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Abstract

Image texture is a powerful cue for the semantic description of scene structures that ex-
hibit a high degree of similarity in their image intensity patterns. This paper describes
a statistical approach to image texture description that combines a highly discrimina-
tive local feature descriptor with a powerful global statistical descriptor. Based upon
a SIFT-like feature descriptor densely estimated at multiple window sizes, a statistical
descriptor, called the multifractal spectrum (MFS), extracts the power-law behavior of
the local feature distributions over scale. Through this combination strong robustness
to environmental changes including both geometric and photometric transformations
is achieved. Furthermore, to increase the robustness to changes in scale, a multi-scale
representation of the multi-fractal spectra under a wavelet tight frame system is de-
rived. The proposed statistical approach is applicable to both static and dynamic tex-
tures. Experiments showed that the proposed approach outperforms existing static tex-
ture classification methods and is comparable to the top dynamic texture classification
techniques.
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1. Introduction

Image texture has been found a powerful cue for characterizing structures in the
scene, which give rise to image patterns that exhibit a high degree of similarity. Classi-
cally image texture was used for classification of materials, such as cotton, leather, or
wood, and more recently it has been used also on unstructured parts of the scene, such
as forests, buildings, grass, trees, or shelves in a department store. An image texture
descriptor becomes useful for semantic description and classification, if it is highly
discriminative and at the same time robust to environmental changes ([45]). Environ-
mental changes can be due to a wide range of factors, such as illumination changes,
occlusions, non-rigid surface distortions and camera viewpoint changes.

Starting with the seminal work of [17], texture has been studied in the context of
various applications ([13]). Earlier work was concerned with shape from texture (e.g.
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[1, 14, 27]), and most of the recent works are about developing efficient texture rep-
resentations for the purpose of segmentation, classification, or synthesis. There are
two components to texture representations: statistical models and local feature mea-
surements. Some widely used statistical models include Markov random fields (e.g.
[11, 39]), joint distributions, and co-occurrence statistics (e.g. [18, 19, 31]). Local
measurements range from pixel values over simple edge responses to local feature de-
scriptors and filter bank responses (e.g. [6], [16], [20], [21], [25], [26], [29], [39], [41],
[42]).

Approaches employing sophisticated local descriptors usually compute as statistics
various texton histograms based on some appearance based dictionary. Depending on
the percentage of pixel information used in the description, these approaches can be
classified into two categories: dense approaches and sparse approaches. Dense ap-
proaches apply appearance descriptors to every pixel. For example, Varma et al [39]
used the responses of the MR8 filter bank, consisting of a Gaussian, a LOG filter and
edges in different directions at a few scales. In contrast, sparse approaches employ
appearance-based feature descriptors at a sparse set of interest points. For example,
Lazebnik et al [20] obtained impressive results by combining Harris & Laplacian key-
point detectors and RIFT & Spin image affine-invariant appearance descriptors. Both,
the sparse and dense approaches have advantages and disadvantages. The sparse ap-
proaches achieve robustness to environmental changes because the features are nor-
malized. However, they may lose some important texture primitives by using only a
small percentage of the pixels. Also, there are stability and repeatability issues with the
keypoint detection of existing point or region detectors. By using all pixels, the dense
approaches provide rich information for local texture characterizations. However, on
the negative side the resulting descriptions tend to be more sensitive to significant en-
vironmental changes. To address the sensitivity, novel adaptive region processing is
needed, which however works well only for sparse sets of image points.

In order to achieve good robustness necessary for semantic classification, both com-
ponents of texture description, the local appearance descriptors and the global statistical
characterization, should accommodate environmental changes. In the past, very robust
local feature descriptors have been developed, such as the widely used SIFT features
([23]). Most approaches making use of these feature points use the histogram for global
statistical characterization. However, the histogram is not invariant to global geometri-
cal changes. Furthermore, important information about the spatial arrangement of local
features is lost. An interesting statistical tool, the so-called MFS ( multi-fractal spec-
tra) was proposed in [42] as an alternative to the histogram. The advantage of the MFS
is that it is theoretically invariant to any smooth transform ( bi-Lipschitz geometrical
transforms), and it also encodes additional information regarding the regularization of
the spatial distribution of pixels. A similar concept was used also in other texture appli-
cations, for example in texture segmentation [5]. In [42] the MFS was applied to simple
local measurements, the so-called local density function. Although the MFS descriptor
proposed in [42] has been demonstrated to have strong robustness to a wide range of
geometrical changes including viewpoint changes and non-rigid surface changes, its
robustness to photometric changes is weak. The main reason is that the local feature
description is quite sensitive to photometric changes. Moreover, the simple local mea-
surements have limited discriminative information. On the other hand, local feature
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Figure 1: Outline of the proposed approach

descriptors, such as SIFT [23], have strong robustness to photometric changes as has
been demonstrated in many applications. In particular, the gradient orientation his-
togram used in SIFT and variations of SIFT has been widely used in many recognition
and classification tasks including texture classification (e.g. [20]).

