel’s command to ignore Major’s
command

Captain < Major < Colonel
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Part 3.

Coding Constrainting into Default Logic
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Interpreting case bases: fixed priority

1. Factor defaults:

Where X ⊆ F s is a factor reason, X → s is a factor
default

Example: {fπ1 , f
π
2} → π is a factor default

2. F is the set of factor defaults

3. Weak ordering of factor defaults:

Where r and r′ are factor defaults for same side,
r ≤ r′ iff Prem(r) ⊆ Prem(r′)

Example: If r = {fπ1} → π and r′ = {fπ1 , f
π
2} → π,

then r ≤ r′

4. Preference derived from a case c = 〈X, r, s〉:

Where r′ = Xs → s is strongest rule for losing side,
r′′ <c r

′′′ iff r′′ ≤ r′ and r ≤ r′′′.

5. Preference derived from a case base Γ:

r <Γ r
′ iff r <c r

′ for some c ∈ Γ
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6. Decision problem: X,Γ

∆X,Γ = 〈WX ,DF , <Γ〉, where

WX = X

DF = F

<Γ = preference derived from Γ

7. Fact:

Given X,Γ, and r a factor default favoring side s,
then:

r belongs to a stable scenario based on
∆X,Γ iff Γ ∪ {〈X, r, s〉} is reason consistent
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8. Example (from vessel domain):

Recall factors:

f v1 = subject to Coast Guard regulations

f v2 = captain and crew

f v3 = navigation lights

f v4 = ballast tanks

f v5 = galley for crew

f v1 = no self-propulsion

f v2 = primary business not navigation

f v3 = not moving at time

Case base Γ = {c11}, where

c11 = 〈X11, r11, s11〉, with

X11 = {f v1, f
v
3, f

v
1}

r11 = {f v1} → v

s11 = v

so that

{f v1, f
v
3} <Γ {f v1}
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New situation:

X12 = {f v1, f
v
4, f

v
1}

Relevant factor defaults:

r1 = {f v1} → v

r2 = {f v4} → v

r3 = {f v1, f
v
4} → v

r4 = {f v1} → v

So decision problem is

∆X12,Γ = 〈WX,DF , <Γ〉, where

WX12
= {f v1, f

v
4 , f

v
1}

DF = {r1, r2, r3, r4}

r1 <Γ r4

with proper scenarios

S1 = {r4}

S2 = {r2, r3}
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Interpreting case bases: variable priorities

1. Value defaults:

Where r and r′ are factor defaults favoring oppo-
site sides, a value default has the form

> → r ≺ r′

Example:

r5 = > → r4 ≺ r1

2. V is the set of Value defaults

3. Decision problem: X,V

∆X,V = 〈WX,DF ,V〉, where

WX = X

DF ,V = F ∪ V
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4. Example:

Recall factors:

f v1 = subject to Coast Guard regulations

f v3 = navagation lights

f v4 = ballast tanks

f v1 = no self-propulsion

Recall relevant factor defaults:

r1 = {f v1} → v

r2 = {f v4} → v

r3 = {f v1, f
v
4} → v

r4 = {f v1} → v

Recall value default:

r5 = > → r4 ≺ r1

And consider agent with values

V1 = {r5}

confronting the fact situation

X12 = {f v1, f
v
4, f

v
1}
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So decision problem is

∆X12,V1
= 〈WX12

,DF ,V1
〉, where

WX12
= {f v1, f

v
4, f

v
1}

DF ,V1
= F ∪ V1

= {r1, r2, r3, r4} ∪ {r5}

= {r1, r2, r3, r4, r5}

with proper scenario

S1 = {r1, r2, r3, r5}
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5. Case default derived from c = 〈X, r, s〉:

Where r′ = Xs → s is strongest rule for losing side,
the case default derived from c is

c→ r′ ≺ r

Example: the case default derived from the case

c11 = 〈X11, r11, s11〉, with

X11 = {f v1, f
v
3, f

v
1}

r11 = {f v1} → v

s11 = v

is

r6 = c11 → r7 ≺ r4

where

r7 = {f v1, f
v
3} → v

6. CΓ is the set of case defaults derived from Γ
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7. Close ≺ under � representing weak ordering on
defaults

