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Abstract

This article examines the application of two single-document sentence compression techniques to the problem of multi-
document summarization—a ‘“‘parse-and-trim” approach and a statistical noisy-channel approach. We introduce the
multi-candidate reduction (MCR) framework for multi-document summarization, in which many compressed candidates
are generated for each source sentence. These candidates are then selected for inclusion in the final summary based on a
combination of static and dynamic features. Evaluations reveal that sentence compression is a valuable component of a
larger multi-document summarization framework.
© 2007 Published by Elsevier Ltd.
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1. Introduction

This article presents an extension of two different single-document sentence compression methods to the
problem of multi-document summarization. The first, a “parse-and-trim” approach, has been implemented
in a system called Trimmer and its extended version called Topiary. The second, an HMM-based approach,
has been implemented in a system called HMM Hedge.

These systems share the basic premise that a textual summary can be constructed by selecting a subset of
words, in order, from the original text, with morphological variation allowed for some word classes. Trimmer
selects subsequences of words using a linguistically motivated algorithm to trim syntactic constituents from
sentences until a desired length has been reached. In the context of very short single-document summarization,
or headline generation, this approach is applied to the lead sentence (the first non-trivial sentence) in order to
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produce a short headline tens of characters long. HMM Hedge (Hidden Markov Model HEaDline GEnera-
tor), on the other hand, is a statistical headline generation system that finds the subsequence of words most
likely to be a headline for a given story. This approach is similar to techniques used in statistical machine
translation in that the observed story is treated as the garbled version of an unseen headline transmitted
through a noisy channel. In their original configurations, both Trimmer and HMM Hedge create sentence
compressions that mimic the style of Headlinese, a form of compressed English associated with newspaper
headlines (Mardh, 1980).

The goal of our work is to transition from a single-document summarization task with sentence-level char-
acter-based length constraint to a multi-document summarization task with summary-level word-based length
constraint. In headline generation, summaries should fill as much of the available space as possible, without
going over the limit. Headlines which fall below the length limit miss the opportunity to include additional
information. Headlines which exceed the length limit must be truncated, resulting in ungrammatical sentences
and loss of information. When the length constraint is applied to a collection of sentences instead of a single
sentence, concerns about individual sentence length become less important. A short sentence does not result in
wasted space, and it is acceptable to include a lengthy sentence as long as it includes important, non-redundant
information.

To transition from single-document to multi-document summarization, we examined different combina-
tions of possible sentence compressions to construct the best summary. A key innovation of this work—tested
for the first time in 2005 at the Document Understanding Conference (DUC-2005) (Zajic, Dorr, Schwartz,
Monz, & Lin, 2005b) and Multilingual Summarization Evaluation (MSE-2005) (Zajic, Dorr, Lin, & Schwartz,
2005a)—is the use of multiple compressed candidates for sentences in the source documents. Sentence com-
pression is used for different purposes in single- and multi-document summarization tasks. In the first case,
the goal is to fit long sentences into the available space while preserving important information. In multi-doc-
ument summarization, sentence compression is used to generate multiple candidates that capture relevant,
non-redundant information. Sentence selection algorithms can then be applied to determine which compressed
candidates provide the best combination of topic coverage and brevity.

We introduce a framework for extractive multi-document summarization called multi-candidate reduction
(MCR), whose architecture is shown in Fig. 1. Sentence compression techniques are employed in the interme-
diate stage of the processing pipeline to generate multiple compressed variants of source sentences. A sentence
selector then builds the final summary by choosing among these candidates, based on features propagated
from the sentence compression method, features of the candidates themselves, and features of the present sum-
mary state. Under this framework, our previously developed systems, Trimmer and HMM Hedge, are
employed to generate the compressed candidates. The MCR architecture also includes a filtering module,
which chooses the source sentences from which compressed candidates are generated. This work does not
examine the filtering process in detail, as we only employ very simple approaches, e.g., retain first n sentences
from each document.

Sentence compression supports extractive multi-document summarization by reducing the length of sum-
mary candidates while preserving their relevant content, thus allowing space for the inclusion of additional
material. However, given the interaction of relevance and redundancy in a multi-sentence summary, it is
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Fig. 1. The multi-candidate reduction (MCR) framework.
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unlikely that a single algorithm or scoring metric can provide the “best” compression of a sentence. This is the
motivation for MCR, which provides several alternative candidates for each source sentence. Subsequent pro-
cesses can then select among many alternatives when constructing the final summary.

This article is organized as follows: The next section relates our approach to other existing summarization
systems. In Section 3, we describe Trimmer, a variant of Trimmer called Topiary, and HMM Hedge. These
systems implement two fundamentally different approaches to sentence compression. Section 4 describes
how these tools can be applied to a multi-document summarization task. Section 5 describes evaluations of
our framework. Our systems have also been applied to several different types of texts; some of these applica-
tions will be briefly covered in Section 6. Finally, we propose future work in the area before concluding.

2. Related work

We have developed a “parse-and-trim” approach to sentence compression, which is implemented in a sys-
tem called Trimmer (Dorr, Zajic, & Schwartz, 2003b). The system generates a headline for a news story by
compressing the lead (or main) topic sentence according to a linguistically motivated algorithm that operates
on syntactic structures. Syntactic approaches to compression have been used in single-document summariza-
tion systems such as Cut-and-Paste (Jing & McKeown, 2000) and also in multi-document summarization sys-
tems such as SC (Blair-Goldensohn et al., 2004) and CLASSY (Conroy, Schlesinger, & Stewart, 2005; Conroy,
Schlesinger, O’Leary, & Goldstein, 2006). The SC system pre-processes input to remove appositives and rel-
ative clauses. CLASSY uses an HMM sentence selection approach combined with a conservative sentence
compression method based on shallow parsing to detect lexical cues to trigger phrase eliminations. The
approach taken by Trimmer is most similar to that of Jing and McKeown (2000), in which algorithms for
removing syntactic constituents from sentences are informed by analysis of human summarizers. Trimmer dif-
fers from these systems in that multiple compressed candidates of each sentence are generated. The potential
of multiple alternative compressions has also been explored by Vanderwende, Suzuki, and Brockett (2006).

Summaries may also contain lists of words or short phrases that denote important topics or concepts in the
document. In particular, extractive topic summaries consist of keywords or key phrases that occur in the doc-
ument. We have built Topiary, an extension to Trimmer, that constructs headlines combining compressed sen-
tences with topic terms. This approach is similar to the work of Euler et al. (2002), except that Euler uses topic
lists to guide sentence selection and compression toward a query-specific summary, whereas Topiary uses top-
ics to augment the concept coverage of a generic summary. Our system was demonstrated to be the top-per-
forming single-document summarization system in the DUC-2004 evaluation (Zajic, Dorr, & Schwartz, 2004).

In contrast to Topiary, which combines sentence compression with topic terms, others have constructed
summaries directly from topic terms. For example, Bergler, Witte, Khalife, Li, and Rudzicz (2003) choose
noun phrases that represent the most important entities as determined by noun phrase coreference chains.
Wang et al. (2005) propose a baseline system that constructs headlines from topic descriptors identified using
term frequency counts; this system was reported to outperform LexTrim, their Topiary-style system. Zhou and
Hovy (2003) construct fluent summaries from a topic list by finding phrase clusters early in the text that con-
tain important topic words found throughout the text.

The task of assigning topic terms to documents is related to text categorization, in which documents are
assigned to pre-defined categories. The categories can be labeled with topic terms, so that the decision to
put a document in a category is equivalent to assigning that category’s label to the document. Assigning topic
terms to documents by categorization permits the assignment of terms that do not occur in the document.
Lewis (1999) describes a probabilistic feature-based method for assigning Reuters topics to news stories.
Along these lines, OnTopic™ (Schwartz, Imai, Jubala, Nguyen, & Makhoul, 1997) uses an HMM to assign
the topics to a document.

