Using Citations to Generate Surveys of Scientific Paradigms

Saif Mohammad†∗, Bonnie Dorr†‡∗, Melissa Egan†‡, Ahmed Hassanφ, Pradeep Muthukrishnanφ, Vahed Qazvinianφ, Dragomir Radevφ§, David Zajic‡⋄

Institute for Advanced Computer Studies† and Computer Science‡, University of Maryland. Human Language Technology Center of Excellence∗. Center for Advanced Study of Languageφ. {saif,bonnie,mkegan,dmzajic}@umiacs.umd.edu

Department of Electrical Engineering and Computer Scienceφ School of Information§, University of Michigan. {hassanam,mpradeep,vahed,radev}@umich.edu

Abstract
The number of research publications in various disciplines is growing exponentially. Researchers and scientists are increasingly finding themselves in the position of having to quickly understand large amounts of technical material. In this paper we present the first steps in producing an automatically generated, readily consumable, technical survey. Specifically we explore the combination of citation information and summarization techniques. Even though prior work (Teufel et al., 2006) argues that citation text is unsuitable for summarization, we show that in the framework of multi-document survey creation, citation texts can play a crucial role.

1 Introduction
In today’s rapidly expanding disciplines, scientists and scholars are constantly faced with the daunting task of keeping up with knowledge in their field. In addition, the increasingly interconnected nature of real-world tasks often requires experts in one discipline to rapidly learn about other areas in a short amount of time.

Cross-disciplinary research requires scientists in areas such as linguistics, biology, and sociology to learn about computational approaches and applications, e.g., computational linguistics, biological modeling, social networks. Authors of journal articles and books must write accurate surveys of previous work, ranging from short summaries of related research to in-depth historical notes.

Interdisciplinary review panels are often called upon to review proposals in a wide range of areas, some of which may be unfamiliar to panelists. Thus, they must learn about a new discipline “on the fly” in order to relate their own expertise to the proposal.

Our goal is to effectively serve these needs by combining two currently available technologies: (1) bibliometric lexical link mining that exploits the structure of citations and relations among citations; and (2) summarization techniques that exploit the content of the material in both the citing and cited papers.

It is generally agreed upon that manually written abstracts are good summaries of individual papers. More recently, Qazvinian and Radev (2008) argue that citation texts are useful in creating a summary of the important contributions of a research paper. The citation text of a target paper is the set of sentences in other technical papers that explicitly refer to it (Elkiss et al., 2008a). However, Teufel (2005) argues that using citation text directly is not suitable for document summarization.

In this paper, we compare and contrast the usefulness of abstracts and of citation text in automatically generating a technical survey on a given topic from multiple research papers. The next section provides the background for this work, including the primary features of a technical survey and also the types of input that are used in our study (full papers, abstracts, and citation texts). Following this, we describe related work and point out the advances of our work over previous work. We then describe how citation texts are used as a new input for multi-document summarization to produce surveys of a given technical area. We apply four different summarization techniques to data in the ACL Anthol-
ogy and evaluate our results using both automatic (ROUGE) and human-mediated (nugget-based pyramid) measures. We observe that, as expected, abstracts are useful in survey creation, but, notably, we also conclude that citation texts have crucial survey-worthy information not present in (or at least, not easily extractable from) abstracts. We further discover that abstracts are author-biased and thus complementary to the broader perspective inherent in citation texts; these differences enable the use of a range of different levels and types of information in the survey—the extent of which is subject to survey length restrictions (if any).

2 Background

Automatically creating technical surveys is significantly distinct from that of traditional multidocument summarization. Below we describe primary characteristics of a technical survey and we present three types of input texts that we used for the production of surveys.

2.1 Technical Survey

In the case of multi-document summarization, the goal is to produce a readable presentation of multiple documents, whereas in the case of technical survey creation, the goal is to convey the key features of a particular field, basic underpinnings of the field, early and late developments, important contributions and findings, contradicting positions that may reverse trends or start new sub-fields, and basic definitions and examples that enable rapid understanding of a field by non-experts.