Here we propose a new statistical framework that combines the global MFS statisti-
cal measurement and local feature descriptors using the gradient orientation histogram.
Such a combination will lead to a powerful texture descriptor with strong robustness
to both geometric and photometric variations. Fig. 1 gives an outline of the approach.
First, four sets of scale-invariant image gradients are derived based on a modification of
the scale-selection method introduced in [22]. Next, for each set of scale-invariant im-
age gradients, at every pixel a multi-scale gradient orientation histogram is computed
with respect to multiple window sizes. Then, using a rotation-invariant pixel classifica-
tion scheme defined on the orientation histograms, pixels are categorized, and the MFS
is computed for every window size. The MFSs corresponding to different window sizes
together make up an MFS pyramid. The final texture descriptor is derived by sampling
the leading coefficients (that is, coefficients of large magnitude) of the MFS pyramids
under a tight wavelet frame transform ([7]).

The rest of the paper is organized as follows. Section 2 gives a brief review of the
basic tools used in our approach. Section 3 presents the algorithm in detail, and Section
4 is devoted to experiments on static and dynamic texture classification. Section 5
concludes the paper.
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2. Preliminaries

In this section, we give a brief review on some of the tools used in our approach:
the multi-fractal analysis and the tight framelet system.

2.1. Multi-fractal analysis
Multi-fractal analysis ([12]) is built upon the concept of the fractal dimension,

which is defined on point sets. Consider a set of points E in the 2D image plane
with same value of some attribute, e.g., the set of image points with same brightness.
The fractal dimension of such a point set E is a statistical measurement that charac-
terizes how the points in E are distributed over the image plane when one zooms into
finer scales. One definition of the fractal dimension, associated with a relatively simple
numerical algorithm, is the so-called box-counting fractal dimension, which is as fol-
lows: Let the image plane be covered by a mesh of n× n squares. Let #(E, 1

n ) be the
number of squares that intersect the point set E. Then the fractal dimension, denoted
as dim(E), is defined as

dim(E) = lim
n→∞

log#(E, 1
n )

− log 1
n

.

In other words, the fractal dimension dim(E) measures the power law behavior of the
spatial distribution of E over the scale 1/n:

#(E,
1

n
) ∝ (1/n)− dim(E).

In a practical implementation, the value of n is bounded by the image resolution, and
dim(E) is approximated by the slope of the line fitted to

log#(E,
i

N
) with respect to − log

i

N
for i = 1, 2, . . . ,m,

with N denoting the image resolution. In our implementation we set m = 3 and use
the least squares method to estimate the slope.

Multi-fractal analysis generalizes the concept of the fractal dimension. One ap-
proach of applying multi-fractal analysis to images is is to classify the pixels in the
image into multiple point sets according to some associated pixel attribute α. For each
value of α in its feasible discretized domain, let E(α) be the collection of all points
with the same attribute value α. The MFS ofE then is defined as the vectorD(α) vs α,
where D(α) is the box-counting fractal dimension of the point set E(α). For example,
in [42] the density function (a function describing the local change of the intensity over
scale) was used as the pixel attribute. The density was quantized into n values, and the
fractal dimensions these n values are combined into the MFS vector.

2.2. Wavelet frame system
Instead of directly using the MFS vector as the texture descriptor, we decompose

it under a shift-invariant wavelet frame system and only take the leading wavelet co-
efficients (coefficients with large magnitude). The reason for doing so is to further
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Figure 2: Piecewise linear wavelet frame system ([7]).

increase the robustness of the resulting texture descriptor by removing in-significant
coefficients which are sensitive to environmental changes. In this section, we give a
brief review on wavelet frame systems. For in-depth theoretical analysis and practical
implementation, see for example [7, 3, 36].

