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Color based image segmentation
as edge preserving filtering and grouping

✦

Abstract —In this paper we contend that color based image segmenta-
tion can be performed in two stages: an edge preserving filtering stage
followed by pixel grouping. Furthermore, for the first step, we introduce
a framework under which many current filtering approaches (and some
novel ones) can be classified. We present experiments where a new
method, called Color Mean Shift, outperforms all the other methods in
producing more uniform regions and preserving the edge boundaries.
Then, applying standard clustering methods for the grouping step, we
present extended experimental results for the Berkeley segmentation
dataset of the combined filtering+grouping segmentation methods. We
show that this new approach to image segmentation produces better
segmentations compared to current state-of-the-art methods based on
grouping only.

Index Terms —Image filtering, image segmentation, mean shift, bilateral
filtering.

1 INTRODUCTION

We consider the problem of image segmentation, based
only on the intensity values of an image. Color based
segmentation is a fundamental and well studied problem
in computer vision and many algorithms exist in the
literature. Although many different methods have been
suggested, all of them perform some kind of grouping of
the pixels in the image based on some pairwise similarity
criteria.
This paper does not argue against this common view

of segmentation. On the contrary we believe that the
grouping of pixels is a necessary step of the segmenta-
tion process. The main contention of the paper is that
an edge preserving filtering step1 should proceed the
grouping step. As a result, we perceive segmentation
as a two-step process; a smoothing step followed by a
grouping step. Intuitively, the smoothing step attempts to
bring closer intensities of neighboring pixels that belong
to the same segment, while preserving (or even enhanc-
ing) the intensity difference across segment boundaries.
The grouping step, on the other hand, makes the final
decision whether two neighboring pixels belong to the
same segment or not. We also argue that both steps are
equally important, even though current methods only
concentrate on one step of the process. As expected, their
combination affects the final result.

1. In the rest of the paper we use the terms filtering and smoothing
interchangably. In our view both terms indicate the process of smooth-
ing the image while preserving the strong edges.

In the first part of the paper, we study a number of
smoothing techniques; the original mean shift [1] and
its modified version[2], [3]2, bilateral filtering [4],[5],
local mode filtering [6] and anisotropic diffusion [7].
We present all the above techniques as variations of a
general optimization problem. Using such a formulation
the similarities and differences between them are made
clear. This framework also provides a natural way to
classify them using two criteria. Using the classification
criteria we propose three novel methods. Two of them
(color mean shift and spatial mean shift) are variations of
the mean shift filtering and the third one is an extension
of bilateral filtering. Filtering experiments show that
color mean shift actually outperforms the other filtering
methods in smoothing the images, while preserving the
edges.
In the second part of the paper, we present segmen-

tation methods by combining the previously described
filtering methods with four grouping methods. We per-
form a number of experiments using the Berkeley [8]
and Weizmann Institute [9] datasets and answer the
following critical questions; Is the filtering step importart
for the segmentation and does filtering in different color
spaces and using different kernel functions matter?

1.1 Related Work

Our work on filtering methods is motivated by the
mean shift algorithm so first we present related work
on mean shift. Following the success of Comaniciu and
Meer’s version of mean shift [3] the same basic algorithm
for non parametric clustering has been used for object
tracking [10], 3D reconstruction [11], image filtering [3],
texture classification [12] and video segmentation [13]
among other problems. The relatively high computa-
tional cost of a naive implementation of the method
combined with the need for fast image processing led
researchers to propose fast approximate variations of it.
Most notably, two solutions for finding pairs of points
within a radius have been proposed; the Improved Fast
Gauss Transform based mean shift [14] for Normal ker-

2. In the recent papers, the original “mean shift” approach is called
“blurring mean shift”. We use a different name for the mean shift
variant used in computer vision, namely “mode finding”. So in the
rest of this chapter the term Mode Finding refers to Comaniciu and
Meer’s version of mean shift and is abbrievated as CMMS.
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nels and the Locality Sensitive Hashing based mean shift
[12].
Cheng [2] was the first to recognize the equivalence of

mean shift to a step-varying gradient ascent optimization
problem, and much later Fashing and Tomashi [15]
showed that it is equivalent to Newton’s method with
piecewise constant kernels, and is a quadratic bound
maximization for all other kernels. Yuan and Li [16]
prove that mean shift is a half quadratic optimization
for density mode detection when the profiles of the
kernel functions are convex. Finally, Carreira-Perpinan
[17] proves that it is equivalent to an EM algorithm when
the kernel is the Normal function.
Concerning the grouping methods, we use three al-

gorithms: the grouping method used by Comaniciu and
Meer [3] (in 3D and 5D) and the method of Felzenszwalb
and Huttenlocher[19]. We have chosen the first two
because they are directly related to the filtering methods.
The fourth method while not directly related to filtering
is still a fast, local method that is considered the state of
the art in color based segmentation. A number of other
grouping (i.e., segmentation) algorithms exist in the liter-
ature; energy minimization [20], spectral clustering [21],
[22], algebraic multigrid [23] based methods to name a
few. The reason why we did not include them in our
comparison was because they were either a) slow and/or
b) hard to parameterize and/or c) difficult to implement.
Nevertheless, we believe that the grouping methods we
used were sufficient to prove our points.

1.2 Paper organization

This paper is organized as follows. After a short section
describing the notation and some necessary mathemati-
cal prerequisites we proceed to describe the framework
for the filtering algorithms. Then, we present the criteria
used to classify the methods as well as the individual
methods themselves. We conclude the first part of the
paper with a number of experiments applying the meth-
ods to different images. The second part, begins with the
introduction of the grouping methods we used and the
measures to quantify the segmentation quality. Then we
proceed with the experiments. We conclude this paper
with the final conclusions and future work.

2 NOTATIONAL PRELIMINARIES

We represent the color image as a mapping S from the
2D space of the pixel coordinates to the 3D space of
the intensity values (for color images). xi is a 2D vector
representing the spatial coordinates of pixel i(i = 1 . . .N)
and S(xi) is a vector that represents the three color chan-
nels. To simplify the notation we denote the intensities
for a pixel xi with a subscript, so S(xi) = Si. We also
denote the set of all pixels as X and the whole image
S (X). The cardinality of X is N .
In the following sections we use bold letters to represent

vectors and the notation [xi,Si]
T to indicate a concatena-

tion of vectors. When we want to indicate the evolution

of a vector over time we use superscripts, e.g. [x0
i ,S

0
i ]

indicates the initial values of pixel xi having intensity
Si.