A prototypical example of a technical survey is that of “chapter notes,” i.e., short (50–500 word) descriptions of sub-areas found at the end of chapters of textbook, such as Jurafsky and Martin (2008). One might imagine producing such descriptions automatically, then hand-editing them and refining them for use in an actual textbook.

We conducted a human analysis of these chapter notes that revealed a set of conventions, an outline of which is provided here (with example sentences in italics):

1. Introductory/opening statement: The earliest computational use of X was in Y, considered by many to be the foundational work in this area.

2. Definitional follow up: X is defined as Y.

3. Elaboration of definition (e.g., with an example): Most early algorithms were based on Z.

4. Deeper elaboration, e.g., pointing out issues with initial approaches: Unfortunately, this model seems to be wrong.

5. Contrasting definition: Algorithms since then...

6. Introduction of additional specific instances / historical background with citations: Two classic approaches are described in Q.

7. References to other summaries: R provides a comprehensive guide to the details behind X.

The notion of text level categories or zoning of technical papers—related to the survey components enumerated above—has been investigated previously in the work of Nanba and Kan (2004b) and Teufel (2002). These earlier works focused on the analysis of scientific papers based on their rhetorical structure and on determining the portions of papers that contain new results, comparisons to earlier work, etc. The work described in this paper focuses on the synthesis of technical surveys based on knowledge gleaned from rhetorical structure not unlike that of the work of these earlier researchers, but perhaps guided by structural patterns along the lines of the conventions listed above.

Although our current approach to survey creation does not yet incorporate a fully pattern-based component, our ultimate objective is to apply these patterns to guide the creation and refinement of the final output. As a first step toward this goal, we use citation texts (closest in structure to the patterns identified by convention 7 above) to pick out the most important content for survey creation.

2.2 Full papers, abstracts, and citation texts

Published research on a particular topic can be summarized from two different kinds of sources: (1) where an author describes her own work and (2) where others describe an author’s work (usually in relation to their own work). The author’s description of her own work can be found in her paper. How others perceive her work is spread across other papers that cite her work. We will refer to the set of sentences that explicitly mention a target paper Y as the citation text of Y.
Traditionally, technical survey generation has been tackled by summarizing a set of research papers pertaining to the topic. However, individual research papers usually come with manually-created “summaries”—their abstracts. The abstract of a paper may have sentences that set the context, state the problem statement, mention how the problem is approached, and the bottom-line results—all in 200 to 500 words. Thus, using only the abstracts (instead of full papers) as input to a summarization system is worth exploring.

Whereas the abstract of a paper presents what the authors think to be the important contributions of a paper, the citation text of a paper captures what others in the field perceive as the contributions of the paper. The two perspectives are expected to have some overlap in their content, but the citation text also contains additional information not found in abstracts (Elkiss et al., 2008a). For example, how a particular methodology (described in one paper) was combined with another (described in a different paper) to overcome some of the drawbacks of each. A citation text is also an indicator of what contributions described in a paper were more influential over time. Another distinguishing feature of citation texts in contrast to abstracts is that a citation text tends to have a certain amount of redundant information. This is because multiple papers may describe the same contributions of a target paper. This redundancy can be exploited to determine the important contributions of the target paper.

Our goal is to test the hypothesis that an effective technical survey will reflect information on research not only from the perspective of its authors but also from the perspective of others who use/commend/discredit/add to it. Before describing our experiments with technical papers, abstracts, and citation texts, we first summarize relevant prior work that used these sources of information as input.

3 Related work

Previous work has focused on the analysis of citation and collaboration networks (Teufel et al., 2006; Newman, 2001) and scientific article summarization (Teufel and Moens, 2002). Bradshaw (2003) used citation texts to determine the content of articles and improve the results of a search engine. Citation texts have also been used to create summaries of single scientific articles in Qazvinian and Radev (2008) and Mei and Zhai (2008). However, there is no previous work that uses the text of the citations to produce a multi-document survey of scientific articles. Furthermore, there is no study contrasting the quality of surveys generated from citation summaries—both automatically and manually produced—to surveys generated from other forms of input such as the abstracts or full texts of the source articles.