(r ≺ r′ ∧ r′ � r′′) ⊃ r ≺ r′′

(r � r′ ∧ r′ ≺ r′′) ⊃ r ≺ r′′

Example: Where

r1 = {f v1} → v

r7 = {f v1, f
v
3} → v

r4 = {f v1} → v

r6 = c11 → r7 ≺ r4

Have

r1 � r7 and r7 ≺ r4

So

r1 ≺ r4

8. What if value and case defaults conflict?

Example:

r6 = c11 → r7 ≺ r4

and

r5 = > → r4 ≺ r1
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9. Precedent defaults

Where r is a value default and r′ is a case default,
a precedent default has the form

> → r ≺ r′

Example: given value and case defaults

r5 = > → r4 ≺ r1

r6 = c11 → r7 ≺ r4

then

r8 = > → r5 ≺ r6

is a precedent default

10. PV,Γ is the entire set of precedent defaults ranking
case defaults from CΓ over value defaults from V



11. Decision problem: X,V,Γ

∆X,V,Γ = 〈WX,DF ,V,Γ〉, where

WX = X ∪ Γ

DF ,V,Γ = F ∪ V ∪ CΓ ∪ PV,Γ

12. Fact:

Given X,V,Γ, and r a factor default favoring s,
then:

r belongs to a stable scenario based on
∆X,V,Γ iff X ∪{〈X, r, s〉} is reason consistent
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13. Example:

Recall factors:

f v1 = subject to Coast Guard regulations

f v3 = navagation lights

f v4 = ballast tanks

f v1 = no self-propulsion

Recall relevant factor defaults (F):

r1 = {f v1} → v
r2 = {f v4} → v

r3 = {f v1, f
v
4} → v

r7 = {f v1, f
v
3} → v

r4 = {f v1} → v

Recall value default (V1):

r5 = > → r4 ≺ r1

Add case defaults derived from Γ1 = {c11} (CΓ1
)

r6 = c11 → r7 ≺ r4

(and so r1 ≺ r4)

Add precedent defaults comparing case and value
defaults (PV1,Γ1

)

r8 = > → r5 ≺ r6

And consider again the situation

X12 = {f v1, f
v
4, f

v
1}
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So decision problem is

∆X12,V1,Γ1
= 〈WX12

,DF ,V1,Γ1
〉, where

WX12
= X12 ∪ Γ1

= {f v1, f
v
4 , f

v
1} ∪ {c11}

= {f v1, f
v
4 , f

v
1 , c11}

DF ,V1,Γ1
= F ∪ V1 ∪ CΓ1

∪ PV1,Γ1

= {r1, r2, r3, r4} ∪ {r5} ∪ {r6} ∪ {r8}

= {r1, r2, r3, r4, r5, r6, r8}

with proper scenarios

S1 = {r4, r6, r8}

S2 = {r2, r3, r6, r8}
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Stepping back a bit . . .

1. Suppose court now makes decision for v (“vessel”)
on the basis of r2:

“It’s a vessel because it has ballast tanks”

This has a dynamic effect, updating case base to

Γ2 = Γ1 ∪ {〈X12, r2, v〉}

and so changing the meaning of “vessel” so that,
in future cases, {f v1} can never outweigh {f v4} . . . nor
can it outweigh {f v1, f

v
4}, {f v3, f

v
4}, {f v1, f

v
3 , f

v
4}, etc

2. Making the same decision on the basis of r3

“It’s a vessel because it is subject to Coast
Guard regulations and has ballast tanks”

has as similar effect, but less extensive

3. Even applying the existing rule r4

“It’s not a vessel because it’s not self-propelled”

changes the meaning of the term, by changing
underlying constraints
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4. Conjecture:

This sort of constraint reflects a principle of
conversational integrity at work whenever
we say, as part of a conversation, things
like

John is bald

Sarah is a good student

That apple is large

Target shooting is a sport

but simply placed under a microscope in
discussion of legal precedent

5. Upshot:

The “justification of precedent” might have
to do not so much with concerns of

equity

predictibility

efficiency

as we the application of this general con-
versational principle: we want to make sure
the courts are having the same conversa-
tion
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