A wavelet frame system is a redundant system that generalizes the orthonormal
wavelet basis (see [7] for more details). Wavelet tight frames have greater flexibil-
ity than orthonormal bases by sacrificing orthonormality and linear independence, but
they have the same efficient decomposition and reconstruction algorithms as orthonor-
mal wavelet bases. The filters used in wavelet frame systems have many attractive
properties, not present in those used in orthonormal wavelet systems: e.g., symmetry
(anti-symmetry), smoothness,and shorter support. These nice properties make wavelet
frame systems ideal for building a descriptors with strong robustness.

An MRA-based wavelet frame system is based on a single scaling function φ ∈
L2(R) and several wavelet functions {ψ1, . . . , ψr} ⊂ L2(R) that satisfy the following
refinable equation:

φ(t) =
√
2
∑
k

h0(k)φ(2t− k); ψ`(t) =
√
2
∑
k

h`(k)φ(2t− k), ` = 1, 2, . . . , r.

Let φk(t) = φ(t−k) and ψk,j,` = ψ`(2
jt−k). Then for any square integrable function

f ∈ L2(R), we have a multi-scale representation of f as follows:

f =

∞∑
k=−∞

ckφk(t) +

r∑
`=1

∞∑
j=0

∞∑
k=−∞

dk,j,`ψk,j,`, (1)

where ck =
∫
R f(t)φk(t)dt and dk,j,` =

∫
R f(t)ψk,j,`(t)dt. The equation above is

called the perfect reconstruction property of wavelet tight frames. The coefficients
{ck} and {dk,j,`} are called low-pass and high-pass wavelet coefficients. The wavelet
coefficients can be efficiently calculated by a so-called cascade algorithm (see e.g.
[24]). In this paper, we use the piece-wise linear wavelet frame developed in ([7]):

h0 =
1

4
[1, 2, 1]; h1 =

√
2

4
[1, 0,−1]; h2 =

1

4
[−1, 2,−1].

See Fig. 2 for the corresponding φ and ψ1, ψ2. We follow [3] for a discrete imple-
mentation of the multi-scale tight frame decomposition without downsampling. For
convenience of notation, we denote such a linear frame decomposition by a rectangular
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matrix A of size m × n with m > n. Thus, given any signal f ∈ Rn, the discrete
version of (1) is expressed as follows:

f = ATw = AT (Af),

where w ∈ Rm is the wavelet coefficient vector of f . It is noted that we haveATA = I
but AAT 6= I unless the tight framelet system degenerates to an orthonormal wavelet
system.

3. The components of the texture descriptor

Our algorithm, which takes as input a texture image, consists of four computational
steps:

1. The first step is to calculate four types of scale-invariant image gradients in the
scale-space of the texture image. The scale selection used for computing image
gradients is based on two measures of images in scale-space: the Harris measure
and the Laplacian measure. For each measure, the scale is determined by the
maximum or the minimum of the measure over scale. This results in four scale-
invariant image gradient fields for the given texture image.

2. Next, for each scale-invariant image gradient field, the local orientation his-
togram of every pixel is computed over m windows sizes (m = 8 in our im-
plementation). Similar as in the SIFT feature approach, we use 8 directions in
the orientation histogram. Two types of orientation histogram are used: one sim-
ply counts the number of edges in a direction and the other uses the summation
of edge energy. Thus, in total we obtain 8∗m sets of local orientation histograms
for the given image.

3. For each of the 8 kinds of orientation histogram, an MFS pyramid is calculated,
with the m levels of the pyramid corresponding to the m window sizes. At
every level, the orientation histograms are first discretized into n (n = 29 in our
implementation) sets using rotation-invariant templates, and an MFS vector is
computed on this classification. At the end of this step, we have 8 MFS pyramids
of size m× n.

4. Finally, a sparse tight framelet coefficient vector of each MFS pyramid is esti-
mated, by keeping only the frame coefficients of largest magnitude and setting
to 0 all others. The total dimension of the resulting texture descriptor in our
implementation is 1392.

Next, we give a detailed description of every step.

