JOHN F. HORTY

A SKEPTICAL THEORY OF MIXED INHERITANCE

1. INTRODUCTION

This paper is concerned with the problem of providing a semantic account for
inheritance networks capable of representing both strict and defeasible information.
The importance of representing defeasible information in a knowledge base —
particularly, in a frame- or network-based inheritance reasoner — has been widely
recognized ever since the publication of Minsky’s original paper on frames [11].
Although early systems designed to allow defeasible inheritance reasoning, such as
FRL [12] and NETL [6], were subject to semantic difficulties in their treatment of
cancellation, these problems by now are essentially solved. In fact, there exist today
a number of well-defined and intuitively attractive theories of defeasible inheritance,
including those of Touretzky [15], Sandewall [13], and Horty et al. [8]. The variety
of these theories does not seem to indicate any kind of instability or chaos in our
understanding, but instead, the presence of a range of options in the design space for
defeasible inheritance reasoners; some of these options are surveyed in Touretzky et
al. [16].

It has been suggested, however, by Brachman [3, 4] and Israel [10], that this
intense concern with the issue of representing defeasible information has obscured
some of the more general problems exhibited by network formalisms capable of
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268 A SKEPTICAL THEORY OF MIXED INHERITANCE

presents a first step along these lines: a theory of inheritance for semantic networks
containing strict or defeasible, positive or negative Is-A links, all mixed together.
The analysis of mixed inheritance described here is itself a mixture, combining the
theory of strict inheritance from Thomason et al. [14] with the skeptical theory of
defeasible inheritance provided by Horty et al. [8].

2. Basic CONCEPTS

2.1 Links and nets

Letters from the beginning of the alphabet (a through d) refer only to objects or
individuals: letters from the middle of the alphabet (m through t) refer only to
properties or kinds. Letters from the end of the alphabet (u through z) range over
both objects and properties.

The link types = => p and z 4% p represent positive and negative strict state-
ments. If z is a property, these positive and negative strict links are equivalent to
quantified conditionals: the link ¢ => p represents a statement of the form ‘Every
Q isa P’; the link g <% p represents a statement of the form ‘NoQ isa P'. If z is
an object, these positive and negative strict links are equivalent to atomic and neg-
atomic statements from ordinary logic: a = p and a <% p represent the statements
Pa and ~Pa.

The link types z — p and z -+ p represent positive and negative defeasible
statements. If z is a property, these defeasible links correspond to ordinary generic
statements: ¢ — p and r /4 p, for example, might stand for the statements ‘Birds
fly’ and ‘Mammals don’t fly’. There is nothing in classical logic very close in
meaning to generic statements like these. For example, ‘Birds fly’ does not mean
that all birds fly, since it is true even in the presence of exceptions. Instead, it scems
to mean that “typical birds” fly — or that for any given bird a, it is most natural to
suppose that a flies. If z is an object, it is more difficult to find a simple reading
for these defeasible links; but we will assume that a — p and a #+ p, respectively,
mean something along the lines of ‘It is most natural to suppose that Pa’ and ‘Itis
most natural to suppose that ~Pa’.

Capital Greek letters represent networks — finite graphs, with nodes and link
types as described. Networks are themselves classified as strict if they contain only
strict links, or defeasible if they contain no strict links emanating from property
nodes. Mixed networks can contain both strict and defeasible links emanating from

property nodes.

2.2 Paths

Lower case Greek letters refer 10 paths — special sequences of links. Often, it is
convenient to refer to an arbitrary path in a way that displays some of the nodes it
passes through without displaying the particular link types connecting those nodes.
For this purpose, we adopt a notation according to which ‘n(z,0,y)’ refers to an
arbitrary positive path, and ‘#(z, o, y)" likewise to an arbitrary negative path, from
z through o to y. As a convention governing this 7-notation, we assume that
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adjacency of node symbols entails adjacency of nodes on the paths symbolized.
Thus, for example, ‘#(z, u, o, y)’ refers to a negative path beginning with a direct
link of any type from z to u, and then moving through o to y.

Paths are classified as simple or compound, strict or defeasible, positive or
negative. The simple paths are just the direct links — classified as strict or defeasible,
positive or negative, along with the links themselves. Compound paths are defined
inductively, as follows.