2.1 Kernel Functions

Definition(Kernel Function):Let X be a d-dimensional
Euclidean space and x ∈ X. We denote with xi the ith

component of x. The L2 norm of x is a non-negative

number ||x|| such that ||x||2 =
∑d

i=1 x2
i . A function K :

X → R is a kernel if and only if there exists another
function k : [0 · · ·+∞]→ R such that

K(x) = k(||x||2) (1)

and

1) k is non negative
2) k is non increasing i.e.,

k(a) ≥ k(b), if a < b (2)

3) k is piecewise continuous and

ˆ +∞

0

k(a)da < +∞ (3)

Function k(x) is called the profile of the kernel K(x).

Often the kernel function is normalized i.e.,
ˆ

X

K(x)dx = 1. (4)

Even though kernel functions are mostly used for
kernel density estimation, we use them in order to define
optimization problems that we subsequently solve using
standard gradient descent methods. Thus, we are not
only interested in the kernel function K(x) but also

on its partial derivatives ∂K(x)
∂x

. Next we define two
kernel functions that we use; the Epanechnikov and the
Gaussian kernel.

2.1.1 Epanechnikov kernel

The Epanechnikov kernel [24] has the analytic form

KE(x) =

{

cE(1 − x
T
x) x

T
x ≤ 1

0 otherwise
(5)

where cE =
d + 2

2πd/2
Γ(

d + 2

2
) is the normalization constant.

Fig. 1(a) presents this kernel in the 1−D case. The partial
derivative of KE(x) with respect to element xi of vector
x is

∂KE(x)

∂xi
=

{

−2 · cE · xi −1 < xi < 1

0 |xi| > 1
(6)

and is depicted in Fig. 1(b).
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Figure 1: 1−D Epanechnikov kernel.
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(a) 1-D normal kernel
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Figure 2: 1−D Normal kernel.

2.1.2 Multivariate Normal (Gaussian) kernel
The multivariate Normal kernel with variance 1 has the
analytic form

KN(x) = (2π)−
d
2 exp(−

1

2
x

T
x). (7)

In Fig. 2(a) a 1−D Normal kernel is displayed.
The partial derivative of KE(x) with respect to ele-

ment xi of vector x is

∂KN (x)

∂xi
= −xi · (2π)−

d
2 exp(−

1

2
x

T
x) = −xi ·KN (x) (8)

and is depicted in Fig. 2(b).
The Normal kernel is often symmetrically truncated to

obtain a kernel with finite support.

3 EDGE PRESERVING FILTERING

3.1 A taxonomy of filtering methods

In Fig. 3 we present our scheme for classifying the
various edge preserving filtering methods. The figure
can be split into two parts. On the left part optimiza-
tion based methods are shown, while on the right part
filtering methods. The only difference between filtering
and optimization methods is that the former methods
perform a single iteration of the corresponding optimiza-
tion problem. The three new methods are spatial mean
shift, color mean shift and joined bilateral filtering.

3.2 Classification criteria

Careful examination of the previous defined optimiza-
tion problems reveal that there are only two differences
in their objective functions; the presence of [xi,Si] or
[Si] as the optimization argument; and the comparison
against the points in the original image [x0

j ,S
0
j ] or the

points on the previous iteration [xj ,Sj ]. Finally two
of the methods (bilateral filtering and joined bilateral
filtering) are an one-iteration methods, while all the other
methods perform multiple iterations till convergence.
Next we explain in details these differences.

3.2.1 arg min
[xi,Si]

vs arg min
Si

In the first case the optimization problem is defined over
the joint spatial and range domain (5−D), i.e. both the
position of the pixels as well as their intensities change in
each iteration. In the second case, where the optimization
is over the range domain (3−D), only the intensities of
the pixels change while their position remain the same.
This is not to be confused with the use of [xi,Si] in
the objective function. While the position of the pixel
is always considered in the computation of the objective
function, that position might change or not (depending
on the method).

At this point we should also make clear that the
optimization is defined for the whole image, that is the
values of all the pixels change. For the sake of simplicity
we do not make this explicit when we write down the
optimization equation.

3.2.2 [x0
j ,S

0
j ] vs [xj ,Sj ]

With a subscript we denote the value of the pixels at a
specific iteration, so [x0

j ,S
0
j ] is the value of pixel xj at

the very beginning, i.e. in the original image. The lack
of a superscript denotes the current value of pixels, i.e.
the value of the pixel at a previous iteration. Two pairs
of algorithms (mean shift/mode finding and local mode
filtering/anisotropic diffusion) only differ in whether we
compare the current value of a pixel against the original
image or the image obtained in the previous iteration. As
we will demonstrate in the experiments, the results vary
significantly because of that (also see [25] for a theoretical
analysis and justification).

Furthermore, there are two valid hybrid combinations
that have not been proposed before.

• [x0
j ,Sj ] : In this case the comparison is performed

against the original position of the pixels and the
previously computed range image.

• [xj ,S
0
j ] : In this case the position of the pixels in the

previous iteration is used along with their original
intensity values.

Apparently the previous cases only make a difference
when the optimization is defined over the joint spa-
tial/range domain. Otherwise the position of the pixels
never changes, thus [xj ] ≡ [x0

j ].
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Figure 3: Classification of various filtering methods.

3.3 Filtering methods

In the following subsections we define a number of
image filtering techniques as optimization problems. In
previous formulations these methods were defined as
the result of applying an algorithm to an image. Using
our formulation we aim to achieve two goals; to simplify
the methods (since we only need a single equation
to describe it) and to describe all the methods in a
uniform way. Note that some methods (i.e. mean shift
and mode finding) are defined for any kernel function,
while others (i.e., bilateral filtering, local mode filtering
and anisotropic diffusion) are only defined with respect
to the Normal kernel KN(x).