3.1. Scale-invariant image gradient field

The texture measurement of the proposed method is built upon the image gradients
of the given image. To suppress variations of image gradients caused by possible scale
changes, we compute the image gradients in scale-space. Given an image I(x, y),
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its linear scale-space L(x, y;σ) is obtained by convolving I(x, y) with an isotropic
Gaussian smoothing kernel of standard deviation σ:

g(x, y;σ) =
1

2πσ
e−(

x2+y2

2σ ), (2)

such that
L(x, y;σ) = ( g(·, ·;σ) ∗ I)(x, y) (3)

with a sequence of σ = {1, . . . ,K} ranging from 1 to K (K = 10 in our implementa-
tion). At each pixel (x, y), the image gradient is calculated by

(∂xL(x, y;σ∗(x, y)), ∂yL(x, y;σ∗(x, y))),

where σ∗(x, y) is determined by the scale selection method proposed in [22]. This
method selects at every point the scale at which some image measurement takes on the
extreme value. In our approach, these are the minimum and maximum of the Harris
and the Laplacian measurement.

In more details, for each pixel (x, y) two measurements are calculated: the Harris
measurement (4) defined as

MH = L2
xL

2
y − (LxLy)

2 − α(L2
x + L2

y)
2 (4)

and the Laplacian measurement (5) defined as

ML = σ(Lx2 + Ly2) (5)

with Lxmyn(x, y; t) = g ∗ (∂xmyn(I(x, y))). In our implementation, parameter α is set
to 0.05 and the Prewitt filters are used for computing the partial derivatives in scale-
space, which are given as:

∂

∂x
:

 −1 0 1
−1 0 1
−1 0 1

 ;
∂

∂y
:

 −1 −1 −1
0 0 0
1 1 1

 .

The Harris measurement characterizes the edge energy along different directions. It
takes on large values at corners, and small values at strong straight edges. The Lapla-
cian measurement represents the second-order derivative information, and it is large
at the center of intensity blobs and small on edges. Then, four scales are derived by
taking the maximum/minimum value of the Harris/Laplacian measurement over scale.
For each scale-selection method, the gradient magnitude and orientation are computed
by applying the finite difference operator to L(x, y;σ∗). See Fig. 3 for an illustration
the scales selected at each pixel and the corresponding image gradients. At the end of
this step, we have four scale-invariant image gradient fields.

3.2. Multi-scale local orientation histograms
Our proposed local feature descriptor relies on the local orientation histogram of

image pixels, which also is used in SIFT ([23]) and similar features. Its robustness
to illumination changes and invariance to in-plane rotations has been demonstrated
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(a) Sample texture region (b) Scale σ (c) Image gradient

Figure 3: (a) Sample texture region; (b) selected scale σ based on the maximum of the Laplacian
measure in scale-space with the scale ranging from 1 to 10; (c) corresponding image gradient
field, where the circle at a point denotes the size of the Gaussian smoothing kernel (defined by
σ) when computing the gradient.

Figure 4: Orientation histogram for a neighborhood size of 5× 5.

in many applications. For each image gradient field computed in the previous step,
at every pixel, two types of local orientation histograms are computed. One simply
counts the number of orientations; the other weighs them by the gradient magnitude.
See Fig. 4 for an illustration. The gradient orientations are quantized into 8 directions,
covering 45 degrees each. To capture information of pixels in a multi-scale fashion, for
each pixel, we compute the orientation histograms at 8 window sizes ranging from 3×3
to 17 × 17. The orientation histograms, as in SIFT, are rotated to align the dominant
orientation with a fiducial direction.

3.3. Pixel classification and the MFS

The next step is to compute the MFS vector. The MFS vector depends on how
the pixels are classified. To obtain a reasonable statistics of the spatial distribution of
pixels, the number of pixels in each class needs to be sufficiently large, and thus the
number of the classes needs to be quite small.We thus need a meaningful way of dis-
cretizing the very large amount of possible orientation histograms. Our approach is to
introduce a fixed bin partitioning scheme based on a set of basic orientation histogram
templates.
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(a) (b)

Figure 5: Twenty-nine Orientation histogram templates. (a) one representative element is shown
for each class; (b) all the elements in one class, which are obtained from the possible mirror-
reflections and rotations of the basic element.

First, the estimated orientation histograms are quantized as follows. For each bin
in the orientation histogram, the value is set to 0 if the magnitude is less than 1

8 of the
overall magnitude and to 1 otherwise. We then define a partitioning scheme based on
the topological structure of orientation histograms, with a total of 29 classes. Fig. 5
gives an illustration showing one basic element of each class. The proposed templates
are defined on the basis of the number of significant image gradient orientations and
their relative positions. Each template class contains the basic element shown in Fig. 5
(a) and all rotated and mirror-reflected copies that can be obtained from it ( Fig. 5 (b) ).