1 If 7(z, o, p) is a strict positive path, then: x(x, o, p) = ¢ is a strict
positive path; 7(z, o, p) <% ¢ is a strict negative path; m(z, 7, p) — ¢
is a defeasible positive path; and #(z,0,p) # ¢ is a defeasible

negative path.

(2) If #(z, o, p) is a strict negative path, then: =(z, o, p) <= ¢ is a strict
negative path.

3) If 7(z, o, p) is a defeasible positive path, then: =(z, o, p)=>gisa

defeasible positive path; #(z, o, p) 4% ¢ is a defeasible negative path;
7(z, o, p) — ¢ is a defeasible positive path; and 7(z,0,p) /+ gisa
defeasible negative path.

(4) If #(z, o, p) is a defeasible negative path, then: 7(z,0,p) <= gisa
defeasible negative path.

It follows from this definition than an individual can occur in a path only as its
initial node. Let us define a negative segment as a strict or defeasible negative link,
possibly followed by a reverse positive strict path — that is, as a link sequence either
of the form &) /4 z3 < -+ < z, orof the form z; 45 22 <= - -+ <= Zn. Then it
follows from this definition also that if a negative segment occurs in a path, it can
occur only at the very end.

2.3 Inheritance

Intuitively, paths represent arguments, which enable certain statements as their
conclusions. A positive path of the form 7(z, o, y) enables the statement z = y
if it is strict or z is an individual, and the statement z — y if it is defeasible and
z is a kind; likewise, a negative path of the form #(z, o, y) enables z <% y if it is
strict or z is an individual, and z / y if it is defeasible and z is a kind. Given a
network T, the purpose of an inheritance theory is to specify the set of statements
supported by T' — that is, the set of statements we can reasonably conclude from
the statements contained in I'. We arrive at this specification in a roundabout way,
defining a statement as supported by I' just in case it is enabled by a path that
I' permits. It remains only to define the paths permitied by I' — intuitively, the
arguments sanctioned in the context of T'.

3. MOTIVATION

Since our approach to mixed inheritance combines the theory of strict inheritance
from [14] with the theory of defeasible inheritance from [8], we first summarize
these two theories, and then explain how they fit together.
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270 A SKEPTICAL THEORY OF MIXED INHERITANCE

3.1 Strict inheritance

For strict networks, our definition of permitted paths is very simple. According to
the theory of [14], a strict network I' permits exactly the paths it contains — that is,
I’ permits o just in case ¢ is a path entirely composed of links contained in T. In
the case of I'y (Figure 1), for example, the permitted paths include a = s = r and
P = q4» 7 <= 5. Suppose we interpret the nodes in this net so that p = starlings,
¢ = birds, »r = mammals, s = dogs, and @ = Rover. Then the first of these paths
shows us how I'; supports the conclusion that Rover is a mammal (a = r); the
second shows how it supports the conclusion that no starlings are dogs (p <% s). The
net does not permit, for example, the path p = s = r, since the link p = s is not
contained in I'y. Likewise, ¢ 4% r <= s <= a is not permitted, even though all its
links are contained in I'y, since it is not a path.
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Figure 1: T'y Figure 2: T',

It is important to note that this analysis of strict inheritance, although straightforward,
is not the standard view. Strict networks contain only strict links, each of which
is equivalent, as explained above, to a formula of classical logic. It may seem
natural, then, to use classical logic itself to provide a semantics for such a network
— by identifying the network with the set of formulas that translate its links, and
then defining a statement as supported by the network just in case it belongs to the
deductive closure of that set. This idea, which we take to be the standard view, is due
originally to Hayes [7]. To see that it is different from the theory of [14], consider,
for example, the net I'; (Figure 2). This network would be translated into the set
{Pa,~Pa,~Qa}. Since the set is inconsistent, any statement at all belongs to its
classical deductive closure; so according to the standard view, I'; should be taken
10 support every statement — including, say, Qa. According to the analysis of [14],
however, ', does not support Qa, since it permits no positive path from a to ¢, and
in fact provides uncontested evidence that ~Qa.

It is, in some ways, a delicate matter to decide between the analysis of strict
inheritance provided by [14] and the traditional analysis of [7]. One is always free to
regard a strict network simply as a notational variant of some classical theory, so that
the analysis of [7] would be appropriate. Still, there seems to be some value in taking
seriously the graph-based nature of inheritance reasoners, which derive conclusions
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corresponding only to actual paths. The problem is then to see whether we can
make logical sense of such a reasoner by designing an appropriate logic, rather than
by forcing the reasoner to conform to the standards of an already-existing logic.
This task is carried out for strict networks in [14], which provides both a Gentzen-
style proof theory for path-based inheritance reasoning and an interpretation of the
resulting logic in a four-valued model based on that explored by Belnap [1, 2] and
Dunn [6].