In addition to Trimmer, we have implemented HMM Hedge (Hidden Markov Model HEaDline GEnera-
tor), a statistical headline generation system that finds the most likely headline for a given story. This
approach is similar to techniques used in statistical machine translation in that the observed story is treated
as the garbled version of an unseen headline transmitted through a noisy channel. The noisy-channel approach
has been used for a wide range of Natural Language Processing (NLP) applications including speech recog-
nition (Bahl, Jelinek, & Mercer, 1983); machine translation (Brown et al., 1990); spelling correction (Mays,
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Damerau, & Mercer, 1990); language identification (Dunning, 1994); and part-of-speech tagging (Cutting,
Pedersen, & Sibun, 1992). Of those who have taken a noisy-channel approach to sentence compression for
text summarization Banko, Mittal, and Witbrock (2000), Knight and Marcu (2000, 2002), and Turner and
Charniak (2005) have used the technique to find the most probable short string that generated the observed
full sentence.

Like other summarization systems based on the noisy-channel model, HMM Hedge treats the observed
data (the story) as the result of unobserved data (headlines) that have been distorted by transmission through
a noisy channel. The effect of the noisy channel is to add story words between the headline words. Our
approach differs from Knight and Marcu (2000), Banko et al. (2000), and Turner and Charniak (2005), in that
HMM Hedge does not require a corpus of paired stories and summaries. HMM Hedge uses distinct language
models of news stories and headlines, but does not require explicit pairings of stories and summaries.

To transition our single-sentence summarization techniques to the problem of multi-document summariza-
tion, we must consider how to select candidates for inclusion in the final summary. A common approach is to
rank candidate sentences according to a set of features and iteratively build the summary, appropriately re-
ranking the candidates at each step to avoid redundancy. MEAD (Radev et al., 2004) scores source sentences
according to a linear combination of features including centroid, position and first-sentence overlap. These
scores are then refined to consider cross-sentence dependencies, such as redundancy, chronological order
and source preferences. MCR differs in that multiple variants of the same source sentences are available as
candidate for inclusion in the final summary.

Minimization of redundancy is an important element of a multi-document summarization system. Carbo-
nell and Goldstein (1998) propose a technique called Maximal Marginal Relevance (MMR) for ranking doc-
uments returned by an information retrieval system so that the front of the ranked list will contain diversity as
well as high relevance. Goldstein, Mittal, Carbonell, and Kantrowitz (2000) extend MMR to multi-document
summarization. MCR borrows the ranking approach of MMR, but uses a different set of features. Like
MEAD, these approaches use feature weights that were optimized to maximize an automatic metric on train-
ing data.

Several researchers have shown the importance of summarization in domains other than written news
(Clarke & Lapata, 2006; Muresan, Tzoukermann, & Klavans, 2001). Within the MCR framework, we discuss
the portability of Trimmer and HMM Hedge to a variety of different texts: written news, broadcast news tran-
scriptions, email threads, and text in foreign language.

3. Single-sentence compression

Our general approach to the generation of a summary from a single document is to produce a headline by
selecting words in order from the text of the story. Consider the following excerpt from a news story and cor-
responding headline:

(1) (i) After months of debate following the September 11 terrorist hijackings, the Transportation Depart-
ment has decided that airline pilots will not be allowed to have guns in the cockpits.
(i1) Pilots not allowed to have guns in cockpits.

The bold words in (1i) form a fluent and accurate headline, as shown in (1ii).

This basic approach has been realized in two ways. The first, Trimmer, uses a linguistically motivated algo-
rithm to remove grammatical constituents from the lead sentence until a length threshold is met. Topiary is a
variant of Trimmer that combines fluent text from a compressed sentence with topic terms to produce head-
lines. The second, HMM Hedge, employs a noisy-channel model to find the most likely headline for a given
story. The remainder of this section will present Trimmer, Topiary and HMM Hedge in more detail.

3.1. Trimmer

Our first approach to sentence compression involves iteratively removing grammatical constituents from
the parse tree of a sentence using linguistically motivated rules until a length threshold has been met. When
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applied to the lead sentence, or first non-trivial sentence of a story, our algorithm generates a very short sum-
mary, or headline. This idea is implemented in our Trimmer system, which can leverage the output of any con-
stituency parser that uses the Penn Treebank conventions. At present we use Charniak’s parser (Charniak,
2000).

The insights that form the basis and justification for the Trimmer rules come from our previous study,
which compared the relative prevalence of certain constructions in human-written summaries and lead sen-
tences in stories. This study used 218 human-written summaries of 73 documents from the TIPSTER corpus
(Harman & Liberman, 1993) dated January 1, 1989. The 218 summaries and the lead sentences of the 73 sto-
ries were parsed using the BBN SIFT parser (Miller, Ramshaw, Fox, & Weischedel, 2000). The parser pro-
duced 957 noun phrases (NP nodes in the parse trees) and 315 clauses (S nodes in the parse trees) for the
218 summaries. For the 73 lead sentences, the parser produced 817 noun phrases and 316 clauses.

At each level (sentence, clause, and noun phrase), different types of linguistic phenomena were counted.

e At the sentence level, the numbers of preposed adjuncts, conjoined clauses, and conjoined verb phrases
were counted. Children of the root S node that occur to the left of the first NP are considered to be pre-
posed adjuncts. The bracketed phase in “[According to police] the crime rate has gone down’ is a proto-
typical example of a preposed adjunct.

e At the clause level, temporal expressions, trailing SBAR nodes, and trailing PP nodes were counted. Trail-
ing constituents are those not designated as an argument of a verb phrase.

e At both the sentence and clause levels, conjoined S nodes and conjoined VP nodes were counted.

e At the NP level, determiners and relative clauses were counted.

The counts and prevalence of the phenomena in the human-generated headlines and lead sentences are
shown in Table 1. The results of this analysis illuminated the opportunities for trimming constituents, and
guided the development of our Trimmer rules, detailed below.

3.1.1. Trimmer algorithm
Trimmer applies syntactic compression rules to a parse tree according the following algorithm:

(1) Remove temporal expressions;

(2) Select Root S node;

(3) Remove preposed adjuncts;

(4) Remove some determiners;

(5) Remove conjunctions;

(6) Remove modal verbs;

(7) Remove complementizer that;

(8) Apply the XP over XP rule;

(9) Remove PPs that do not contain named entities;

Table 1

Counts and prevalence of phenomena found in summaries and lead sentences

Level Phenomenon Summary Lead sentence

Sentence Preposed adjuncts 0/218 0% 2/73 2.7%
Conjoined S 1/218 0.5% 3/73 4%
Conjoined VP 7/218 3% 20/73 27%

Clause Temporal expression 5/315 1.5% 77/316 24%
Trailing PP 165/315 52% 184/316 58%
Trailing SBAR 24/315 8% 49/316 16%

Noun phrase Relative clause 3/957 0.3% 29/817 3.5%
Determiner 31/957 3% 205/817 25%
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(10) Remove all PPs under SBARs;

(11) Remove SBARSs;

(12) Backtrack to state before Step 9;

(13) Remove SBARs;

(14) Remove PPs that do not contain named entities;
(15) Remove all PPs.

Steps 1 and 4 of the algorithm remove low-content units from the parse tree.

Temporal expressions—although certainly not content-free—are not usually vital for summarizing the con-
tent of an article. Since the goal is to provide an informative headline, the identification and elimination of
temporal expressions (Step 1) allows other more important details to remain in the length-constrained head-
line. The use of BBN’s IdentiFinder™ (Bikel, Schwartz, & Weischedel, 1999) for removal of temporal expres-
sions is described in Section 3.1.2.

The determiner rule (Step 4) removes leaf nodes that are assigned the part-of-speech tag DT and have the
surface form the, a or an. The intuition for this rule is that the information carried by articles is expendable in
summaries, even though this makes the summaries ungrammatical for general English. Omitting articles is one
of the most salient features of newspaper headlines. Sentences (2) and (3), taken from the New York Times
website on September 27, 2006, illustrate this phenomenon. The italicized articles did not occur in the actual
newspaper headlines.

(2) The Gotti Case Ends With a Mistrial for the Third Time in a Year.
(3) 4 Texas Case Involving Marital Counseling Is the Latest to Test the Line Between Church and State.