Next, for each window size the corresponding MFS feature vector is calculated as
follows: For each template class (out of 29 classes), a binary image is derived by setting
the value of the pixel to 1 if its associated template falls into the corresponding template
class and to 0 otherwise (see Fig. 6. Thus, there are 29 binaries images. For each binary
image the box-counting fractal dimension is computed, and the fractal dimensions are
concatenated into a 29-dim MFS vector. The MFS feature vectors corresponding to
different windows sizes are then combined into a multi-scale MFS pyramid. The size
of this MFS pyramid is 8× 29.

It is easy to see that the orientation histogram templates provide a pixel classi-
fication scheme which is invariant to rotation and mirror-reflection; in addition, the
robustness to illumination changes is guaranteed by the orientation histogram itself
([23]). Using the MFS as the replacement of the histogram for statistical characteriza-
tion leads to better robustness to global geometric changes.

3.4. Robustifying the texture descriptor in the wavelet frame domain

Recall that given a texture image, we derived eight types of orientation histograms,
and each is associated with an MFS pyramid. The final step is to construct the tex-
ture descriptor by only taking the leading coefficients of the eight MFS pyramids in a
wavelet frame domain. The purpose is to further increase the robustness of the texture
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(a) (b) (c) (d) (e)

Figure 6: (a): Two texture images. (b)–(e): Examples of binary images with respect to pixel
classification based on the orientation histogram templates.

descriptor to environmental changes. The construction is done as follows: We first de-
compose the MFS pyramid using the 1D un-decimal linear-spline framelet transform
([7]), as it has been empirically observed that the corresponding tight frame coefficients
tend to be highly relevant to the essential structure of textures.

Let the matrix E(s, n) denote the MFS pyramid where s denotes the scale (win-
dows size of local orientation histogram) and n denotes the index of the template class.
Let F denote the L-level decomposition of E(s, n) under a 1D tight framelet system
with respect to s defined as

F(j, s, n) := AE(s, n),

where A is the frame decomposition operator, and j denotes the level of the frame
decomposition. The multi-dimensional matrix F consists of two kinds of compo-
nents: one component that is the output of the low-pass filtering using h0 at the
scale 2−L, and multiple components that are the outputs of high pass filtering using
h1, · · · , hr at multiple levels ranging from 2−1, · · · , 2−L. Each high-pass filter out-
put has three variables: scale 2−j , j = 1, · · · , L, level s, s = 1, · · · , 8 and bin index
n, n = 1, 2, · · · , 29. See Fig. 7 for an illustration of the single level frame coefficients
of the sample images in Fig. 6.

Recall that the un-decimal framelet tight frame is a redundant transform, and thus
there is redundant information in the framelet coefficients of F . In contrast to orthogo-
nal mappings, redundant transforms tend to yield sparse leading coefficients with large
magnitude. The next step then involves extracting these leading coefficients such that
the resulting descriptor is compact and provides strong robustness to inter-class texture
variations. In our approach, we simply keep the 70% leading coefficients with largest
amplitude and set all others to 0. The final texture descriptor then consists of only
leading framelet coefficients of all MFS pyramids.
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(a) (b)

Figure 7: Framelet decomposition at a single scale. The low-pass components of the frame coefficient H0

obtained by filtering with h0. The high-pass components of the frame coefficients {H1, H2} obtained by
filtering with h1 and h2 respectively. (a): Framelet features of the glass image in Fig. 6 for max of Laplacian
measure; (b): Framelet features of the plaid images in Fig. 6 for max of Laplacian measure

4. Experimental evaluation

The performance of the proposed texture description is evaluated for static and
dynamic texture classification.

4.1. Static texture

We evaluated the performance of texture classification on two datasets, the UIUC
dataset ([23]) and the high-resolution UMD dataset ([42]). Sample images of these
datasets are shown in Fig. 8 and in Fig. 11. The UIUC texture dataset consists of
1000 uncalibrated and unregistered images: 40 samples for each of 25 textures with a
resolution of 640× 480 pixels. The UMD texture dataset also consists of 1000 uncali-
brated and unregistered images: 40 samples for each of 25 textures with a resolution of
1280×900 pixels. In both datasets significant viewpoint changes and scale differences
are present, and the illumination conditions are uncontrolled.