The proof theory of [14] is a calculus in the style of Gentzen [8] for proving
sequents of the form I' F A, where I is a set of statements (a net) and A a statement
(a link). Informally, such a sequent is supposed to mean that A is derivable from I'.
The sequent calculus contains as its structural rule the schema

AR A,

where A is atomic — that is, of the form a => p or a <% p. This gives us our axioms.
In addition, we have the following logical rules, for introducing both => and <,
on the right and on the left of the turnstile.

I''aea=>prFa=q
'_H“

I“rFp=q

F'rFa=p Aja=qkF A

b
IA,p=>qF A
I'Fa<bq AasspH A
—H
I'N'A,p=>qF A
I',a=phka<g
H
Ik psha
F'a=p Ajashgl A
aa
[Apsqb A
'Fa=>g Aja<tpt A
s

IA,ps#qk A

In the rules - = and I <%, I'* is supposed to represent a collection of formulas
not containing a. We do need both the rules => and =+’ to capture the meaning
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of = on the left of the turnstile; neither will do alone. Likewise, both <% F and
</ I’ are necessary.

We provide here a sample proof, of the sequent p => ¢, ¢ <% r - p <% r, simply
in order to illustrate these rules.

a=>pka=p a=>qla=gq
—
a=p,p>qla=gq aprbadhr

b

p=>q,q%r,a=>pkaspsr

P=>q,9%rkpshr

o

It is shown in [8] that this logic is both sound and complete with respect to the
notion of permission for strict nets: the sequent I' - A is provable just in case T’
enables A.

The interpretation of this logic relies on the set 7 = {{T'}, {F},0,{T, F}}
as truth values. Following Belnap and Dunn, we identify these values with the
four information states of a database with respect to a proposition: (i) the state of
possessing evidence for the proposition, and no evidence to the contrary; (ii) the
state of possessing evidence against the proposition, and no evidence to the contrary;
(iii) the state of possessing no evidence either for or against the proposition; (iv)
the state of possessing evidence both for the proposition and against it well. These
explanations should suggest why it is natural to take the power set of {7, F'} as the
set of truth values: if X is one of the values from 7, ‘T" € X' means that there is
evidence for any proposition bearing the truth value X, and ‘F € X’ means that
there is evidence against such a proposition.

A valuation v on the language of strict links can be defined as follows. Relative
to a domain D, the valuation assigns an individual v(a) in D to each individual term
a of the language, and a function v(p) from D 10 7 to each generic term p. Where v
is a valuation, v%a is the valuation like v for all terms other than a, but which assigns
the value d to a. The following rules extend v to the entire language.

. v(a = p) = [v(p)](v(a)).

' v(a <% p) = Not(v(pa)), where Not({T}) = {F}, Not({F}) =
{T}, Not(0) = 0,and Not({T, F}) = {T, F}.

i v(p = q) = {T}ifforalld € D, we have T € va(qa) if T €
v%a(pa) and F € uda(pa) if F e vda(qa); and v(p = ¢q) = 0
otherwise.

i v(p44q) = {T} if forall d € D, we have F € v%a(qa) if T €
vda(pa) and F' € vda(pa) if T € v%a(ga); and v(ipstg) = 0
otherwise,

Given this interpretation, the notion of semantic implication is defined in the usual
way: I' semantically implies A just in case, for all valuations v, if T’ € v(B) for all
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B €T, thenT € v(A). Itis shown in [16] that this kind of four-valued implication
characterizes the notion of strict inheritance, in the sense that a net I' enables a
statement A just in case I' semantically implies A. From this it follows, of course,
that the implication relation characterizes also the the sequent calculus presented
above: I' F A is provable just in case I' semantically implies A,