Step 2 identifies nodes in a parse tree of a sentence that could serve as the root of a compression for the
sentence. Such nodes will be referred to as Root S nodes. A node in a tree is a Root S node if it is labeled
S in the parse tree and has children labeled NP and VP, in that order. The human-generated headlines we stud-
ied always conform to this rule. It has been adopted as a constraint in the Trimmer algorithm that the lowest
leftmost Root S node is taken to be the root node of the headline. An example of this rule application is shown
in (4). The boldfaced material in the parse is retained and the italicized material is eliminated.

(4) (1) Input: Rebels agreed to talks with government officials, international observers said Tuesday.
(i1) Parse: [S [S [NP Rebels] VP agreed to talks with government officials]], international observers said
Tuesday].
(iii) Output: Rebels agreed to talks with government officials.

When the parser produces a correct parse tree, this rule selects a valid starting point for compression. How-
ever, the parser sometimes produces incorrect output, as in the cases below (from DUC-2003):

(5) (i) Parse: [SISBAR What started as a local controversy][VP has evolved into an international scandal]].
(i) Parse: [NP[NP Bangladesh][ CC and[NP[NP IndiaVP signed a water sharing accord]]].

In (51), an S exists, but it does not conform to the requirements of the Root S rule because it does not have
as children an NP followed by a VP. The problem is resolved by selecting the lowest leftmost S, ignoring the
constraints on the children. In (5ii), no S is present in the parse. This problem is resolved by selecting the root
of the entire parse tree as the root of the headline. These parsing errors occur infrequently—only 6% of the
sentences in the DUC-2003 evaluation data exhibit these problems, based on parses generated by the BBN
SIFT parser.

The motivation for removing preposed adjuncts (Step 3) is that all of the human-generated headlines omit
what we refer to as the preamble of the sentence. Preposed adjuncts are constituents that precede the first NP
(the subject) under the Root S chosen in Step 2; the preamble of a sentence consists of its preposed adjuncts.
The impact of preposed adjunct removal can be seen in example (6).
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(6) (i) Input: According to a now finalized blueprint described by US officials and other sources, the Bush
administration plans to take complete, unilateral control of a post-Saddam Hussein Iraq.

(i1) Parse: [S [PP According to a now finalized blueprint described by US officials and other sources], [Det

the] Bush administration plans to take complete, unilateral control of [ De? a] post-Saddam Hussein Iraq].

(iii) Output: Bush administration plans to take complete unilateral control of post-Saddam Hussein Iraq.

The remaining steps of the algorithm remove linguistically peripheral material through successive deletions
of constituents until the sentence is shorter than a length threshold. Each stage of the algorithm corresponds to
the application of one of the rules. Trimmer first finds the pool of nodes in the parse to which a rule can be
applied. The rule is then iteratively applied to the deepest, rightmost remaining node in the pool until the
length threshold is reached or the pool is exhausted. After a rule has been applied at all possible nodes in
the parse tree, the algorithm moves to the next step.

In the case of a conjunction with two children (Step 5), one of the children will be removed. If the conjunc-
tion is and, the first child is removed. If the conjunction is but, the second child is removed. This rule is illus-
trated by the following examples, where the struck out text is trimmed.

(7) When Sotheby’s sold a Harry S Truman signature that turned out to be a reproduction, the prestigious
auction house apologized and bought it back.

(8) President Clinton expressed sympathy after a car-bomb explosion in a Jerusalem market wounded 24 peo-
ple but said the attack should not derail the recent land-for-security deal between Israel and the
Palestinians.

The modal verb rule (Step 6) applies to verb phrases in which the head is a modal verb, and the head of the
child verb phrase is a form of have or be. In such cases, the modal and auxiliary verbs are removed. Sentences
(9) and (10) show examples of this rule application. Note that although in Sentence (10), the omission of
trimmed material changes the meaning, given a tight space constraint, the loss of the modality is preferable
to the loss of other content information.

(9) People’s palms and fingerprints may be used to diagnose schizophrenia.
(10) Agents may have fired potentially flammable tear gas cannisters.

The complementizer rule (Step 7) removes the word that when it occurs as a complementizer. Sentence (11)
shows an example in which two complementizers can be removed.

(11) Hoffman stressed that study is only preliminary and can’t prove that treatment useful.

The XP-over-XP rule (Step 8) is a linguistic generalization that allows a single rule to cover two different
phenomena. XP in the name of the rule is a variable that can take two values: NP and VP. In constructions of
the form [XP [XP ...]...], the other children of the higher XP are removed. Note that the child XP must be the
first child of the parent XP. When XP = NP the rule removes relative clauses (as in Sentence (12)) and apposi-
tives (as in Sentence (13)).

(12) Schizophrenia patients whose medication couldn’t stop the imaginary voices in their heads gained some
relief.

(13) A team led by Dr. Linda Brzustowicz, assistant professor of neuroscience at Rutgers University’s Center
for Molecular and Behavioral Neuroscience in Newark, studied DNA of dozens of members of 22
families.

The rules that remove prepositional phrases and subordinate clauses (Steps 9-15) are sometimes prone to
removing important content. Thus, these rules are applied last, only when there are no other types of rules to
apply. Moreover, these rules are applied with a backoff option to avoid over-trimming the parse tree. First, the
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PP rule is applied (Steps 9 and 10)," followed by the SBAR rule (Step 11). If the desired sentence length has not
been reached, the system reverts to the parse tree as it was before any prepositional phrases were removed
(Step 12) and applies the SBAR rule (Step 13). If the desired length still has not been reached, the PP rule
is applied again (Steps 14 and 15).

The intuition behind this ordering is that, when removing constituents from a parse tree, it is preferable to
remove smaller fragments before larger ones, and prepositional phrases tend to be smaller than subordinate
clauses. Thus, Trimmer first attempts to achieve the desired length by removing smaller constituents (PPs), but
if this cannot be accomplished, the system restores the smaller constituents, removes a larger constituent, and
then resumes the deletion of the smaller constituents. To reduce the risk of removing prepositional phrases
that contain important information, BBN’s IdentiFinder is used to distinguish PPs containing temporal
expressions and named entities, as described next.

3.1.2. Use of BBN'’s IdentiFinder in Trimmer

BBN’s IdentiFinder is used both for the elimination of temporal expressions and for conservative deletion
of PPs containing named entities. The elimination of temporal expressions (Step 1) is a two-step process: (a)
use IdentiFinder to mark temporal expressions; and (b) remove [PP ... [NP [X]...]...]and [NP [X]] where X
is tagged as part of a temporal expression. The following examples illustrate the application of temporal
expression removal rule:

(14) (i) Input: The State Department on Friday lifted the ban it had imposed on foreign fliers.
(i1) Parse: [S [NP [Det The] State Department [PP [IN on] [NP [NNP Friday]]] [VP lifted [Det the] ban it
had imposed on foreign fliers]].
(iii) Output: State Department lifted ban it had imposed on foreign fliers.
(15) (i) Input: An international relief agency announced Wednesday that it is withdrawing from North
Korea.
(i1) Parse: [S [NP [Det An] international relief agency[VP announced [NP [NNP Wednesday]] that it is
withdrawing from North Korea]].
(iii) Output: International relief agency announced that it is withdrawing from North Korea.

IdentiFinder is also used to ensure that prepositional phrases containing named entities are not removed
during the first round of PP removal (Step 9). However, prepositional phrases containing named entities that
are descendants of SBARs are removed before the parent SBAR is removed, since we should remove a smaller
constituent before removing a larger constituent that subsumes it. Sentence (16) shows an example of a SBAR
subsuming two PPs, one of which contains a named entity.

(16) The commercial fishing restrictions in Washington will not be lifted [SBAR unless the salmon population
increases [PP to a sustainable number] [PP in the Columbia River]].

If the PP rule were not sensitive to named entities, the PP in the Columbia River would be the first prepo-
sitional phrase to be removed, because it is the lowest rightmost PP in the parse. However, this PP provides an
important piece of information: the location of the salmon population. The rule in Step 9 will skip the last
prepositional phrase and remove the penultimate PP to a sustainable number.

This concludes an overview of the Trimmer rules and our syntactic sentence compression algorithm. Given
a length limit, the system will produce a single compressed version of the target sentence. Multiple compres-
sions can be generated by setting the length limit to be very small and storing the state of the sentence after
each rule application as a compressed variant. In Section 4, we will describe how multiple compressed candi-
dates generated by Trimmer are used as a component of a multi-document summarization system.