In our experiments, the training set is selected as a fixed size random subset of the
class, and all remaining images are used as the test set. A final texture description is
based on a two-scale framelet-based representation. The reported classification rate is
the average over 200 random subsets. An SVM classifier (Tresp et al [37]) is used,
which was implemented as in Pontil et al [32]. The features of the training set are
used to train the hyperplane of the SVM classifier using RBF kernels as described in
Scholkopf et al [34]. The optimal parameters are discovered by cross-validation.

The proposed texture descriptor is compared against three other texture descrip-
tors: Lazebnik et al [20], Varma et al [38], and Xu et al [42]. he first one ([20]) is the
so-called (H+L)(S+R) texture descriptor, which is based on a sophisticated point-based
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Figure 8: 25 sample textures from the UIUC dataset

(a) (b) (c)

Figure 9: Classification rate vs. number of training samples for the UIUC dataset based on SVM classifica-
tion. Four methods are compared: the (H+L)(S+R) method in Lazebnik et al[20], the MFS method in Xu et
al [42], the VG-Fractal method in Varma et al[38] and our OTF method. (a) Classification rate for the best
class. (b) Mean classification rate for all 25 classes. (c) Classification rate of the worst class.
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(a) (b)

(c) (d)

Figure 10: Classification percentage vs. index of classes for the UIUC dataset based on SVM classification.
The number of training samples is 20. The number on the top of each sub-figure is the average classification
percentage of all 25 classes. (a) Result of the (H+L)(S+R) method. (b) Result of the MFS method. (c) Result
of the VG-Fractal method. (d) Result of our OTF method.
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Figure 11: The 25 textures from the UMD dataset.

texture representation. The basic idea is to first characterize the texture by clusters of
elliptic regions. The ellipses are then transformed to circles such that the local descrip-
tor is invariant to affine transforms. Two descriptors (SPIN and SIFT) are defined on
each region. The resulting texture descriptor is the histogram of clusters of these local
descriptors, and the descriptors are compared using the EMD distance. The second
method is the VG-fractal method by Varma and Garg [38], which uses properties of the
local density function of various image measurements resulting in a 13 dimensional
descriptor. The resulting texture descriptor is the histogram of clusters of these local
descriptors. The third method, the MFS method by Xu et al [42], derives the MFSs of
simple local measurements ( the local density function of the intensity, image gradient
and image Laplacian). The texture descriptor is a combination of the three MFSs. The
results on the UIUC dataset using the SVM classifier for the (H+L)(S+R) method is
from [20]. The other results are obtained from our implementations. We denote our
approach as OTF method. Fig. 9 shows the classification rate vs. the number of train-
ing samples on the UIUC dataset. Fig. 10 shows the classification percentage vs. the
index of classes on the UIUC dataset based on 20 training samples. Fig. 12 and Fig. 13
show the results of the UMD dataset using the same experimental evaluation.

From Fig. 9 – Fig. 13, it is seen that our method clearly outperformed the VG-fractal
method and the MFS method on both datasets. Also our method obtained better results
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than the (H+L)(S+R) method. We emphasize that heavy clustering is needed in both,
the VG-fractal method and the (H+L)(S+R) method, which is very computationally
expensive. In contrast, our approach is much simpler and efficient without requiring
clustering.

(a) (b) (c)

Figure 12: Classification rate vs. number of training samples for the UMD dataset using SVM classification.
Four methods are compared: the (H+L)(S+R) method, the MFS method, the VG-Fractal method and our
OTF method. (a) classification rate for the best class; (b) mean classification rate for all 25 classes; (c)
classification rate of the worst class;

(a) (b)

(c) (d)

Figure 13: Classification rate (in percentage) vs. index of classes on UMD dataset based on SVM classifi-
cation. The number of training samples is 20. The number at the top of each sub-figure indicates the average
classification rate over all 25 classes. (a) (H+L)(S+R) method. (b) MFS method. (c) VG-Fractal method. (f)
OTF method.

4.2. Dynamic texture
Dynamic textures are image sequences with stochastically stable spatiotemporal

behavior ([9]). Examples are video sequences of rivers, water, foliage, smoke, clouds,
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fire and etc. Also, the applications concerning such video sequences are plenty, includ-
ing surveillance, foreground and background separation (e.g. [10, 35]). In this section,
using a similar concept as for static texture, we develop an efficient texture descriptor
for dynamic texture with strong robustness to environmental changes.