3.2 Defeasible inheritance
Defeasible inheritance is more complicated than strict inheritance, primarily because
defeasible networks, unlike their strict counterparts, do not permit all the paths they
contain. The distinction derives from the different role played in the two kinds of
networks by conflicting paths. Any strict network containing conflicting paths is
inconsistent, though— as the theory of [16] shows — the effects of the inconsistency
can be localized. But defeasible networks can contain conflicting paths withouteven
local inconsistency. Consider, for example, I's (Figure 3). Although this net contains
conflicting paths, it is not inconsistent: it admits interpretations under which all of
its links represent true statements — including the well-known interpretation with
a = Nixon, ¢ = Quakers, r = Republicans, and p = pacifists. Since the net is
consistent, no reasonable theory of defeasible inheritance would say that it permits
both of the conflicting paths a = ¢ — p and a = r + p at once. Any such theory
would allow us to draw inconsistent conclusions — for example, that Nixon both is
a pacifist (¢ = p) and that he isn't (a <% p) — from consistent information.
Theories of defeasible inheritance differ among themselves in their treatment
of conflicting paths. One kind of theory associates with each network containing
conflicting paths a number of different extensions, corresponding to different resolu-
tions of the conflicts. Because each extension supports a maximal set of conclusions
(subject to certain constraints) we describe these theories as credulous; an example is
the theory of Touretzky [15]. The present paper is based on an alternative approach
to defeasible inheritance, developed in [16], which has the advantage of associating
with any given network only a single extension. We describe this alternative as a
skeptical approach — since it embodies the broadly skeptical idea that conflicting
arguments, represented in networks by conflicting paths, tend to neutralize each
other. Applied to I's, for example, the skeptical approach tells us that neither of the
conflicting paths should be permitted.
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Figure 3: T'3 Figure 4: I'y
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In fact, the theory of [8] is not thoroughly skeptical: its skepticism is restricted
to compound paths, and even compound paths can be neutralized only by those
conflicting paths that are not themselves, as we say, preempted. The first of these
restrictions has the effect that, even in the face of conflicts, any non-compound
path contained in a network — that is, any direct link — will be permitted by that
network. As explained in [8], this principle is well-motivated, particularly against
the background of the four-valued logic; but it is not a crucial feature of the theory.

The second restriction, however, is crucial. Preemption is the mechanism
by which, in case of conflicts, arguments based on more specific information are
allowed to override arguments based on less specific information. For example,
consider I'y (Figure 4) — with, say, a = Tweety, p = penguins, ¢ = birds, and r =
flying things. Since this net contains the two conflicting paths a = p — ¢ — r and
a = p 4+ r, an unrestricted skepticism would permit neither. However, it seems in
this case that the latter of these paths should be permitted, because it represents an
argument based on more specific information. The second restriction above reflects
this intuition. We say that a path of the form 7 (z, 7,v) — y is preempted in a net
I’ just in case there is a node 2 such that (i) I' permits a path «(z, 1y, z, T2, v), s0
that z provides *“more specific” information than v about z, and (ii) z /4 y € T, so
that z gives us “direct” information contrary to that provided by v. (The definition
of preemption for negative paths is symmetrical.) According to the theory of [8],
even a conflicted path will be permitted if the only paths with which it conflicts are
themselves preempted; so, for example, a = p /4 r will be permitted by I'4, since
a = p — q — r is preempted.

3.3 Mixed inheritance

The theory of [14] tells us, then, that a strict network permits exactly the paths
it contains; the theory of [8] tells us that a defeasible network permits a path it
contains just in case that path is either a direct link, or any other path with which
it conflicts is itself preempted. Now, to combine these two theories into an account
of inheritance for mixed networks, we first carry over entirely the analysis of strict
inheritance from [14], and then modify the analysis of defeasible inheritance from
[8] to accommodate the presence of strict links. Since it incorporates the analysis of
[14], the resulting theory tells us that a mixed network permits exactly the strict paths
it contains. Likewise, since it is based on the analysis of [8], the resulting theory
also embodies the skeptical idea that a compound defeasible path is neutralized by
any conflicting path that is not itself preempted. However, in order to develop this
idea in a mixed context, we need to modify slightly our conception of the kind of
paths that represent conflicts, as well as our understanding of the preemption relation
among conflicting paths.