! The reason for breaking PP removal into two stages is discussed in Section 3.1.2.
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3.2. Topiary

We have used the Trimmer approach to compression in another variant of single-sentence summarization
called Topiary. This system combines Trimmer with a topic discovery approach (described next) to produce a
fluent summary along with additional context.

The Trimmer algorithm is constrained to build a headline from a single sentence. However, it is often the
case that no single sentence contains all the important information in a story. Relevant information can be
spread over multiple sentences, linked by anaphora or ellipsis. In addition, the choice of lead sentence may
not be ideal and our trimming rules are imperfect.

On the other hand, approaches that construct headlines from lists of topic terms (Lewis, 1999; Schwartz
et al., 1997) also have limitations. For example, Unsupervised Topic Discovery (UTD)—described below—
rarely generates any topic terms that are verbs. Thus, topic lists are good at indicating the general subject
but rarely give any direct indication of what events took place. Intuitively, we need both fluent text to tell what
happened and topic terms to provide context.

3.2.1. Topic term generation: UTD and OnTopic

OnTopic (Schwartz et al., 1997) uses an HMM to assign topics to a document; topic models are derived
from an annotated corpus. However, it is often difficult to acquire such data, especially for a new genre or
language. UTD (Sista, Schwartz, Leek, & Makhoul, 2002) was developed to overcome this limitation: it takes
as input a large unannotated corpus and automatically creates a set of topic models with meaningful names.

The UTD algorithm has several stages. First, it analyzes the corpus to find multi-word sequences that can
be treated as single tokens. It does this using two methods. One method is a minimum description length cri-
terion, which detects phrases that occur frequently relative to the individual words. The second method uses
BBN’s IdentiFinder to detect multi-word names. These names are added to the text as additional tokens. They
are also likely to be chosen as potential topic names. In the second stage of UTD, we find those terms (both
single-word and multi-word) with high #fidf. Only those topic names that occur as high-content terms in at
least four different documents are kept. The third stage trains topic models corresponding to these topic terms.
The modified Expectation Maximization procedure of BBN’s OnTopic system is used to determine which
words in the documents often signify these topic names. This produces topic models. Fourth, these topic mod-
els are used to find the most likely topics for each document, which is equivalent to assigning the name of the
topic model to the document as a topic term. This often assigns topics to documents where the topic name
does not occur in the document text.

We found, in various experiments (Sista et al., 2002), that the topic names derived by this procedure were
usually meaningful and that the topic assignment was about as good as when the topics were derived from a
corpus that was annotated by people. We have also used this procedure on different languages and shown the
same behavior. Since UTD is unsupervised, it can run equally well on a new language, as long as the docu-
ments can be divided into strings that approximate words.

The topic list in (17) was generated by UTD and OnTopic for a story about the FBI investigation of the
1998 bombing of the US embassy in Nairobi.

(17) BIN LADEN, EMBASSY, BOMBING, POLICE OFFICIALS, PRISON, HOUSE, FIRE, KABILA

Topiary uses UTD to generate topic terms for the collection of documents to be summarized, and OnTopic
to assign the topic terms to the documents. The next section will describe how topic terms and sentence com-
pressions are combined to form Topiary summaries.

3.2.2. Topiary algorithm

As each Trimmer rule is applied to a sentence, the resulting state of the sentence is stored as a compressed
variant of the source sentence. Topiary selects from the variants the longest one such that there is room to
prepend the highest scoring non-redundant topic term. Suppose the highest scoring topic term is “terrorism”
and the length threshold is 75 characters. To make room for the topic “terrorism”, the length threshold is low-
ered by 10 characters: 9 characters for the topic and 1 character as a separator. Thus, Topiary seeks the longest
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trimmed variant under 65 characters that does not contain the word ““terrorism”. If there is no such candidate,
i.e., all the trimmed variants contain the word terrorism, Topiary would consider the second highest scoring
topic word, “bomb”’. Topiary would seek the longest trimmed variant under 70 characters that does not con-
tain the word “bomb”’. After Topiary has selected a trimmed variant and prepended a topic to it, it checks to
see how much unused space remains under the threshold. Additional topic words are added between the first
topic word and the compressed sentence until all space is exhausted.

This process results in a headline that contains one or more main topics about the story and a short sen-
tence that says what happened concerning them. The combination is often more concise than a fully fluent
sentence and compensates for the fact that the information content from the topic and the compressed sen-
tence do not occur together in any single sentence from the source text.

As examples, sentences (18) and (19) are the outputs of Trimmer and Topiary, respectively, for the same
story in which UTD selected the topic terms in (17).

(18) FBI agents this week began questioning relatives of the victims.
(19) BIN LADEN, EMBASSY, BOMBING: FBI agents this week began questioning relatives.

By combining topics and parse-and-trim compression, Topiary achieved the highest score on the single-doc-
ument summarization task (i.e., headline generation task) in DUC-2004 (Zajic et al., 2004).

3.3. HMM Hedge

Our second approach to sentence compression, implemented in HMM Hedge, is to treat the observed data
(the story) as the result of unobserved data (headlines) that have been distorted by transmission through a
noisy channel. The effect of the noisy channel is to add story words between the headline words. The model
is biased by parameters to make the resulting headlines more like Headlinese, the observed language of news-
paper headlines created by copy editors.

Formally, we consider a story S to be a sequence of N words. We want to find a headline H, a subsequence
of words from S, that maximizes the likelihood that H generated the story S, or

argmax, P(H|S)

It is difficult to directly estimate P(H|S), but this probability can be expressed in terms of other probabilities
that are easier to compute, using Bayes’ rule:
P(S|H)P(H)

PHIS) ===

Since the goal is to maximize this expression over H, and P(S) is constant with respect to H, the denominator
of the above expression can be omitted. Thus we wish to find:

argmax, P(S|H)P(H)
Let H be a headline consisting of words /4y, A, . . ., h,. Let the special symbols szart and end represent the begin-
ning and end of a headline, respectively. P(H) can be estimated using a bigram model of Headlinese:

P(H) = P(hy|start)P(hs|hy) . .. P(hy|end)

The bigram probabilities of the words in the headline language were computed from a corpus of English head-
lines of 242,918 AP newswire stories from the TIPSTER corpus. The headlines contain 2,848,194 words from
a vocabulary of 88,627 distinct words.

Given a story S and a headline H, the action of the noisy channel is to form S by adding non-headline
words to H. Let G be the non-headline words added by the channel to the headline: g;,g>,...,g,. For the
moment, we assume that the headline words are transmitted through the channel with probability 1. We esti-
mate P(S | H), the probability that the channel added non-headline words G to headline H to form story S.
This is accomplished using a unigram model of newspaper stories, which we will refer to as the general lan-
guage, in contrast to the headline language. Let Py (g) be the probability of non-headline word g in the general

Please cite this article in press as: Zajic, D. et al., Multi-candidate reduction: Sentence compression as a tool ..., Infor-
mation Processing and Management (2007), doi:10.1016/j.ipm.2007.01.016




436
437

439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

465
466

467
468
469
470
471
472
473
474
475
476
477
478
479

D. Zajic et al. | Information Processing and Management xxx (2007) xxx—xxx 11

language, and P, (h) = 1 be the probability that headline word / is transmitted through the channel as story
word /.

P(S|H) = Pgl(gl)Pgl(gz) = -Pgl(gm)Pch(hl)Pch(hZ) oo Pen(hy) = Pgl(gl)Pgl(gz) = -Pgl(gm)

The unigram probabilities of the words in the general language were computed from 242,918 English AP news
stories in the TIPSTER corpus. The stories contain 135,150,288 words from a vocabulary of 428,633 distinct
words.

The process by which the noisy channel generates a story from a headline can be represented by a Hidden
Markov Model (HMM) (Baum, 1972). An HMM is a weighted finite-state automaton in which each state
probabilistically emits a string. The simplest HMM for generating headlines consists of two states: an H state
which emits words that occur in the headline, and a G state which emits all the other words in the story.