The OTF method developed for static texture can be applied to describe dynamic
texture without significant modifications. Different from static textures, dynamic tex-
tures not only vary in the spatial distribution of texture elements, but also vary in their
dynamics over time. The basic idea in our approach is to view the dynamic texture
as a 3D volume of data and examine it from three orthogonal views, i.e. the views
along two perpendicular spatial axes (x- and y- axis) and the view along the time axis
(t-axis). More specifically, for each axis, we apply the OFT method on every image
slice of the volume along this axis and take the mean of all feature vectors of all im-
age slices. Then, the texture descriptor for dynamic texture is defined as the weighted
sum of the three mean OTF descriptors along the x-axis, y-axis and t-axis with weights
being (0.2, 0.2, 0.6) respectively. Also, since most dynamic textures have rather small
scale changes, the step of calculating scale-invariant image gradients are omitted for the
purpose of computational efficiency. Instead, we just use the standard image gradients.

One of the most popular dynamic texture benchmarks is the UCLA dataset used
extensively for performance evaluation (e.g. [8, 15, 30, 33, 40]). The original UCLA
dataset consists of 50 dynamic textures. Each texture is given in terms of four grayscale
image sequences captured from the same viewpoint, resulting in a total of 200 se-
quences, each of which consists of 75 frames of size 110*160. The literature does not
agree on a ground truth regarding the classification of the UCLA dataset. In [8, 33, 40]
the following three classifications, termed DT9, SIDT, and DT7 were considered:

1. DT9 is a classification into 9 classes ([33, 15]). The categories contain boiling
water(8), fire(8), flowers(12), fountains(20), plant(108), sea(12), smoke(4), wa-
ter(12) and waterfall(16), where the numbers of elements of each class are given
in brackets. Sample frames are shown in Fig. 14. In our experiments we used
the original images of size 110*160.

2. SIDT was chosen to eliminate the effects due to biases in identical viewpoint
selection. The sequences in the UCLA dataset were manually cropped into non-
overlapping pairs of subsequences with a spatial resolution of 48*48 ([40]), re-
sulting in a total of 400 sequences. Nearest-neighbor classification was applied
in the recognition process.

3. DT7 splits the original images spatially into left and a right halves resulting in
400 sequences, which were classified into seven different semantic categories
[8] as follows: flames(16), fountain(8), smoke(8), turbulence(40), waves(24),
waterfall(64), vegetation(240).

We compared our method method using both NN and SVM classifiers to the methods
in [8] and [15] on the three categorizations ( DT9, SIDT and DT7). See table 1 for a
comparison of the methods. The confusion matrices for DT9, SIDT and DT7 are shown
in Fig. 15, Fig. 16 and Fig. 17 respectively. It can be seen that our methods compares
favorably to the other two state-of-the-art methods.
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Figure 14: Samples images from dynamic textures in the UCLA 9 dataset.

Method DT9 SIDT DT7
Derpanis et al[8] 60%(NN) 92.3%(NN)
Ghanem et al[15] 95.6%(SVM)

OTF descriptor (NN) 95.32% 81.73% 95.48%
OTF descriptor (SVM) 97.15% 98.14%

Table 1: The classification table of DT9, SIDT and DT7
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(a) (b)

Figure 15: Confusion matrix of DT9 for classification. (a) Result by NN classifier. (b) Result by SVM
classifier.

Figure 16: Confusion matrix of SIDT for classification by NN classifier.

5. Summary and conclusions

In this paper, we proposed a new texture descriptor, which applies the global MFS
to local gradient orientation histograms. The proposed descriptor has strong robustness
to both local and global illumination changes and is robust to many geometric changes.
Locally, robustness to illumination changes and geometric variations is achieved by us-
ing templates of local gradient orientation histograms; robustness to local scale changes
is achieved by using scale-invariant image gradient fields. Globally, the multi-fractal
spectrum ([42]) and its sparse approximation in a wavelet frame system are employed
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(a) (b)

Figure 17: Confusion matrix of DT7 for classification. (a) Result by NN classifier. (b) Result by SVM
classifier.

to obtain further robustness to global environmental changes. Our texture descrip-
tion is rather efficient and simple to compute without feature detection and clustering.
Experiments on static and dynamic texture classifications showed that our approach
performed well. In future research, we would like to investigate how to apply the
proposed framework to other recognition tasks including object recognition and scene
understanding.
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