3.3.1 Mean Shift (MS)

The original mean shift formulation [1] (applied to a
color image) treats the image as a set of 5 − D points
(i.e., 2 dimensions for the spatial coordinates and 3
dimensions for the color values). Each point is iteratively
moved proportionally to the weighted average of its
neighboring points. At the end, clusters of points are
formed. We define mean shift to be the gradient descent
solution of the optimization problem

arg min
[xi,Si]

−
∑

i,j

K([xi,Si]− [xj ,Sj]), (9)

where
∑

i,j

defines the summation over all pairs of pix-

els in the image. Note that this problem has a global
maximum when all the pixels “collapse” into a single
point. We seek a local minimum instead. That’s why we
initialize the features [xi, si] with the original position

and color of the pixels of the image and perform gradient
descent iterations till we reach the local minimum.

3.3.2 Mode Finding or Comaniciu/Meer Mean Shift
(CMMS)
The modified mean shift formulation proposed by Co-
maniciu and Meer [3] (henceforth called “mode finding”
and denoted as CMMS) can also be expressed as a
gradient descent solution of the optimization problem

arg min
[xi,Si]

−
∑

i,j

K([xi,Si]− [x0
j ,S

0
j ]) (10)

There is a subtle difference between mode finding and
mean shift, that significantly affects the performance. In
the former formulation each current point is compared
against the original set of 5 − D points [x0

j ,S
0
j ], while

in the latter case the point is compared against the set
of points from the previous iteration [xj ,Sj ]. In a recent
paper [25] S. Rao et al. study those two variations from
an information theoretic perspective and conclude that
mean shift is not stable and hence should not be used
for clustering.
Fig. 4 presents the results of both methods in a

smoothly varying intensity image. Notice that the gra-
dient of the kernel function is zero everywhere but
in the boundaries. Thus, mode finding filtering only
changes the intensity on the boundaries (that change
is not very visible in Fig. 4). Mean shift, on the other
hand, produces artificial segments of uniform intensity.
Intuitively, each iteration of the process results in more
clustered data which in turn results in better clustering
results for the next iteration. On the downside, a fast
mean shift implementation is challenging due to the fact
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that the feature points and the comparison points do not
lie on a regular spatial grid anymore. Thus in a naive
implementation one would have to compare the current
feature [xi,Si] against all the remaining feature points.

3.3.3 Spatial Mean-Shift (SMS)
One of our proposed methods that lies between mean
shift and mode finding, spatial mean shift performs
mean shift in the spatial dimensions and mode finding in
the color dimensions. SMS can be viewed as the gradient
descent solution of the optimization problem

arg min
[xi,Si]

−
∑

i,j

K([xi,Si]− [xj ,S
0
j ]). (11)

Spatial mean shift suffers from the same computational
problems as mean shift, so it is mentioned here for the
sake of completeness. We exclude the results of both
mean shift and spatial mean shift in our filtering and
segmentation experiments.

3.3.4 Color Mean-Shift (CMS)
Color mean shift is our proposed method that alleviates
the computational problem of mean shift by using the
original spatial location of the points for comparison,
while it uses the updated intensity values of the previous
iteration for improved clustering ability. In a sense, mean
shift is performed on the color dimensions and mode
finding on the spatial dimensions (that is the reason for
naming the method “color mean shift”). As above, CMS
can be expressed as the gradient descent solution of the
optimization problem

arg min
[xi,Si]

−
∑

i,j

K([xi,Si]− [x0
j ,Sj ]). (12)

3.3.5 Local Mode Filtering (LMF)
Local mode filtering [6] was introduced as a method to
find the local mode in the range domain of each pixel
of the image. A generalization of the spatial Gaussian
filtering to a spatial and range Gaussian filter is used to
iterate to the local mode (on the 3−D color domain). On
each iteration the intensity of each pixel is replaced by a
weighted average of its neighbors. From an optimization
point of view the problem can be expressed as

arg min
Si

−
∑

i,j

KN([xi,Si]− [x0
j ,S

0
j ]). (13)

3.3.6 Bilateral Filtering (BF)
In bilateral filtering [4],[5] the intensity of each pixel is
replaced by a weighted average of its neighbors. The
weight assigned to each neighbor decreases with both
the distance in the image plane (spatial domain) and the
distance on the intensity axes (range domain). Formally
the intensity at each pixel Si takes the value

Si =

∑

j SjKN ([xi,Si]− [x0
j ,S

0
j ])

∑

j KN ([xi,Si]− [x0
j ,S

0
j ])

. (14)

(a) Mode Finding (b) Spatial Mean Shift (c) Color Mean Shift

(d) Mean Shift (e) Local Mode Filtering(f) Anisotropic Diffusion

Figure 4: All the described algorithms applied on a
smoothly varying image. All the filtering algorithms
were executed with spatial resolution hs = 21 and range
resolution hr = 10 and used a Normal kernel.

Bilateral filtering can be considered as the first iteration of
local mode filtering with a specific step size (Sec. 3.4).

3.3.7 Joined Bilateral filtering

In this variation of the bilateral filtering both the inten-
sity and position of each pixel is replaced by a weighted
average of its neighbors. Formally, the new coordinates
and color of each pixel are

[xi,Si] =

∑

j [xi,Si]KN ([xi,Si]− [x0
j ,S

0
j ])

∑

j KN([xi,Si]− [x0
j ,S

0
j ])

. (15)

Analogous to bilateral filtering this method can be
considered as the first iteration of mode finding with
a specific step size.

3.3.8 Anisotropic Diffusion (AD)

Anisotropic diffusion is a non-linear process introduced
by Perona and Malik [7] for edge preserving smoothing.
In the original formulation a diffusion process with a
monotonically decreasing diffusion function of the image
gradient magnitude is used to smooth the image while
preserving strong edges. Since then other functions have
been proposed and the equivalence of this technique
to robust statistics has been established [26]. In [6] the
connection with local mode filtering was also made.
Here we provide an alternative view of the diffusion
process as an optimization problem

arg min
Si

−
∑

i,j

KN([xi,Si]− [xj ,Sj ]). (16)

The difference between this method and local mode
filtering is analogous to the difference between the
original mean shift and mode finding. Namely in local
mode filtering the current point is compared against
the original image pixels [x0

j ,S
0
j ], while in anisotropic

diffusion the comparison is against the intensity value
of the pixels in the previous iteration [xj ,Sj ].
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Color Mean Shift (CMS)

Input:
set of pixels x

0
i with intensities S

0
i

a function g
Output:
feature vector [xi,Si]

Algorithm:
initialize feature points [xi,Si]← [x0

i ,S
0
i ]

repeat until convergence
for all features [xi,Si]

[xi,Si]←
P

j
[xj ,Sj]g(||[xi,Si]−[x0

j ,Sj]||
2)