Since we use a bigram model of headlines, each state which emits headline words must “remember’ the
previously emitted headline word. If we did not constrain headline words to actually occur in the story, we
would need an H state for each word in the headline vocabulary. However, because headline words are chosen
from the story words, it is sufficient to have an H state for each story word. For any story, the HMM consists
of a start state S, end state E, an H state for each word in the story, a corresponding G state for each H state,
and a state Gy, that emits words which occur before the first headline word in the story. An H state can emit
only the word it represents. The corresponding G state remembers which word was emitted by its H state and
can emit any word in the story language. A headline corresponds to a path through the HMM from S to E
that emits all the words in the story in the correct order. In practice the HMM is constructed with states for
only the first N words of the story, where N is a constant (60), or N is the number of words in the first
sentence.”

In example (1i), given earlier, the H states will emit the words in bold (pilots, not, allowed, to, have, guns,
in, cockpits), and the G states will emit all the other words. The HMM will transition between the H and G
states as needed to generate the words of the story. In the current example, the model will have states
Start, Gy, End and 28 H states with 28 corresponding G states.> The headline given in example (1ii) corre-
sponds to the following sequence of states: Start, Gare 17 times, Hpiiors, Gpitotss Hrnots Gnots Hallowed> Htos Hhave,
Hguns, Hin, Gin, Heockpits, £nd. This path is not the only one that could generate the story in (1i). Other pos-
sibilities are

(20) (i) Transportation Department decided airline pilots not to have guns.
(i) Months of the terrorist has to have cockpits.

Although (20i) and (20ii) are possible headlines for (1i), the conditional probability of (20ii) given (1i) will be
lower than the conditional probability of (201) given (11).

The Viterbi algorithm (Viterbi, 1967) is used to select the most likely headline for a given story. We use
length constraints to find the most likely headlines consisting of W words, where W ranges from 5 to 15. Mul-
tiple backpointers are used so that we can find the » most likely headlines at each length.

HMM Hedge is enhanced by three additional decoding parameters to help the system choose outputs that
best mimic actual headlines: a position bias, a clump bias and a gap bias. The incorporation of these penalties
changes the score produced by the decoder from a probability to a relative desirability score. The three param-
eters were motivated by analysis of system output and their values were set by trial and error. A logical exten-
sion to this work would be to learn the best setting of these penalties, e.g., through Expectation Maximization.

The position bias favors headlines which include words near the front of the story. This reflects our obser-
vations of human-constructed headlines, in which headline words tend to appear near the front of the story.
The initial position bias p is a positive number less than one. The story word in the nth position is assigned a

2 Limiting consideration of headline words to the early part of the story is justified in Dorr, Zajic, and Schwartz (2003a) where it was
shown that more than half of the headline words are chosen from the first sentence of the story. Other methods for selecting the window of
story words are possible and will be explored in future research.

3 The subscript of a G state indicates the H state it is associated with, not the story word it emits. In the example, Gpilots €mits story word
will, Gpoy emits story word be, and Gy, emits story word the.
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position bias of log(p"). When an H state emits a story word, the position bias is added to the desirability
score. Thus, words near the front of the story carry less of a position bias than words farther along. Note that
this generalization often does not hold in the case of human interest and sports stories, which may start with a
hook to get the reader’s attention, rather than a topic sentence.

We also observed that human-constructed headlines tend to contain contiguous blocks of story words.
Example (1ii), given earlier, illustrates this with the string “allowed to have guns”. The string bias is used
to favor ““clumpiness”, i.e., the tendency to generate headlines composed of clumps of contiguous story words.
The log of the clump bias is added to the desirability score with each transition from an H state to its asso-
ciated G state. With high clump biases, the system will favor headlines consisting of fewer but larger clumps of
contiguous story words.

The gap bias is used to disfavor headline “gappiness”, i.e., large gaps of non-headline words in the story
between clumps of headline words. Although humans are capable of constructing fluent headlines by selecting
widely spaced words, we observed that HMM Hedge was more likely to combine unrelated material by doing
this. At each transition from a G state to an H state, corresponding to the end of a sequence of non-headline
words in the story, a gap bias is applied that increases with the size of the gap between the current headline and
the last headline word to be emitted. This can also be seen as a penalty for spending too much time in one G
state. With high gap biases, the system will favor headlines with few large gaps.

One characteristic difference between newspaper headline text and newspaper story text is that headlines
tend to be in present tense while story sentences tend to be in the past tense. Past tense verbs occur more rarely
in the headline language than in the general language. HMM Hedge mimics this aspect of Headlinese by
allowing morphological variation between headline verbs and the corresponding story verbs. Morphological
variation for verbs is achieved by creating an H state for each available variant of a story verb. These H states
still emit the story verb but they are labeled with the variant. HMM Hedge can generate a headline in which
proposes is the unobserved headline word that emits the observed story word proposed, even though proposes
does not occur in the story.

(21) (i) A group has proposed awarding $1 million in every general election to one randomly chosen voter.
(i) Group proposes awarding $1 million to randomly chosen voter.

Finally, we constrain each headline to contain at least one verb. That is to say, we ignore headlines which
do not contain at least one verb, no matter how desirable the decoding is.

Although we have described an application of HMM Hedge to blocks of story words without reference to
sentence boundaries, it is also possible to use HMM as a single sentence compressor by limiting the block to
the words in a single sentence.

Also, as we will see shortly, multiple alternative compressions of a sentence may be generated with HMM
Hedge. The Viterbi algorithm is capable of discovering n-best compressions of a window of story words and
can be constrained to consider only paths that include a specific number of H states, corresponding to com-
pressions that contain a specific number of words. We use HMM Hedge to generate 55 compressions for each
sentence by computing the five best headlines at each length, from 5 to 15 words. In Section 4 we will describe
how HMM Hedge is used as a component of a multi-document summarization system.

4. Multi-document summarization

The sentence compression tools we developed for single-document summarization have been incorporated
into our multi-candidate reduction framework for multi-document summarization. MCR produces a textual
summary from a collection of relevant documents in three steps. First, sentences are selected from the source
documents for compression. The most important information occurs near the front of the stories, so we select
the first five sentences of each document for compression. Second, multiple compressed versions of each sen-
tence are produced using Trimmer or HMM Hedge to create a pool of candidates for inclusion in the sum-
mary. Finally, a sentence selector constructs the summary by iteratively choosing from the pool of
candidates based on a linear combination of features until the summary reaches a desired length.
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At present, weights for the features are determined by manually optimizing on a set of training data to max-
imize the RouGe-2 recall score (Lin & Hovy, 2003), using ROUGE version 1.5.5. A typical summarization task
might call for the system to generate a 250-word summary from a couple of dozen news stories. These sum-
maries may be query-focused, in the sense that the summaries should be responsive to a particular information
need, or they may be generic, in that a broad overview of the documents is desired.

Our sentence selector adopts certain aspects of Maximal Marginal Relevance (MMR) (Carbonell & Gold-
stein, 1998), an approach that attempts to balance relevance and anti-redundancy. In MCR’s selection mod-
ule, the highest scoring sentence from the pool of eligible candidates is chosen for inclusion in the summary.
Features that contribute to a candidate’s score can be divided into two types: dynamic and static. When a can-
didate is chosen, all other compressed variants of that sentence are eliminated. After a candidate is added to
the summary, the dynamic features are re-computed, and the candidates are re-ranked. Candidates are added
to the summary until the desired length is achieved. The ordering of candidates in the summary is the same as
the order in which they were selected for inclusion. The final sentence of the summary is truncated if it causes
the summary to exceed the length limit.

4.1. Static features

Static features are calculated before sentence selection begins, and do not change during the process of sum-
mary construction:

e Position. The zero-based position of the sentence in the document.
e Sentence relevance. The relevance score of the sentence to the query.
e Document relevance. The relevance score of the document to the query.
e Sentence centrality. The centrality score of the sentence to the topic cluster.
e Document centrality. The centrality score of the document to the topic cluster.
e Scores from compression modules:
— Trim rule application counts. For Trimmer-based MCR, the number of trimmer rule instances applied to
produce the candidate.
— Negative log desirability. For HMM-based MCR, the relative desirability score of the candidate.