Nanba and Okumura (1999) discuss citation categorization to support a system for writing a survey. Nanba et al. (2004a) automatically categorize citation sentences into three groups using pre-defined phrase-based rules. Based on this categorization a survey generation tool is introduced in Nanba et al. (2004b). They report that co-citation (where both papers are cited by many other papers) implies similarity by showing that the textual similarity of co-cited papers is proportional to the proximity of their citations in the citing article.

Elkiss et al. (2008b) conducted several experiments on a set of 2,497 articles from the free PubMed Central (PMC) repository.1 Results from this experiment confirmed that the cohesion of a citation text of an article is consistently higher than the that of its abstract. They also concluded that citation texts contain additional information are more focused than abstracts.

Nakov et al. (2004) use sentences surrounding citations to create training and testing data for semantic analysis, synonym set creation, database curation, document summarization, and information retrieval. Kan et al. (2002) use annotated bibliographies to cover certain aspects of summarization and suggest using metadata and critical document features as well as the prominent content-based features to summarize documents. Kupiec et al. (1995) use a statistical method and show how extracts can be used to create summaries but use no annotated metadata in summarization.

Siddharthan and Teufel (2007) describe a new reference task and show high human agreement as well as an improvement in the performance of argumentative zoning (Teufel, 2005). In argumentative zoning—a rhetorical classification task—seven

1http://www.pubmedcentral.gov
classes (Own, Other, Background, Textual, Aim, Basis, and Contrast) are used to label sentences according to their role in the author’s argument.

Our aim is not only to determine the utility of citation texts for survey creation, but also to examine the quality distinctions between this form of input and others such as abstracts and full texts—comparing the results to human-generated surveys using both automatic and nugget-based pyramid evaluation (Lin and Demner-Fushman, 2006; Nenkova and Passonneau, 2004; Lin, 2004).

4 Summarization systems

We used four summarization systems for our survey-creation approach: Trimmer, LexRank, C-LexRank, and C-RR. Trimmer is a syntactically-motivated parse-and-trim approach. LexRank is a graph-based similarity approach. C-LexRank and C-RR use graph clustering (‘C’ stands for clustering). We describe each of these, in turn, below.

4.1 Trimmer

Trimmer is a sentence-compression tool that extends the scope of an extractive summarization system by generating multiple alternative sentence compressions of the most important sentences in target documents (Zajic et al., 2007). Trimmer compressions are generated by applying linguistically-motivated rules to mask syntactic components of a parse of a source sentence. The rules can be applied iteratively to compress sentences below a configurable length threshold, or can be applied in all combinations to generate the full space of compressions.

Trimmer can leverage the output of any constituency parser that uses the Penn Treebank conventions. At present, the Stanford Parser (Klein and Manning, 2003) is used. The set of compressions is ranked according to a set of features that may include metadata about the source sentences, details of the compression process that generated the compression, and externally calculated features of the compression.

Summaries are constructed from the highest scoring compressions, using the metadata and maximal marginal relevance (Carbonell and Goldstein, 1998) to avoid redundancy and over-representation of a single source.

4.2 LexRank

We also used LexRank (Erkan and Radev, 2004), a state-of-the-art multidocument summarization system, to generate summaries. LexRank first builds a graph of all the candidate sentences. Two candidate sentences are connected with an edge if the similarity between them is above a threshold. We used cosine as the similarity metric with a threshold of 0.15. Once the network is built, the system finds the most central sentences by performing a random walk on the graph.

The salience of a node is recursively defined on the salience of adjacent nodes. This is similar to the concept of prestige in social networks, where the prestige of a person is dependent on the prestige of the people he/she knows. However, since random walk may get caught in cycles or in disconnected components, we reserve a low probability to jump to random nodes instead of neighbors (a technique suggested by Langville and Meyer (2006)).

Note also that unlike the original PageRank method, the graph of sentences is undirected. This updated measure of sentence salience is called as LexRank. The sentences with the highest LexRank scores form the summary.

4.3 Cluster Summarizers: C-LexRank, C-RR

Two clustering methods proposed by Qazvinian and Radev (2008)—C-RR and C-LexRank—were used to create summaries. Both create a fully connected network in which nodes are sentences and edges are cosine similarities. A cutoff value of 0.1 is applied to prune the graph and make a binary network. The largest connected component of the network is then extracted and clustered.