P

j
g(||[xi,Si]−[x0

j
,Sj ]||2)

Mode Finding (CMMS)

Input:
set of pixels x

0
i with intensities S

0
i

a function g
Output:
feature vector [xi,Si]

Algorithm:
initialize feature points [xi,Si]← [x0

i ,S
0
i ]

for all features [xi,Si]
repeat until convergence

[xi,Si]←
P

j
[xj ,Sj]g(||[xi,Si]−[x0

j ,S0

j ]||2)
P

j g(||[xi,Si]−[x0

j
,S0

j
]||2)

Figure 5: The algorithms that we use in the experiments. Note that g(x) = [x ≤ 1] (indicator function in Iverson
notation) for the Epanechnikov kernel and g(x) = exp(−x/2) for the Normal kernel. Local mode filtering is
performed in a similar way as mode finding and mean shift, anisotropic diffusion are performed in a similar
way as color mean shift.

3.4 Optimization steps sizes

From the above optimization problems mean shift, spatial
mean shift, color mean shift and anisotropic diffusion are
joint optimization problems i.e., the whole image needs
to be optimized simultaneously. In mode finding and
local mode filtering, on the other hand, each pixel can
be optimized independently from the rest of the image.
Next we present two claims concerning the step size of
these optimization problems.

Claim 1: Local mode filtering (and mode finding with
a Gaussian kernel) can be considered as gradient de-
scend methods for solving the corresponding optimiza-
tion problem (Eqs. 13 and 10 respectively) with a step
size at iteration t of

γt
i = −

1
∑

j KN ([xi,St
i]− [xj ,S0

j ])
. (17)

Claim 2: Mode finding with an Epanechnikov kernel
can be considered as a gradient descend method for
solving the corresponding optimization problem (Eq. 10)
with a step size at iteration t of

γt
i = −

1

2cE

∑

j,||[xt
i
,St

i
]−[x0

j
,S0

j
]||<1 1

(18)

As a consequence the result after one iteration of the
gradient descent is

[xt+1
i ,St+1

i ] =

∑

j,||[xt
i
,St

i
]−[x0

j
,S0

j
]||<1[x

0
j ,S

0
j ]

∑

j,||[xt
i
,St

i
]−[x0

j
,S0

j
]||<1 1

. (19)

In the Appendix we provide the proof of the first
claim along with a table (Table 4) that summarizes the
optimization step sizes for each method along with the
results after one iteration. Note that in the case of mean
shift and anisotropic diffusion we are using the block

gradient descent method and optimize one pixel vector
at a time3.

4 FILTERING EXPERIMENTS

Following the example of Comaniciu and Meer [3], we
normalize the spatial and color coordinates of each pixel
vector by dividing by the spatial (hs) and color (hc)
resolution. Thus, the original feature vector [xi,Si] is
transformed to [ xi

hs
, Si

hr
] (not included in the optimization

equations for simplicity reasons). Then, we perform the
optimization; one pixel at a time in the case of mode
finding (Fig. 5, top right), or one iteration of the whole
feature set at a time in the mean shift and color mean
shift cases (Fig. 5, top left). Fig. 6 displays the original
images that we use for all the experiments in the rest of
the section.

4.1 Epanechnikov vs Normal Kernel

First we present some filtering results when using dif-
ferent kernels; namely the Epanechnikov and Normal
kernel (Figs. 7,8). Each column of the figures depicts
the filtering result with a different algorithm; CMMS,
LMF, CMS and AD stand for mode filtering, local
mode filtering, color mean shift and anisotropic diffusion
respectively. In all cases the Normal kernel produces
smoother results, while preserving edge discontinuities.
As a matter of fact the color resolution hr is the one that
defines the gradient magnitude above which there is an
edge (to be preserved). So for the “hand” image, a color
range of hr = 19 results in smoothing most of the texture
on the background, while a value of hr = 10 retains most
the texture (in RGB color space with a Normal kernel).
In all the images mode finding and local mode filtering

produced very similar results. Furthermore color mean

3. We use the symbols xj , Sj to denote the current value of pixel pj .
These might be the values of pixel pj at iteration t or t +1 depending
on whether pj is processed after or before pi.
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(a) Hand (b) Workers

(c) Woman (d) Houses

Figure 6: The original images we use for the filtering
experiments. The first image is taken from Comaniciu
and Meer’s mean shift segmentation paper, while the
remaining are training images of the Berkeley segmen-
tation database collection. Their sizes are 303× 243 and
481× 321 pixels respectively.

shift and anisotropic diffusion gave similar results. Color
mean shift seems to produce more crisp edges while
anisotropic diffusion smooths some of the edges. Over-
all, color mean shift and anisotropic diffusion produce
more uniform regions (e.g. suppresses the skin color
variation on the “hand” image) and more crisp bound-
aries between segments compared to mode finding and
local mode filtering. The latter is particularly important
for the segmentation step. We further investigate this
phenomenon in subsection 4.3.

For the remaining filtering experiments we use a
Normal kernel.

4.2 RGB vs Luv Color Space

In Figs. 9, 10 we present the results when filtering in
the RGB and Luv color space. In general, filtering in
Luv color space produces smoother images. This is due
to two facts. The euclidean distance between two Luv
values is perceptually meaningful, i.e. it is proportional
to the distance of the colors as perceived by a human
observer. This is not true in RGB, where very similar
colors might be located far away and the opposite.
Furthermore the range of values for each component
(L, u, v) is different (for example in our implementation
L ∈ [0 . . . 100], u ∈ [−100 . . .180], v ∈ [−135 . . .110].),
while each of the Red, Green and Blue components have
values from 0 to 255.

In these experiments, mode finding and local mode
filtering seem to produce almost identical images, while
color mean shift preserves the boundaries better than

(a) CMMS with
Epanechnikov
kernel

(b) LMF with
Epanechnikov
kernel

(c) CMS with
Epanechnikov
kernel

(d) AD with
Epanechnikov
kernel

(e) CMMS with
Normal kernel

(f) LMF with Nor-
mal kernel

(g) CMS with
Normal kernel

(h) AD with Nor-
mal kernel

(i) CMMS with
Epanechnikov
kernel

(j) LMF with
Epanechnikov
kernel

(k) CMS with
Epanechnikov
kernel

(l) AD with
Epanechnikov
kernel

(m) CMMS with
Normal kernel

(n) LMF with
Normal kernel

(o) CMS with
Normal kernel

(p) AD with Nor-
mal kernel

Figure 7: Epanechnikov vs Normal kernel experiment.
We use hs = 5 (resulting in a window of 11× 11 pixels)
and hr = 19. All the images are processed in RGB color
space.

anisotropic diffusion. Both latter methods smooth the
image considerably more than the former ones.