We use the uniform retrieval architecture (URA), University of Maryland’s software infrastructure for
information retrieval tasks, to compute relevance and centrality scores for each compressed candidate. There
are four such scores: the relevance score between a compressed sentence and the query, the relevance score
between the document containing the compressed sentence and the query, the centrality score between a com-
pressed sentence and the topic cluster, and the centrality score between the document containing the com-
pressed sentence and the topic cluster. We define the topic cluster to be the entire collection of documents
relevant to this particular summarization task. Centrality is a concept that quantifies how similar a piece of
text is to all other texts that discuss the same general topic. We assume that sentences having higher term over-
lap with the query and sources more “central” to the topic cluster are preferred for inclusion in the final
summary.

The relevance score between a compressed sentence and the query is an idf-weighted count of overlapping
terms (number of terms shared by the two text segments). Inverse document frequency (idf), a commonly used
measure in the information retrieval literature, roughly captures term salience. The idf of a term ¢ is defined by
log(N/c;), where N is the total number of documents in a particular corpus, and ¢, is the number of documents
containing term ¢; these statistics were calculated from one year’s worth of LA Times articles. Weighting term
overlap by inverse document frequency captures the intuition that matching certain terms is more important
than matching others.

Lucene, a freely available off-the-shelf information retrieval system, is used to compute the three other
scores. The relevance score between the document containing the compressed sentence and the query is com-
puted using Lucene’s built-in similarity function. The centrality score between the compressed sentence and
the topic cluster is the mean of the similarity between the sentence and each document comprising the cluster
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(once again, as computed by Lucene’s built-in similarity function). The document-cluster centrality score is
also computed in much the same way, by taking the mean of the similarity of the particular document with
every other document in the cluster. In order to obtain an accurate distribution of term frequencies to facilitate
the similarity calculation, we indexed all relevant documents (i.e., the topic cluster) along with a comparable
corpus (one year of the LA Times)—this additional text essentially serves as a background model for non-rel-
evant documents.

Some features are derived from the sentence compression modules used to generate candidates. For Trim-
mer, the rule application count feature of a candidate is the number of rules that were applied to a source sen-
tence to produce the candidate. The rules are not presumed to be equally effective, so the rule application
counts are broken down by rule type. For HMM Hedge, we use the relative desirability score calculated by
the decoder, expressed as a negative log.

The features discussed in this section are assigned to the candidates before summary generation begins, and
are fixed throughout the process of summary sentence selection. The next section discusses how candidate fea-
tures are assigned new values as summary generation proceeds.

4.2. Dynamic features

Dynamic features change during the process of sentence selection to reflect changes in the state of the sum-
mary as sentences are added.* The dynamic features are

e Redundancy. A measure of how similar the sentence is to the current summary.
e Sentence-from-doc. The number of sentences already selected from the sentence’s document.

The intuition behind our redundancy measure is that candidates containing words that occur much more
frequently in the current state of the summary than they do in general English are redundant to the summary.
We imagine that sentences in the summary are generated by the underlying word distribution of the summary
rather than the distribution of words in the general language. If a sentence appears to have been generated by
the summary rather than by the general language, we take it to be redundant to the summary. Suppose we
have a summary about earthquakes. The presence in a candidate of words like earthquake, seismic, and Richter
Scale, which have a high likelihood in the summary, will make us think that the candidate is redundant to the
summary.

To estimate the extent to which a candidate is more likely to have been generated by a summary than by the
general language, we consider the probabilities of the words in the candidate. We estimate that the probability
that a word w occurs in a candidate generated by the summary is

P(w) = JP(w|D) + (1 — 2)P(w|C)

where D is the summary, Cis the general language corpus,” 1 is a parameter estimating the probability that the
word was generated by the summary and (1 — 1) is the probability that the word was generated by the general
language. We have set 4 = 0.3, as a general estimate of the portion of words in a text that are specific to the
text’s topic. We estimate the probabilities by counting the words® in the current summary and the general lan-
guage corpus:

count of win D

P(w|D) =
(wiD) size of D
count of win C
PWw|C) = ———F~—
(wlC) size of C

4 At present the dynamic features are properties of the candidates, calculated with respect to the current summary state. There are no
features directly relating to the amount of space left in the summary, so there is no mechanism that would affect the distribution of
compressed candidates over the iterations of the sentence selector. This issue will be addressed as future work in Section 7.

5 The documents in the set being summarized are used to estimate the general language model.

¢ Actually, preprocessing for redundancy includes stopword removal and applying the Porter Stemmer (Porter, 1980).
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We take the probability of a sentence to be the product of the probabilities of its words, so we calculate the
probability that a sentence was generated by the summary, i.e. our redundancy metric, as

Redundancy(S) = H AP(s|D) + (1 — A)P(s|C)

seS

For ease of computation, we actually use log probabilities:

" log(AP(s|D) + (1 — 2)P(s|C))

ses

Redundancy is a dynamic feature because the word distribution of the current summary changes with every
iteration of the sentence selector.

4.3. Examples of system output

We applied our MCR framework to test data from the DUC-2006 evaluation (Dang & Harman, 2006).
Given a topic description and a set of 25 documents related to the topic (drawn from AP newswire, the
New York Times, and the Xinhua News Agency English Service), the system’s task was to create a 250-word
summary that addressed the information need expressed in the topic. One of the topic descriptions is shown in
Fig. 2. The 25 documents in the document set have an average size of 1170 words, so a 250-word summary
represents a compression ratio of 0.86%.

Figs. 3-5 show examples of MCR output using Trimmer compression, HMM Hedge compression, or no
compression. For readability, we use o as a sentence delimiter; this is not part of the actual system output.
The sentences compressed by Trimmer mimic Headlinese by omitting determiners and auxiliary verbs. For
example, the first sentence in Fig. 3 is a compression of the following source sentence:

Seeking to get a more accurate count of the country’s American Indian population, the Census Bureau is
turning to tribal leaders and residents on reservations to help overcome long-standing feelings of wari-
ness or anger toward the federal government.

Three determiners and a form of be have been removed from the source sentence in the compression that
appears in the summary. The removal of this material make the sentence appear more like a headline.

In comparison with Trimmer compressions, HMM compressions are generally less readable and more
likely to be misleading. Consider the final sentence in Fig. 4.

(22) Main purpose of reservation to pay American Indians by poverty proposals.
This is a compression of the following source sentence:

(23) But the main purpose of the visit—the first to a reservation by a president since Franklin Roosevelt—
was simply to pay attention to American Indians, who are so raked by grinding poverty that Clinton’s
own advisers suggested he come up with special proposals geared specifically to the Indians’ plight.

Because HMM Hedge uses a bigram model of Headlines, it is unable to capture sentence-level grammaticality.
The same limitation makes it difficult to prevent misleading or incorrect compressions.

For example, the third sentence from the end of Fig. 4 seems to say that a court legalized gambling on
Indian reservations:

Title: Native American Reservation System—pros and cons

Narrative Description: Discuss conditions on American Indian reser-
vations or among Native American communities. Include the benefits and
drawbacks of the reservation system. Include legal privileges and problems.

Fig. 2. Topic D0601A from the DUC-2006 multi-document summarization task.
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Seeking to get more accurate count of country’s American Indian population,
Census Bureau turning to tribal leaders and residents on reservations to help
overcome long-standing feelings. o American Indian reservations would get in-
fusion. o Smith and thousands seeking help for substance abuse at American
Indian Community House, largest of handful of Native American cultural insti-
tutions. o Clinton going to Pine Ridge Reservation for visit with Oglala Sioux
nation and to participate in conference on Native American homeownership
and economic development. o Said Glen Revere, nutritionist with Indian Health
Services on 2.8 million-acre Wind River Reservation, about 100 miles east of
Jackson, Wyo. “Then we came up with idea for this community garden, and
it been bigger than we ever expected.” o Road leading into Shinnecock Indian
reservation is not welcoming one But main purpose of visit — first to reserva-
tion by president since Franklin Roosevelt — was simply to pay attention to
American Indians, who raked by grinding poverty Clinton’s own advisers sug-
gested he come up with special proposals geared specifically to Indians’ plight.
o “This highlights what going on out there, since beginning of reservation sys-
tem,” said Sidney Harring, professor at City University of New York School of
Law and expert on Indian crime and criminal law. o American Indians are vic-
tims. o President Clinton turned attention to arguably poorest, most forgotten
o U.S. citizens: American Indians. o When American Indians began embracing
gambling, Hualapai tribe moved quickly to open casino. o members of North-
ern Arapaho Tribe on Wind River Reservation started seven-acre community
garden with donated land, seeds and

Fig. 3. MCR summary for DUC-2006 Topic D0601A, using Trimmer for sentence compression.