Both of the mentioned summarizers cluster the network similarly but use different approaches to select sentences from different communities. In C-RR sentences are picked from different clusters in a round robin (RR) fashion. C-LexRank first calculates LexRank within each cluster to find the most salient sentences of each community. Then it picks the most salient sentence of each cluster, and then the second most salient and so forth until the summary length limit is reached.
Most of work in QA and paraphrasing focused on folding paraphrasing knowledge into question analyzer or answer locator Rinaldi et al, 2003; Tomuro, 2003. In addition, number of researchers have built systems to take reading comprehension examinations designed to evaluate children’s reading levels Charniak et al, 2000; Hirschman et al, 1999; Ng et al, 2000; Riloff and Thelen, 2000; Wang et al, 2000. so-called “ definition ” or “ other ” questions at recent TREC evaluations Voorhees, 2005 serve as good examples. To better facilitate user information needs, recent trends in QA research have shifted towards complex, context-based, and interactive question answering Voorhees, 2001; Small et al, 2003; Harabagiu et al, 2005.

Table 1: First few sentences of the QA citation texts survey generated by Trimmer.

5 Data

The ACL Anthology is a collection of papers from the Computational Linguistics journal, and proceedings of ACL conferences and workshops. It has almost 11,000 papers. To produce the ACL Anthology Network (AAN), Joseph and Radev (2007) manually parsed the references before automatically compiling the network metadata, and generating citation and author collaboration networks. The AAN includes all citation and collaboration data within the ACL papers, with the citation network consisting of 11,773 nodes and 38,765 directed edges.

Our evaluation experiments are on a set of papers in the research area of Question Answering (QA) and another set of papers on Dependency parsing (DP). The two sets of papers were compiled by selecting all the papers in AAN that had the words Question Answering and Dependency Parsing, respectively, in the title and the content. There were 10 papers in the QA set and 16 papers in the DP set. We also compiled the citation texts for the 10 QA papers and the citation texts for the 16 DP papers.

6 Experiments

We automatically generated surveys for both QA and DP from three different types of documents: (1) full papers from the QA and DP sets—QA and DP full papers (PA), (2) only the abstracts of the QA and DP papers—QA and DP abstracts (AB), and (3) the citation texts corresponding to the QA and DP papers—QA and DP citations texts (CT).

We generated twenty four (4x3x2) surveys, each of length 250 words, by applying Trimmer, LexRank, C-LexRank and C-RR on the three data types (citation texts, abstracts, and full papers) for both QA and DP. (Table 1 shows a fragment of one of the surveys automatically generated from QA citation texts.) We created six (3x2) additional 250-word surveys by randomly choosing sentences from the citation texts, abstracts, and full papers of QA and DP. We will refer to them as random surveys.

6.1 Evaluation

Our goal was to determine if citation texts do indeed have useful information that one will want to put in a survey and if so, how much of this information is not available in the original papers and their abstracts. For this we evaluated each of the automatically generated surveys using two separate approaches: nugget-based pyramid evaluation and ROUGE (described in the two subsections below).

Two sets of gold standard data were manually created from the QA and DP citation texts and abstracts, respectively. (1) We asked two impartial judges to identify important nuggets of information worth including in a survey. (2) We asked four fluent speakers of English to create 250-word surveys of the datasets. Then we determined how well the different automatically generated surveys perform against these gold standards. If the citation texts have only redundant information with respect to the abstracts and original papers, then the surveys of citation texts will not perform better than others.

6.1.1 Nugget-Based Pyramid Evaluation

For our first approach we used a nugget-based evaluation methodology (Lin and Demner-Fushman, 2006; Nenkova and Passonneau, 2004; Hildebrandt et al., 2004; Voorhees, 2003). We asked three impartial annotators (knowledgeable in NLP but not affiliated with the project) to review the citation texts and/or abstract sets for each of the papers in the QA and DP sets and manually extract prioritized lists

2Creating gold standard data from complete papers is fairly arduous, and was not pursued.
of 2–8 “nuggets,” or main contributions, supplied by each paper. Each nugget was assigned a weight based on the frequency with which it was listed by annotators as well as the priority it was assigned in each case. Our automatically generated surveys were then scored based on the number and weight of the nuggets that they covered. This evaluation approach is similar to the one adopted by Qazvinian and Radev (2008), but adapted here for use in the multi-document case.