4.3 Color uniformity of regions after filtering

Next we compare the ability of the filtering algorithms
to suppress texture and produce uniform regions. One
issue is how to measure the color uniformity of regions.
Here, we use the zero order (i.e., color histograms) and
first order (i.e., gradient histograms) statistics to measure
the intensity variation in an filtered image. Then, we
compute the entropy of the two histograms. The entropy
definition4 measures how “random” an image is. Thus,
an image created by sampling each pixel’s color value
from a uniform random distribution is expected to have
a large entropy value, while a single uniform color image
has an entropy of 0. In general lower entropy values
indicate more uniform colored images, i.e. images with
less number of segments of more uniform color.
In Table 1 we display the entropy measures for each

method with the different kernels and color spaces (and

4. If X is a discrete random variable with possible val-
ues {x1, . . . , xn} then the entropy is defined as H(X) =
−

Pn
i=1 p(xi) logb p(xi), where b is the base of the logarithm (in our

case we use b = 2).



8

Table 1: Entropy measures for the color and gradient histograms for the four images after performing the filtering
with different methods and different kernels in the two color spaces. The first number is the entropy for the color
and the second for the gradient histogram. The lower the values the smaller the variation.

Hand Image Mode finding Local Mode filtering Color Mean Shift Anisotropic Diffusion

Epanechnikov, RGB 6.14, 12.97 6.14, 12.97 6.14, 12.97 6.14, 12.97
Epanechnikov, Luv 7.02, 12.91 7.02, 12.91 7.42, 12.82 7.50, 12.83

Normal, RGB 7.15, 12.68 7.32, 12.59 8.91, 11.89 9.32, 11.94
Normal, Luv 10.47, 10.85 11.20, 11.02 9.84,8.87 10.93, 9.16

Workers Image Mode finding Local Mode filtering Color Mean Shift Anisotropic Diffusion

Epanechnikov, RGB 13.95, 9.59 14.64, 9.59 12.34, 9.21 13.31, 9.35
Epanechnikov, Luv 13.72, 8.78 14.70, 8.75 12.51, 8.16 13.59, 8.21

Normal, RGB 12.46, 8.47 14.16, 8.48 10.82, 7.85 12.61, 8.14
Normal, Luv 12.74, 7.05 14.31, 7.16 11.80, 6.17 13.16, 6.28

Woman Image Mode finding Local Mode filtering Color Mean Shift Anisotropic Diffusion

Epanechnikov, RGB 14.25, 8.49 14.58, 8.43 13.12, 8.43 13.79, 8.39
Epanechnikov, Luv 13.67, 7.30 14.37, 7.15 12.37, 6.13 13.24, 6.07

Normal, RGB 13.26, 7.72 14.16, 7.41 11.58, 7.51 12.81, 7.35
Normal, Luv 13.08, 5.18 13.92, 5.11 12.07, 4.23 12.86, 4.30

Houses Image Mode finding Local Mode filtering Color Mean Shift Anisotropic Diffusion

Epanechnikov, RGB 14.27, 9.12 14.59, 9.07 13.07, 9.04 13.70, 8.98
Epanechnikov, Luv 13.39, 7.75 14.17, 7.60 11.71, 6.29 12.78, 6.46

Normal, RGB 13.05, 8.53 14.10, 8.22 10.94, 8.08 12.53, 8.12
Normal, Luv 12.72, 5.57 13.62, 5.67 11.48, 4.36 12.56, 4.71

(a) CMMS with
Epanechnikov
kernel

(b) LMF with
Epanechnikov
kernel

(c) CMS with
Epanechnikov
kernel

(d) AD with
Epanechnikov
kernel

(e) CMMS with
Normal kernel

(f) LMF with Nor-
mal kernel

(g) CMS with
Normal kernel

(h) AD with Nor-
mal kernel

(i) CMMS with
Epanechnikov
kernel

(j) LMF with
Epanechnikov
kernel

(k) CMS with
Epanechnikov
kernel

(l) AD with
Epanechnikov
kernel

(m) CMMS with
Normal kernel

(n) LMF with
Normal kernel

(o) CMS with
Normal kernel

(p) AD with Nor-
mal kernel

Figure 8: Epanechnikov vs Normal kernel experiment.
We use hs = 5 (resulting in a window of 11× 11 pixels)
and hr = 19. All the images are processed in RGB color
space.

(a) CMMS on RGB
color space

(b) LMF on RGB
color space

(c) CMS on RGB
color space

(d) AD on RGB
color space

(e) CMMS on
LUV color space

(f) LMF on LUV
color space

(g) CMS on LUV
color space

(h) AD on LUV
color space

(i) CMMS on RGB
color space

(j) LMF on RGB
color space

(k) CMS on RGB
color space

(l) AD on RGB
color space

(m) CMMS on
LUV color space

(n) LMF on LUV
color space

(o) CMS on LUV
color space

(p) AD on LUV
color space

Figure 9: RGB vs Luv color space experiments (1/2). We
use hs = 5 (resulting in a window of 11 × 11 pixels)
and hr = 5. All the images are processed with a Normal
kernel.
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(a) CMMS on RGB
color space

(b) LMF on RGB
color space

(c) CMS on RGB
color space

(d) AD on RGB
color space

(e) CMMS on
LUV color space

(f) LMF on LUV
color space

(g) CMS on LUV
color space

(h) AD on LUV
color space

(i) CMMS on RGB
color space

(j) LMF on RGB
color space

(k) CMS on RGB
color space

(l) AD on RGB
color space

(m) CMMS on
LUV color space

(n) LMF on LUV
color space

(o) CMS on LUV
color space

(p) AD on LUV
color space

Figure 10: RGB vs Luv color space experiments (2/2).
We use hs = 5 (resulting in a window of 11× 11 pixels)
and hr = 5. All the images are processed with a Normal
kernel.

constant spatial and color resolutions hs = 5, hr = 5).
From the results of Table 1 we observe that Color Mean
Shift with Normal kernel gives the smallest entropy
values for all the images, hence producing the most
uniform regions. Anisotropic diffusion follows, while
Mode finding and local mode filtering produce very
similar results. A natural question to ask is whether the
above results are due to over smoothing. From the sample
filtering results presented above this does not seem to
be the case. The only way to verify that though is to
perform the segmentation and then compare the results
against human segmented images. In Sec. 8 we present
these experiments. As we discuss there the segmentation
results for color mean shift are better than the ones for
the other filtering methods, thus we can safely conclude
that color mean shift produces more uniform regions without
over smoothing the original image.