David Rocchio deputy legal counsel to Vermont Gov. Howard Dean who has
been involved in discussions on Indian gambling through the National Governors
Association said that the concern that governors have is not with the benefit
casinos bring to tribes o Native Americans living on reservations that maintain
50 percent or more unemployment are exempt from the national five year family
limit on welfare benefits o Smith and thousands like her are seeking help for
their substance abuse at the American Indian Community House the largest
of a handful of Native American cultural institutions in the New York area
o Juvenile crime is one strand in the web of social problems facing urban and
reservation Indian communities the report said o Soldierwolf’s family represents
the problems that plague many of the 1.3 million American Indians who live on
reservations of whom 49 percent are unemployed o Powless said the Onondaga
people want to work with the community outside the reservation to improve
the economy of the region perhaps creating tourism destinations that might
include Indian culture or setting up a free trade zone at unused manufacturing
sites o As Indian communities across the nation struggle with short funds and a
long list of problems they are watching the Navajo Nation’s legal battle with the
federal government o recognize Indians not only Native Americans as Americans
o go on reservation system Harring Indian o Supreme Court allows legalized
gambling Indian reservations o American Indian reservations tribal colleges rise
faster than o main purpose of reservation to pay American Indians by poverty
proposals

Fig. 4. MCR summary for DUC-2006 Topic D0601A, using HMM Hedge for sentence compression.
(24) Supreme Court allows legalized gambling Indian reservations.
However, it is a compression of the following source sentence:

(25) Only Monday, the California Supreme Court overturned a ballot measure that would have allowed
expansion of legalized gambling on Indian reservations.
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Seeking to get a more accurate count of the country’s American Indian popula-
tion, the Census Bureau is turning to tribal leaders and residents on reservations
to help overcome long-standing feelings of wariness or anger toward the federal
government. o American Indian reservations would get an infusion of $1.2 billion
in federal money for education, health care and law enforcement under Presi-
dent Clinton’s proposed 2001 budget o Smith and thousands like her are seeking
help for their substance abuse at the American Indian Community House, the
largest of a handful of Native American cultural institutions in the New York
area. o Clinton was going to the Pine Ridge Reservation for a visit with the
Oglala Sioux nation and to participate in a conference on Native American
homeownership and economic development. o said Glen Revere, a nutritionist
with the Indian Health Services on the 2.8 million-acre Wind River Reserva-
tion, about 100 miles east of Jackson, Wyo. “Then we came up with the idea
for this community garden, and it’s been bigger than we ever expected in so
many ways.” o The road leading into the Shinnecock Indian reservation is not
a welcoming one o But the main purpose of the visit — the first to a reservation
by a president since Franklin Roosevelt — was simply to pay attention to Amer-
ican Indians, who are so raked by grinding poverty that Clinton’s own advisers
suggested he come up with special proposals geared specifically to the Indians’

plight. o “This highlights what has been going on out there for 130 years,

Fig. 5. MCR summary for DUC-2006 Topic D0601A, with no sentence compression.

Nevertheless, we can see from the examples that sentence compression allows a summary to include more
material from other sources. This increases the topic coverage of system output.

5. System evaluations
We tested four single-document summarization systems on the DUC-2003 Task 1 test set:

e HMM Hedge using the first sentence of each document (HMM Sentence).
e HMM Hedge using the first 60 words of each document (HMM 60 block).
e Trimmer.
e Topiary.

Task 1 from DUC-2003 was to construct generic 75-byte summaries for 624 documents drawn from AP
Newswire and the New York Times. The average size of the documents was 3997 bytes, so a 75-byte summary
represents a compression ratio of 1.9%.

An automatic summarization evaluation tool, RoUuGke (Lin & Hovy, 2003), was used to evaluate the results.
The system parameters were optimized by hand to maximize the ROUGE-1 recall on a comparable training cor-
pus, 500 AP Newswire and New York Times articles from the DUC-2004 single-document short summary test
data.

Results show that HMM Hedge 60 scored significantly lower than most other systems, and that Topiary
scored higher than all other systems for all R1 measures. In addition, HMM Hedge Sentence scored signifi-
cantly higher than Trimmer for the R1 measures (Table 2).

We also evaluated Trimmer and HMM Hedge as components in our multi-candidate reduction framework,
along with a baseline that uses the same sentence selector but does not use sentence compression. All three
systems considered the first five sentences of each document, and used the sentence selection algorithm pre-
sented in Section 4. The feature weights were manually optimized to maximize ROUGE-2 recall on a comparable
training corpus, 1593 Financial Times and Los Angeles Times articles grouped into 50 topics from the DUC-
2005 query-focused multi-document summarization test data. The systems were used to generate query-
focused, 250-word summaries using the DUC-2006 test data, described in Section 4.3.
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ROUGE scores and 95% confidence intervals for 624 documents from DUC-2003 test set

HMM sentence

HMM 60 block

Trimmer

Topiary

R1 Recall
R1 Precision
R1F

R2 Recall
R2 Precision

0.23552 (0.23014-0.24082)
0.21896 (0.21386-0.22384)
0.22496 (0.21983-0.22978)
0.06838 (0.06546-0.07155)
0.06287 (0.06017-0.06576)

0.21381 (0.20912-0.21827
0.18882 (0.18444-0.19301

0.06133 (0.05848-0.06414
0.05351 (0.05097-0.05588

0.21014 (0.20436-0.21594
0.20183 (0.19627-0.20722
0.20179 (0.19612-0.20718
0.06337 (0.06030-0.06677
0.06230 (0.05887-0.06617

0.25143 (0.24632-0.25663)
0.23038 (0.22567-0.23522)
0.23848 (0.23373-0.24328)
0.06637 (0.06345-0.06958

)
)
0.19966 (0.19505-0.20391)
)
)
)

—-— oo

)
0.06024 (0.05747-0.06326)
)

R2F 0.06488 (0.06209-0.06785) 0.05686 (0.05420-0.05942 0.06079 (0.05788-0.06401 0.06252 (0.05976-0.06561

Table 3
ROUGE scores and 95% confidence intervals for 50 DUC-2006 test topics, comparing three MCR variants
Trimmer HMM Hedge No compression

R1 Recall 0.29391 (0.28560-0.30247) 0.27311 (0.26554-0.28008) 0.27576 (0.26772-0.28430)
R2 Recall 0.06718 (0.06332-0.07111) 0.06251 (0.05873-0.06620) 0.06126 (0.05767-0.06519)
Table 4
Official DUC-2006 automatic metrics for our MCR submission (System 32)

ROUGE-2 ROUGE-SU4 BE-HM
MCR score 0.0805 0.1360 0.0413
Higher 1 1 0
Not different 23 24 27
Range 0.0678-0.0899 0.1238-0.1475 0.0318-0.0508
Lower 11 10 8

The systems were evaluated using ROUGE, configured to omit stopwords from the calculation.” Results are
shown in Table 3. MCR using Trimmer compressions scored significantly higher than MCR using HMM
Hedge compressions and the baseline for ROUGE-1, but there was not a significant difference among the three
systems for ROUGE-2.

Finally, the University of Maryland and BBN submitted a version of MCR to the official DUC-2006 eval-
uation. This version used Trimmer as the source of sentence compressions. Results show that use of sentence
compression hurt the system on human evaluation of grammaticality. This is not surprising, since Trimmer
aims to produce compressions that are grammatical in Headlinese, rather than standard English. Our
MCR run scored significantly lower than 23 systems on NIST’s human evaluation of grammaticality. How-
ever, the system did not score significantly lower than any other system on NIST’s human evaluation of con-
tent responsiveness. A second NIST evaluation of content responsiveness asked evaluators to take readability
into consideration. In this evaluation, MCR scored significantly lower than only two systems. The evaluators
recognized that Trimmer compressions are not grammatical in standard English; yet, the content coverage was
not significantly different from the best automatic systems, and only two systems were found to be significantly
more readable.