The annotators had two distinct tasks for the QA set, and one for the DP set: (1) extract nuggets for each of the 10 QA papers, based only on the citation texts for those papers; (2) extract nuggets for each of the 10 QA papers, based only on the abstracts of those papers; and (3) extract nuggets for each of the 16 DP papers, based only on the citation texts for those papers.3

We obtained a weight for each nugget by reversing its priority out of 8 (e.g., a nugget listed with priority 1 was assigned a weight of 8) and summing the weights over each listing of that nugget.

To evaluate a given survey, we counted the number and weight of nuggets that it covered. Nuggets were detected via the combined use of annotator-provided regular expressions and careful human review. Recall was calculated by dividing the combined weight of covered nuggets by the combined weight of all nuggets in the nugget set. Precision was calculated by dividing the number of distinct nuggets covered in a survey by the number of sentences constituting that survey, with a cap of 1. F-measure, the weighted harmonic mean of precision and recall, was calculated with a beta value of 3 in order to assign the greatest weight to recall. Recall is favored because it rewards surveys that include highly weighted (important) facts, rather than just a

<table>
<thead>
<tr>
<th>Human</th>
<th>Human2</th>
<th>Human3</th>
<th>Human4</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA–CT nuggets</td>
<td>0.524</td>
<td>0.711</td>
<td>0.468</td>
<td>0.695</td>
</tr>
<tr>
<td>QA–AB nuggets</td>
<td>0.495</td>
<td>0.606</td>
<td>0.423</td>
<td>0.608</td>
</tr>
</tbody>
</table>

Table 2: Pyramid F-measure scores of human-created surveys of QA and DP data. The surveys are evaluated using nuggets drawn from QA citation texts (QA–CT), QA abstracts (QA–AB), and DP citation texts (DP–CT).
Table 3: Pyramid F-measure scores of automatic surveys of QA and DP data. The surveys are evaluated using nuggets drawn from QA citation texts (QA–CT), QA abstracts (QA–AB), and DP citation texts (DP–CT).

<table>
<thead>
<tr>
<th>Input: QA citation surveys</th>
<th>Random</th>
<th>C-LexRank</th>
<th>C-RR</th>
<th>LexRank</th>
<th>Trimmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA–CT nuggets</td>
<td>0.321</td>
<td>0.434</td>
<td>0.268</td>
<td>0.295</td>
<td>0.616</td>
</tr>
<tr>
<td>QA–AB nuggets</td>
<td>0.305</td>
<td>0.388</td>
<td>0.349</td>
<td>0.320</td>
<td>0.543</td>
</tr>
<tr>
<td>Input: QA abstract surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA–CT nuggets</td>
<td>0.452</td>
<td>0.383</td>
<td>0.480</td>
<td>0.441</td>
<td>0.404</td>
</tr>
<tr>
<td>QA–AB nuggets</td>
<td></td>
<td>0.623</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input: QA full paper surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA–CT nuggets</td>
<td>0.239</td>
<td>0.446</td>
<td>0.299</td>
<td>0.199</td>
<td>0.199</td>
</tr>
<tr>
<td>QA–AB nuggets</td>
<td>0.294</td>
<td>0.520</td>
<td>0.387</td>
<td>0.301</td>
<td>0.290</td>
</tr>
<tr>
<td>Input: DP citation surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP–CT nuggets</td>
<td>0.219</td>
<td>0.231</td>
<td>0.170</td>
<td>0.372</td>
<td>0.136</td>
</tr>
<tr>
<td>Input: DP abstract surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP–CT nuggets</td>
<td>0.321</td>
<td>0.301</td>
<td>0.263</td>
<td>0.311</td>
<td>0.312</td>
</tr>
<tr>
<td>Input: DP full paper surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP–CT nuggets</td>
<td>0.032</td>
<td>0.000</td>
<td>0.144</td>
<td>0.280</td>
<td></td>
</tr>
</tbody>
</table>

* LexRank is computationally intensive and so was not run on the DP-PA dataset (about 4000 sentences).