In defeasible networks, all conflicts share a simple form: they involve paths
with identical initial nodes, identical end nodes, and opposite polarity. But the
presence of strict links introduces the possibility of less direct conflicts, even among
defeasible paths. As an illustration,consider I's (Figure 5). Here it seems reasonable,
in light of the strict segment r => s = t,toregardp — ¢ —randp — u — v 7+ 1
themselves as conflicting paths, even though they do not share an end node. Imagine,
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forexample, that r = dogs, s = mammals, and £ = animals, so that the strict segment
tells us that all dogs are animals. In the context of Is, then, the pathp — g — r,
which represents an argument to the effect that p’s are dogs, carries with equal force
the conclusion that p’s are animals; so it conflicts with P — u — v 4 ¢, which
represents an argument that p’s are not animals,

What this example shows is that two defeasible paths can represent conflicting
arguments, even if they have different end nodes, when one of the paths clashes with
astrict consequence of the other. Of course, such strict consequences can themselves
be classified as positive or negative. Let us define

kr(z) = {z} U {y : I contains a strict positive path from z to y},
kr(z) = {y : T contains a strict negative path from z to y},

so that xr(z) and &p(z) represent the positive and negative strict conseguences
attributed to x by I' — the set of properties that z must possess, according to T,
and the set of properties that z cannot possess. It is then natural to extend our
conception of conflicting defeasible paths so that, in addition to the ordinary kinds
of clashes, a path of the form 7(z,,u) — y will be said to conflict in anetT
with any path of the form =(z, 7, v) 7+ m where m € xr(y), and also with any
path of the form = (z, 7, v) — m where m € &r(y). Our general skeptical attitude
regarding conflicting paths will then have to apply to these new kinds of conflicts as
well. In I's, for instance, neither p — q — r nor p — u — v 4 ¢ will be permitted,
since each is neutralized by its conflict with the other.

s

re

Figure 5: T's Figure 6: I'g

Just as the presence of strict links allows for the possibility of new kinds of conflicts,
however, it provides also for the possibility of new relations of preemption. To
see this, consider the network I's (Figure 6), supplied with an interpretation under
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which a = Hermann, p = persons born in America, ¢ = native speakers of German,
r = persons born in Pennsylvania, and s = native speakers of Pennsylvania Dutch.
Under this interpretation, I's tells us is that Hermann is a particular speaker of
Pennsylvania Dutch, that every speaker of Pennsylvania Dutch speaks German
(since Pennsylvania Dutch is a dialect of German), that German speakers tend not
to be born in America, that speakers of Pennsylvania Dutch tend to be born in
Pennsylvania, and that everyone born in Pennsylvania is born in America.

According to our new, extended conception, the pathsa => s — randa = s =
q 7+ p now represent conflicting arguments in the context of I's, since p € xr,(r).
Of course, we would not want to remain skeptical in this case. The patha = s =
¢ 7+ p, representing the argument that Hermann was not born in America since he
is a native speaker of German, should be preempted in I's: the fact that his dialect
is Pennsylvania Dutch provides a more specific argument to the contrary. Without
modification, however, the treatment of preemption from [8] does not give us this
result. A path can be preempted only if there is more specific and direct information
to the contrary; and, although s does provide “more specific” information than g,
the path s — r = p does not represent “direct” information to the contrary — at
least, not according to the standards of [8], which holds that direct information can
be carried only by direct links,

Evidently, it is this last requirement concerning the nature of direct information
that needs to be modified in the present context. In the context of defeasible networks,
it makes good sense to say that direct information can be carried only by direct links:
any compound path represents an argument that can itself be undermined. In the
context of mixed nets, however, certain kinds of compound paths can legitimately
be thought to carry direct information — namely, compound paths consisting of a
single defeasible link followed by a strict end segment, of any length. In I'g, for
example, the path s — r = p should be thought of as telling us directly that speakers
of Pennsylvania Dutch are born in America: for even by the standards of [8],5 — r
counts as a direct statement of the fact that speakers of Pennsylvania Dutch are born
in Pennsylvania, and the strict extension » => p simply tells us that everyone born
in Pennsylvania is born in America.

Adjusting our definition of preemption to account for this new notion of direct
information, we say now that anegative path =(z, 7, v) /+ mis preempted in a mixed
network I' if there exist nodes z and n such that I' permits a path #(z, 11, z, 72, v)
with z — n € T and m € xr(n). This new definition allows us to conclude, as it
should, that a = s = ¢ +/+ p is preempted in I'g; so the net does end up supporting
the conclusion that Hermann was born in America. It is a bit more complicated to
formulate mixed preemption for positive paths, although no new ideas are involved,
simply because direct information to the contrary can now take the form either of
a positive defeasible link followed by a negative strict extension, or of a negative
defeasible link followed by a reverse positive strict extension. Formally, we say that
a positive path 7(z,7,v) — m is preempted in a mixed network I' if there exist
nodes z and n such that I permits a path 7(z, 7y, z, 72, v) with either (i) z = n € T
and m € kr(n) or (ii) z /+ n € I and n € kp(m).
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4. DEFINING MIXED INHERITANCE

In this section, we assemble our motivational ideas into a rigorous definition of the
permission relation for mixed networks; we use the symbol b’ to stand for the
permission relation, so that ‘T’ p ¢’ means that the net T’ permits the path o.