4.4 Filtering speed comparison

An objective comparison of the filtering speed of the
different methods is not a simple task. Besides the im-
plementation details that greatly affect the speed, there
is also a number of algorithmic parameters that can
significantly speedup or slow down the convergence of
the optimization procedure. We start our comparison by
evaluating the role of these parameters and then we
discuss whether general speed up techniques that have

Figure 11: The filtering speed as a function of the image
size (i.e., number of pixels) for all four methods. We use
the "workers" image (whose original size is 321 × 481
pixels) and perform the filtering on the RGB color space
with an Epanechnikov kernel with spatial and color
resolutions hs = 5, hr = 15 respectively. We also limit the
number of iterations to 20 and the convergence threshold
is 0.001. We perform the filtering 5 times for each image
size and only plot the median value.

been proposed in the literature can be applied to the
different methods or not. For fairness sake, we use our
own implementation of all the filtering methods that
consists of Matlab files for the image handling and the
general input/output interface, while the optimization
code is written in C. We perform all the experiments
on a desktop computer with an Intel Core2 Quad CPU
@3GHz5.

4.4.1 Image size
The number of pixels directly affect the filtering speed. In
theory, the complexity of the algorithm increases linearly
with the number of pixels, since each pixel represents a
feature vector that needs to be processed. The theoretical
prediction is verified in practice as Fig. 11 shows.

4.4.2 Spatial resolution (hs)
Theoretically, all the filtering methods (but Mean Shift
and Spatial Mean Shift) depend quadratically on the
spatial bandwidth. In practice, other parameters, ex-
plained below, make the dependence less than quadratic.
Fig. 12 displays the filtering speed with respect to the
spatial resolution for the methods, when all the other
parameters are the same.

4.4.3 Epanechnikov vs Normal kernel
For each pair of pixels, computation of the weight using
the Epanechnikov kernel only requires a comparison,
while the calculation of an exponential number is nec-
essary for the case of the Normal kernel. As a result
the former operation is much cheaper than the latter

5. Due to Matlab’s limitation only one core is used in the experi-
ments.
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Figure 12: The filtering speed as a function of the spatial
resolution (hs) for all four methods. We use the "workers"
image (321×481 pixels) and perform the filtering on the
RGB color space with an Epanechnikov kernel (continu-
ous line) or Normal kernel (dotted line). We also limit the
number of iterations to 20 and stop the optimization for
pixels that move less than 0.001 between two iterations.
We perform the filtering 5 times for each value of hs and
only plot the median value.

and thus filtering with an Epanechnikov kernel is faster
compared to filtering with a Normal kernel as is shown
in Fig. 12. Other researchers (e.g. [27]) have proposed
the use of lookup tables to approximately compute the
exponents much faster.
At this point we should note that the overall speed of

the segmentation process is also affected by the quality
of the result of the filtering process. We experimentally
found, that using a normal kernel produced better results
and as a consequence sped up the grouping step. Overall
the use of a Normal kernel still resulted in slower
segmentation times, but the time difference was not as
large as Fig. 12 shows.

4.4.4 Convergence threshold
As described above, on each iteration of the optimization
procedure each pixel vector is compared against its
neighbors and shifted. If this shift is less than a pre-
defined value (denoted convergence threshold) then we
ignore that pixel in subsequent iterations of the optimiza-
tion procedure. Intuitively the convergence threshold
denotes how close to the “true” solution the optimization
should reach before termination. At this point we would
like to emphasize that for the mode finding and the
local mode filtering methods the shift of each pixel
is a monotonically decreasing function of the iteration
number, while for color mean shift and anisotropic dif-
fusion it is not. Fig. 13 displays the filtering speed with
respect to the convergence threshold. As expected the
higher the threshold the faster the filtering. Especially
for thresholds less than 0.1 the filtering time decreases
almost exponentially. According to this graph and all the
previous ones, local mode filtering is the fastest filtering
operation followed by anisotropic diffusion, and then

Figure 13: The filtering speed as a function of the con-
vergence threshold for all four methods. We use the
"workers" image (321 × 481 pixels) and perform the
filtering on the RGB color space with an Epanechnikov
kernel with spatial and color resolution hs = 5, hr = 15
respectively. We also limit the number of iterations to 50.
We perform the filtering 5 times for each value of the
convergence threshold and only plot the median value.
Notice that the X-axis is on logarithmic scale.

mode finding, while color mean shift is slightly slower.
This is expected due to the extra number of calculations
needed to estimate the 5D feature vector instead of the
3D feature vector in the other methods.

4.4.5 Filtering speed optimization
In the tests above, we use our own implementation
of all the filtering methods, that is a straightforward
translation of Table 4 to Matlab and C code, to perform
the speed experiments. A number of methods can be
used to perform the filtering faster.
In the core of all the filtering algorithms the pairwise

distance between feature points needs to be computed
for all pairs of points. As suggested in [3] employing data
structures and algorithms for multidimensional range
searching can speed up the filtering. This technique can
be used in all the filtering methods and is expected to
significantly improve the speed of slow methods such as
mean shift and spatial mean shift.
In mode finding the trajectory of most feature points

lay along the path of other feature points. Christoudias
et al. in [18] report a speed up of about five times relative
to the original algorithm when they “merge” the feature
points together. This trick can directly be used in local
mode filtering. A variation of the same concept could
also be used to speed up the filtering in all the other
methods.
The introduction of the multicore CPUs and, espe-

cially, GPUs has provided new way to improve the
execution speed of algorithms through a parallel im-
plementation. From Table 4 and Fig. 5 it is clear that
the filtering of each feature point can be performed in
parallel. We expect that a careful implementation of any
of the four algorithms (i.e. mode finding, color mean
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Table 2: Synopsis of the filtering results

• Normal kernel gives smoother images compared to Epanech-
nikov kernel

• Luv color space produces smoother filtering results compared to
RGB color space.