NIST computed three “official” automatic evaluation metrics for the DUC-2006: RouGe-2, RouGE-SU4 and
BE-HM. Table 4 shows the official scores of the submitted MCR system for these three metrics, along with
numbers of systems that scored significantly higher, significantly lower, or were not significantly different from

7 This is a change in the ROUGE configuration from the official DUC-2006 evaluation. We note that the removal of non-essential
stopwords (typical of Headlinese) is an important component of Trimmer-based sentence compression. For internal system comparisons,
we configure ROUGE in a way that will allow us to detect system differences relevant to our research focus. For reporting of official RoUGE
results on submitted systems we use the community’s accepted ROUGE configurations.
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our MCR run. Also shown is the range of scores for the systems that were not significantly different from
MCR. These results show that the performance of our MCR run was comparable to most other systems sub-
mitted to DUC-2006.

The evaluation in Table 3 suggest that Trimmer sentence compression is preferable to HMM Hedge sen-
tence compression for generation of English summaries of collections of document in English. However,
HMM Hedge may prove to have value with noisier data, as we discuss in the next section. Nevertheless, sen-
tence compression appears to be a valuable component of our framework for multi-document summarization,
thus validating the ideas behind multi-candidate reduction.

6. Applications to different types of texts

We have applied the MCR framework to summarizing different types of texts. In this section we briefly
touch on genre-specific issues that are the subject of ongoing work. Trimmer, Topiary, and HMM Hedge were
designed for summarization of written news. In this genre, the lead sentence is almost always the first non-triv-
ial sentence of the document. More sophisticated methods for finding lead sentences did not outperform the
baseline of simply selecting the first sentence for AP wire “hard’’ news stories. However, some types of articles,
such as sports stories, opinion pieces, and movie reviews often do not have informative lead sentences, and will
require additional work in finding the best sentence for compression.

MCR has also been applied to summarizing transcripts of broadcast news—another input form where lead
sentences are often not informative. The conventions of broadcast news introduce categories of story-initial
light content sentences, such as “I'm Dan Rather” or “We have an update on the story we’ve been following™.
These present challenges for the filtering stage of our MCR framework.

Such texts are additionally complicated by a range of problems not encountered in written news: noise
introduced by automatic speech recognizers or other faulty transcription, issues associated with sentence
boundary detection and story boundary detection. If word error rate is high, parser failures can prevent Trim-
mer from producing useful output. In this context, HMM Hedge becomes more attractive, since our language
models are more resilient to noisy input.

We have performed an initial evaluation of Trimmer, Topiary and a baseline consisting of the first 75 char-
acters of a document, on the task of creating 75-character headlines for broadcast news transcriptions (Zajic,
2007). The corpus for this task consisted of 560 broadcast news stories from ABC, CNN, NBC, Public Radio
International and Voice of America. We used RoUGE-1 recall to evaluate the summaries, and found that both
systems scored higher than the baseline, and that Topiary scored higher than Trimmer. However there were no
significant differences among the system.

Another application of our framework is the summarization of email threads—collections of emails that
share a common topic or were written as responses to each other. This task can essentially be treated as a
multi-document summarization problem, albeit email thread structure introduces some constraints with
respect to the ordering of summary sentences. Noisy data is inherent in this problem, and the pre-processing
to remove quoted text, attachments and headers is crucial. We have found that metadata, such as the name of
the sender of each included extract help make email summaries easier to read.

We performed an initial evaluation of HMM Hedge and Trimmer as the source of sentence compressions
for an email thread summarization system based on the MCR framework (Zajic, 2007). The corpus for this
task consisted of 10 manually constructed email threads from the Enron Corpus (Klimt & Yang, 2004).
We used RoUGE-1 and rRouGe-2 recall with jackknifing to compare the automatic systems and the human sum-
marizers. We did not observe a significant difference between the two systems, but we found that the task of
summarizing email threads was extremely difficult for the humans (one summarizer scored significantly worse
than the automatic systems). This application of MCR to email thread summarization is an initial effort. The
difficulty of the task for the humans suggests that the community needs to develop a clearer understanding of
what makes a good email thread summary, and explore practical uses for them.

Finally, Trimmer and HMM Hedge have been applied to Hindi-English cross-language summarization. In
this case, Trimmer was applied to the output of machine translation. We adapted HMM Hedge to cross-

Please cite this article in press as: Zajic, D. et al., Multi-candidate reduction: Sentence compression as a tool ..., Infor-
mation Processing and Management (2007), doi:10.1016/j.ipm.2007.01.016




753
754

755

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791

792

793
794
795
796
797
798
799

20 D. Zajic et al. | Information Processing and Management xxx (2007) xxx—xxx

lingual summarization by using the mechanism developed for morphological variation to represent translation
probabilities from Hindi story words to English headline words. For more details, see Dorr et al. (2003a).

7. Future work

Future work on text summarization under the multi-candidate reduction framework will focus on the three
main components of the architecture: sentence filtering, sentence compression, and candidate selection.

For single document summarization, the simple technique of selecting the first non-trivial sentence of a doc-
ument for compression remains the best approach. However, for human interest stories or sports articles, this
approach is less effective. In broadcast news transcripts, the first sentence often does not contain important
information. Currently, filtering for multi-document summarization also relies on the assumption that impor-
tant information tends to appear near the front of documents—the first five sentences of each document are
retained to generate compressed candidates. An interesting area of future work is to explore other approaches
to filtering, such as using query relevance and document centrality, to move beyond the baseline of selecting
the first n sentences. For HMM Hedge, these methods can be used to determine the optimal blocks of text on
which to apply the decoder.

Currently, Trimmer produces multiple compressions by applying rules in a fixed order; the state of the com-
pressed sentence after each rule application becomes a candidate. A richer pool of candidates can be produced
by modifying Trimmer rules to operate in order-independent combinations, rather than a fixed sequence. We
believe that the sentence selector can produce better summaries if it has larger pools of candidates to choose
from. Naturally, different sentence compressions are not the only techniques for enriching the candidate
pool—other possibilities include merging sentences and resolving anaphora. Topiary will also be enhanced
by using multiple combinations of compressions and topic terms in the context of headline generation.

We also plan to enrich the candidate selector by taking into account more features of the current summary
state. Possibilities include sentence selector iteration count and remaining summary space, as well as feature
weights that change during the progress of summary generation. These extensions will allow us to study the
distribution of compressed and uncompressed sentences across sentence selector iterations. System output can
potentially be improved by finer-grained control of this distribution. These features might also help avoid the
current problem in which the final sentence is truncated due to length restrictions (e.g., by selecting a final sen-
tence of more appropriate length).

Proper setting of parameters is another important area for future work. Systematic optimization of param-
eter values in HMM Hedge and the sentence selector could lead to significant improvements in output quality.
A logical extension to this work would be to learn the best parameter settings, e.g., through Expectation
Maximization.

At present, MCR focuses exclusively on summary content selection and does not take sentence ordering
into consideration when constructing the summary. Naturally, high-quality summaries should read fluently
in addition to having relevant content. Recent work in this area that can be applied to MCR includes Conroy
et al. (2006), Barzilay, Elhadad, and McKeown (2002), Okazaki, Matsuo, and Ishizuka (2004), Lapata (2003),
and Dorr and Gaasterland (this special issue). Within the MCR architecture, fluency considerations can be
balanced with other important factors such as relevance and anti-redundancy through appropriate feature
weighting.

8. Conclusion

This work presents multi-candidate reduction, a general architecture for multi-document summarization.
The framework integrates successful single-document compression techniques that we have previously devel-
oped. MCR is motivated by the insight that multiple candidate compression of source sentences should be
made available to subsequent processing modules, which may have access to more information for summary
construction. This is implemented in a dynamic feature-based sentence selector that iteratively builds a sum-
mary from compressed variants. Evaluations show indeed that sentence compression plays an important role
in multi-document summarization, and that our MCR framework is both flexible and extensible.
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