4.1. Mixed degree

Like that of [8], the present definition is inductive. Qur first step, then, is to assign a
measure of “complexity” to each path o in a net I in such a way that it can be decided
whether I p o once it is known whether T p o/ for each path ¢’ less complex in T’
than ¢ itself.

In order to arrive at the appropriate notion of path complexity, we proceed
through a number of auxiliary ideas. As we recall, a path is a joined sequence of
links containing a negative segment, if at all, only at the very end. Let us say, then,
thata generalized path is a sequence of links joined like an ordinary path, except that
it can contain negative segments anywhere, and perhaps more than one. {Example:
P/ q < r /> s < tis a generalized path, but it is not a path, since its negative
segment p /4 ¢ <= r is not an end segment.) Next, let us define the defeasible
length of a generalized path as follows: if the generalized path does not contain a
strict initial segment, then its defeasible length is simply the number of defeasible
links in the path; if the generalized path does contain a strict initial segment, then
its defeasible length is the number of defeasible links in the path augmented by one.
(Example: the generalized path r — s = t — u has a defeasible length of two,
since it contains two defeasible links and no strict initial segment; the generalized
pathp = ¢ => r — s => t — u is three, since it contains a strict initial segment
along with two defeasible links.)

Using these ideas, we can now define the degree of apath o inanet I — written,
degp(0) — as the greatest defeasible length of any acyclic generalized pathin T
from the initial node of ¢ to its end node. (Example: degs(p — ¢ — r) = 3, since
the acyclic generalized path from p to r in I's whose defeasible length is greatest is
P — u — v /At < s < r, with a defeasible length of 3.) In order to insure that
the assignment of degree to the paths in a network has the appropriate properties,
we need to restrict the application of our theory, as in [8], to paths free from certain
kinds of defeasible cycles (a defeasible cycle is a cyclic generalized path containing
at least one defeasible link); for the present, we limit will our attention, even more
severely than necessary, to networks which are either entirely acyclic, or which

contain only strict cycles.

The notion of degree defined here is a straightforward generalization of the
notion defined in [8]. However, it is not quite appropriate as a measure of path
complexity for an inductive definition of the permission relation; in the present
context, the measure of complexity needs to carry just a bit more information.
Basically, we want our measure of a path’s complexity to_tell us, in addition its
degree, whether or not the path possesses a strict end segment. Therefore, we define
the mixed degree of a path o in a net T as a pair (n,v). The first component of
the pair tells us the degree of o in I': n = degp (o). The second component tells
us, simply, whether or not o possesses a strict end segment: by convention, we let

L]
v
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v = 0 if o does not possess a strict end segment, and v = 1 if it does. We define
a lexical ordering on the mixed degrees by giving priority to the first component:
(n,v) < (n',v') iff cither n < n’ orn = n’ and v < v'. The idea behind this
ordering is that degree is the primary measure of path complexity — but of two
paths identical in degree, one with and one without a strict end segment, the path
lacking the strict end segment is classified as less complex.

4.2, The definition

Our definition of the permission relation has the overall structure of a definition by
cases. Any path o from a mixed network can be divided into the subpaths u(o) and
6(), where p(o) is the maximal strict end segment of o, and (o) is the result of
truncating (o) from o. (Example: if 0 is z = y — p<fr < s, then (o) is
p<pr < sand §(o) is z = y — p.) Using this notation, then, we specify the
conditions under which I' p o in three separate cases, depending on the form of o,
Our first case deals with defeasible paths possessing strict end segments.

Case A: o # §(c) and o # p(o). ThenT p o iffT' p §(c) and T b p(o).
The next case deals with strict paths.
Case B: o = (o). Then T p o iff each link in ¢ is contained in T.

Finally, we deal with the case of paths ending in defeasible links — which itself
divides into subcases, as such paths may be simple or compound.