• Mode finding and local mode finding produce similar filtering
results. Mode finding performs slightly better filtering.

• Color mean shift and anisotropic diffusion produce similar fil-
tering results. Color mean shift preserves the edges better than
anisotropic diffusion.

• 3 − D filtering (i.e. local mode filtering) is almost equivalent
to 5 − D filtering (i.e. mode finding) when the original image
is used for the comparison. When the image obtained in the
previous iteration is used then 5 − D filtering (i.e. color mean
shift) preserves edges better than 3− D filtering (i.e. anisotropic
diffusion).

• Whether we use the original image for comparison or not affects
the filtering more than whether we perform it in 3−D or 5−D.

• Local mode filtering is the fastest; mode finding and local mode
filtering are a little bit slower; color mean shift is even slower.
All the methods are fast enough to perform the filtering in real
time for a reasonably large image when implemented in GPUs.

shift, local mode filtering and anisotropic diffusion) on
a modern GPU will run in real time for VGA or larger
images.

5 FILTERING CONCLUSIONS

So far, we presented a unifying framework under which
we can express different filtering algorithms. Using the
new understanding of filtering, we developed three new
edge preserving filtering methods, that we named Color
Mean Shift, Spatial Mean Shift and Joined Bilateral Fil-
tering. The first one exhibits similar clustering character-
istics with the original Mean Shift method while being
almost as computationally efficient as the Mode Finding
method, so it was included in our filtering comparison.
We performed a comparison of four different methods
(Mode Finding, Color Mean Shift, Local Mode Filter-
ing and Anisotropic diffusion) on a number of images
with different configurations for the color space and the
kernel function. Overall we noticed that Color Mean
Shift outperforms (i.e. creates more uniform segments
with better boundary separation) than the other methods
with the drawback of being slightly slower. Table 2
synopsizes the results of the experimental comparison
for performing edge preserving filtering.

6 GROUPING METHODS

A variety of grouping methods exist in the literature for
image segmentation. As a matter of fact almost all the
color based image segmentation methods are grouping
methods. Next, we describe the three methods that we
have chosen to use in the segmentation experiments.
The first two methods are based on a simple connected
components algorithm with a global threshold, while
the last method is an extension of that algorithm. All
methods are simple, namely they don’t require the use
of complicated tuning parameters and they are used
widely for image segmentation. Another advantage is

that they are fast so they can be used for (almost) real
time segmentation.

6.1 Greedy Connected Components grouping
(CC3D and CC5D)

This is the same strategy that Comaniciu and Meer
implicitly use in their image segmentation algorithm [3].
The method is a good starting point for our comparison;
its simplicity allows us to compare the smoothing algo-
rithms for the task of segmentation without worrying
that the result has been “changed” by the grouping al-
gorithm. Thus, the quality of the segmentation is directly
related to the quality of the filtering.
In a nutshell, the algorithm groups neighboring pixels

together if and only if their Euclidean distance is within
a user defined threshold. Note that there is a 3 − D
and a 5 − D variant of this algorithm since pixel xi is
represented by either a 3 − D vector (Si) or a 5 − D
vector ([xi,Si]) (Fig. 14). In our implementation we use
an union-find data structure to perform the merging so
the complexity of the algorithm is almost linear on the
number of pixels. A similar implementation was used in
the EDISON system [18].
The biggest problem with this simple grouping

method is the “segment diffusion” problem, when two
quite different segments are merged together because
there is a single weak (blurry) edge between them (e.g.
the clouds and the sky are merged into a single segment
in the first images of the top row of Fig. 16). In order
to reduce the impact of this problem we reduce the
grouping threshold (t in Fig. 14, top row) to 0.5.

6.2 Grouping with an Adaptive Threshold (GAT)

Felzenszwalb and Huttenlocher in [19] present a vari-
ation of the connected component algorithm where an
adaptive threshold for merging segments is used. Each
segment Ci keeps track of the maximum distance be-
tween two pixels belonging to it6(denoted Int(Ci)) and
two segments Ci, Cj are merged only if the mini-
mum distance between the pixels belonging to their
common boundary is smaller than the internal distance
Int(Ci), Int(Cj). The method is described in Fig. 14. This
algorithm is also linear on the number of pixels.

7 SEGMENTATION AS FILTERING PLUS
GROUPING

The notion of segmentation consisting of a filtering
followed by a grouping step is not new, but it is under-
emphasized in the literature. Most image segmentation
(i.e. grouping) algorithms operate on the original image,
while the filtering algorithms are usually applied to
the problems of edge preserving smoothing or noise
removal. Comaniciu and Meer [3] talk about “segmen-
tation consisting of a filtering and a fusion step”, but

6. Only the edges belonging to the minimum spanning tree of the
segment are considered
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Connected Components 3D (CC3D)

Input:
set of pixels xi with intensities Si

a grouping threshold t
Output:
a set of labels (label li for xi)

Algorithm:
for all pixels xi

assign label li
repeat until convergence

for all pixels xi

for all pixels xj

if ||Si − Sj || < t and li 6= lj
merge the labels of xi and xj (li ≡ lj)

Connected Components 5D (CC5D)

Input:
set of pixels xi with intensities Si

a grouping threshold t
Output:
a set of labels (label li for xi)

Algorithm:
for all pixels xi

assign label li
repeat until convergence

for all pixels xi

for all pixels xj

if ||[xi,Si]− [xj ,Sj ]|| < t and li 6= lj
merge the labels of xi and xj (li ≡ lj)

Grouping with an Adaptive Threshold (GAT)

Input:
An image as a graph G = (V, E) with n vertices and m edges

Output:
A segmentation of V into components S = (C1, ...Cr)

Algorithm:
sort E into π = (o1, . . . , om) by non decreasing edge weight
in the initial segmentation S0 each vertex vi is its own segment
for q = 1, . . . , m construct Sq given Sq−1 as follows

let vi, vj be the vertices connected by the qth edge oq = (vi, vj)
let pixels vi, vj belong to components Ci, Cj with
|Ci|, |Cj | number of elements respectively
let Int(Ci), Int(Cj) be the maximum edge weights of the minimum spanning tree of components Ci, Cj

let eq be the weight of edge oq

if vi, vj belong to different components Ci, Cj and eq < min{Int(Ci) + k
|Ci|

, Int(Cj) + k
|Cj|
}

merge Ci, Cj

return S = Sm

Figure 14: The grouping algorithms that we use in the segmentation experiments.

they focus on the filtering step and they use the simple
connected component algorithm of Fig. 14 top left, to
obtain the final segments. Subsequent work from the
same group [18] focuses on how to bring edge informa-
tion into the filtering and grouping step, but they still
use a similar connected components algorithm. Close to
our philosophy is the work of Unnikrisnan et al. [28]
where they combine the filtering algorithm of [18] with
the grouping algorithm of [19]. Their focus, thought, is
to introduce a new measure called Normalized Proba-
bilistic Rand to compare the quality of segmentation.