Table 4: ROUGE-2 scores obtained for each of the manually created surveys by using the other three as reference. ROUGE-1 and ROUGE-L followed similar patterns.

<table>
<thead>
<tr>
<th>Human Performance: ROUGE-2</th>
<th>human1</th>
<th>human2</th>
<th>human3</th>
<th>human4</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: QA citation surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA–CT refs.</td>
<td>0.1807</td>
<td>0.1956</td>
<td>0.0756</td>
<td>0.2019</td>
<td>0.1635</td>
</tr>
<tr>
<td>QA–AB refs.</td>
<td>0.1116</td>
<td>0.1399</td>
<td>0.0711</td>
<td>0.1576</td>
<td>0.1201</td>
</tr>
<tr>
<td>Input: QA abstract surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA–CT refs.</td>
<td>0.1315</td>
<td>0.1104</td>
<td>0.1216</td>
<td>0.1151</td>
<td>0.1197</td>
</tr>
<tr>
<td>QA–AB refs.</td>
<td>0.2648</td>
<td>0.1977</td>
<td>0.1802</td>
<td>0.2544</td>
<td>0.2243</td>
</tr>
<tr>
<td>Input: DP citation surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP–CT refs.</td>
<td>0.1550</td>
<td>0.1259</td>
<td>0.1200</td>
<td>0.1654</td>
<td>0.1416</td>
</tr>
</tbody>
</table>

When we use manually created abstract surveys as reference, then the surveys generated from abstracts obtained significantly better ROUGE scores than the surveys generated from citation texts and full papers ($p < 0.05$) [RESULT 1]. This shows that crucial survey-worthy information present in citation texts is not available, or hard to extract, from abstracts and papers alone. Further, the surveys generated from abstracts performed significantly better than those generated from the full papers ($p < 0.05$) [RESULT 2]. This shows that abstracts and citation texts are generally denser in survey-worthy information than full papers.

When we use manually created citation text surveys as reference, then the surveys generated from citation texts obtained significantly better ROUGE scores than the surveys generated from abstracts and full papers ($p < 0.05$) [RESULT 1]. This shows that crucial survey-worthy information present in citation texts is not available, or hard to extract, from abstracts and papers alone. Further, the surveys generated from abstracts performed significantly better than those generated from the full papers ($p < 0.05$) [RESULT 2]. This shows that abstracts and citation texts are generally denser in survey-worthy information than full papers.

Among the automatic summarizers, C-LexRank and LexRank perform best. This is unlike the results found through the nugget-evaluation method, where Trimmer performed best. This suggests that Trimmer...
Table 5: ROUGE-2 scores of automatic surveys of QA and DP data. The surveys are evaluated by using human references created from QA citation texts (QA–CT), QA abstracts (QA–AB), and DP citation texts (DP–CT). These results are obtained after Jack-knifing the human references so that the values can be compared to those in Table 4.

* LexRank is computationally intensive and so was not run on the DP full papers set (about 4000 sentences).

We next plan to generate surveys using both citation texts and abstracts together as input. Given the overlapping content of abstracts and citation texts, discovered in the current study, it is clear that redundancy detection will be an integral component of this future work. Creating readily consumable surveys is a hard task, especially when using only raw text and simple summarization techniques. Therefore we intend to combine these summarization and bibliometric techniques with suitable visualization methods towards the creation of iterative technical survey tools—systems that present surveys and bibliometric links in a visually convenient manner and which incorporate user feedback to produce even better surveys.

Acknowledgments

This work was supported, in part, by the National Science Foundation under Grant No. IIS-0705832 (iOPENER: Information Organization for PENning Expositions on Research) and Grant No. 0534323 (Collaborative Research: BlogoCenter - Infrastructure for Collecting, Mining and Accessing Blogs), in part, by the Human Language Technology Center of Excellence, and in part, by the Center for Advanced Study of Language (CASL). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors.
References