CaseC-I: o= 8(o) and o is a direct link. ThenT poiffe €T

Case C-II: o = §(c) and o is a compound path. Two subcases to consider.
1. o is a positive path, of the form x(z, 01, u) — y. Then T p o iff

@) T p x(z,09,u);

) u—yeT;

(c) Form € xp(y), z 4+ m g T and m ¢ &r(z);

(d) Form € kr(y),z — m ¢ I'and m ¢ xp(z);

(¢) Forall v, m, r such that T' p n(z,7,v) withv 4 m € T
and m € xr(y), there exist z, n, 7y, 75 such that either (i)
z=zor(i)T p n(z, 1,2z, 7m,v), with(iii) z — n € T and
m € kr(n);

(f) Forall v, m, T such thatT p x(z, 7, v) withv — m € I" and
m € Er(y), there exist z, n, 71, 75 such that either (i) z = z
or (i) ' b (2, 7, z, 72, v), with either (iii)z = n €T and
m € kr(n)or(iviz AneTlandn e kr(m).

2. 0 is a negative path, of the form 7(z, oy, u) /4 y. Then T b o iff
(@ I pa(z,0q,u);
M) ufy€eT;
(c) Formsuchthaty € kr(m),z — m g I'and m ¢ kp(z);
(d) Forallv, m, 7,suchthatT' p x(z, 7,v) withv — m € I and
y € kr(m), there exist z, n, 71, 7 such that either {z==¢=
or (i) T p n(z,n, z, 72, v), with either (iii) 2 — n € I’ and
m € kp(n) or (iv) 2 4+ n € T and n € xp(m).
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It should be clear that this definition, although structured as a definition by
cases, is properly an induction on mixed degree. Case A defines permission for a
path o of mixed degree (n, 1) in terms of the path §(¢) of mixed degree (n,0) and
the path (o) of mixed degree (1, 1) — both inductively simpler. Cases B and C-1
are basis cases, defining permission respectively for paths of mixed degree (1, 1)
and (1,0). Finally, Case C-II defines permission for paths of mixed degree (n, 0)
with n > 1 in terms of paths of mixed degree (n’, v') — where v’ may be either 0
or 1, but n’ < n so that the overall measure of mixed degree is simpler.

It is evident from Case B that our treatment of mixed inheritance agrees with
the treatment of [14] when it is applied to strict networks. It agrees also with the
treatment of [8] when it is applied to purely defeasible networks — and the proof of
this fact is reassuringly simple. If I' is a defeasible network, then the mixed degree
of any path in I' as defined here is simply (n, 0), where n is its ordinary degree as
defined in [8]; so the two inductive definitions move through paths in the same order.
If T is purely defeasible, then only the Cases C-I and C-II are used in determining
permission. Case C-I is identical to the corresponding clause in the definition from
[8]. Since T" is defeasible, it turns out that for every node z we have kr(z) = {z}
and Er(z) = 0. Under these conditions, the extra clauses (d) and (f) in Case C-II.1
disappear (become logical truths), and the remaining clauses in both Case C-II.1 and

C-I1.2 are logically equivalent to the corresponding clauses in the definition from
[81.

5. CONCLUSION

By combining the analysis of strict inheritance from [14] with the skeptical analysis
of defeasible inheritance from [8], we have developed a well-defined and intui tively
attractive theory of inheritance for semantic networks containing both strict and
defeasible links. Although these matters are not discussed here, this theory does
satisfy the crucial properties of soundness and atomic stability defined in [8]. At
this point, the topic that stands out as the most important area for further research
concerns the application of this work to the representation of complex concepts,
such as Brachman and Israel’s “three-legged elephant” or the traditional “unmarried
man.” In order to represent such concepts along with defeasible information in a
taxonomic reasoner, it is necessary, first, to develop a theory of inheritance allowing
for the expression of both strict and defeasible relations. The present paper presents

such a theory — but it does not go on to address the problem of dealing with complex
concepts within this framework.
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The account of mixed inheritance described here was worked out in conjuction
with Richmond Thomason, who has developed an equivalent approach to the same
problem,; it was first presented in [10). I am very grateful to Thomason, and also to
David Touretzky, both for sparking my interest in the topic of inheritance, and for
many illuminating discussions.

This paper is dedicated with respect and affection to Nuel Belnap.
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