One of the main points of this paper is that both steps
are important to obtain good segmentation results. In
Figs. 15, 16, for example, we present the segmentation
results we obtained using different combinations of fil-
tering and grouping methods. First, we use the same
grouping method, namely CC3D, along with the four
different grouping algorithms. It is clear that depending
on the filtering method the sky is merged with the grass

(a) CMMS+CC3D (b) CMS+CC3D (c) LMF+CC3D (d) AD+CC3D

Figure 15: We present the segmentation results when we
use the same grouping method (CC3D) coupled with
different filtering methods. The filtering is performed on
the RGB color space with an Epanechnikov kernel with
spatial and color resolution hs = 5, hr = 4 respectively.

or not. On the second figure the filtering method is kept
constant (color mean shift) while the grouping method
changes. Here the results significantly depend on the
method, with the adaptive threshold method producing
the most intuitive segments. In the next section we exper-
imentally study the problem of color based segmentation
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(a) CMS+CC3D (b) CMS+CC5D (c) CMS+GAT

Figure 16: We present the segmentation results when
we use the same filtering method (Color mean shift)
followed by a different grouping method. The filtering
is performed on the RGB color space with an Epanech-
nikov kernel with spatial and color resolution hs =
5, hr = 4 respectively.

by comparing different combinations of filtering and
grouping algorithms. More specifically we couple each
of the four filtering algorithms that we studied above
with the three grouping algorithms that we introduced
in the previous section to obtain a new segmentation
method.

8 SEGMENTATION COMPARISON

There is little effort to classify image segmentation al-
gorithms and compare their characteristics due to two
main factors. The multiplicity of methods each having a
number of parameters make the comparison extremely
tedious. Moreover, the “right” segmentation is hard to
define, since there are many levels of detail in an image
and therefore multiple different meaningful segmenta-
tions. S. Paris [29] for example, creates a hierarchical
structure of segmentations where starting from a large
number of segments, regions are merged together to cre-
ate more coarse segmentations. Furthermore, in complex
scenes the evaluation of a given segmentation mostly
relies on subjective criteria. Borra and Shankar [30], for
example, go as far as suggesting that the proper seg-
mentation is task and domain specific. The difficulty of
formally defining the quality of a segmentation explains
the lack of segmentation databases for natural images.
The most complete attempt at comparing segmenta-

tion algorithms is presented on the Berkeley database
and segmentation website [8]. A large set of images
along with human created segmentations are made avail-
able for segmentation evaluation. This is the testbed
we use in this paper for the evaluation of the different
segmentation methods7. More specifically we use the
200 training images along with the 1087 human cre-
ated segmentations. Next, we first describe the different
measures that we use for the comparison, and then we
present the segmentation results.

8.1 Comparison measures

A number of measures have been proposed in the litera-
ture in order to compare two different segmentations of

7. In Appendix ?? we also present segmentation results using the
Weizmann Institute dataset [9].

the same image. In general the segmentation measures
can be classified in two categories; region based and
boundary based. The first group includes measures, such
as the Global Consistency Error [8], the Variation of
Information [31],[32] and the Probabilistic Rand index
[33], that consider the overlap of the segments in the two
segmentations, while the second consists of measures
that count the overlap or the distance of the boundaries,
such as the Boundary Displacement Error [34]. We com-
pared the segmentations using all the above measures,
but we report results on the Probabilistic Rand index and
the Boundary Displacement Error only. This is due not
only on the lack of space, but mainly because the other
measures were either not discriminative (Variation of
Information) or misleading (Global Consistency Error).
Boundary Displacement Error (BDE) This quantity

measures the average displacement error of the bound-
ary pixels between two segmented images. Particularly,
it defines the error of one boundary pixel in one segmen-
tation as the distance between the pixel and the closest
pixel in the other segmentation. BDE is not symmetric,
thus we use it to measure the average distance of the
human segmentation to the computer generated one.
Intuitively, the lower the BDE value the more similar
the two segmentations are. A BDE measure of 0 indicates
that all the boundaries of the human segmentation are
covered by the boundaries of the computer one, but not
vice versa.
Probabilistic Rand Index (PR) This measure counts

the fraction of pairs of pixels whose labellings are con-
sistent between the computed segmentation and the
ground truth, averaging across multiple ground truth
segmentations to account for scale variation in human
perception. PR is a measure of similarity and as such
a value of 0 indicates no similarity, while a value of 1
indicates the highest similarity.

8.2 Methodology

To produce the following segmentation figures we only
vary the value of the color resolution hr of the fil-
tering methods. More specifically, we let hr to obtain
values from 0.6 to 20 on increments of 0.3. We keep
the remaining filtering parameters constant i.e., the max-
imum number of iterations for convergence is set to
20 and the convergence threshold to 0.1. We also use
a spatial resolution of hs = 5, resulting on a 11 × 11
smoothing window around each pixel. Furthermore, we
utilize constant parameters for the grouping methods.
More specifically the grouping threshold (parameter t
of Fig. 5) is set to 1 and 0.5 for the CC5D and CC3D
grouping algorithms respectively. We use the excellent
C++ code provided by Felzenszwalb and Huttenlocher
[19] with two different sets of parameters to implement
the grouping with the adaptive threshold (GAT). On
the static setting we used σ = 0.5 and the k = 500
as suggested in their paper. On the dynamic (varying
k setting) we change the value of k depending on the
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value of hr. In the following experiments we use a linear
relation between hr and k8, namely

k = 45.83 ∗ hr + 142.5. (20)

We computed the comparison measures for each im-
age of the database and further aggregated the results
for the whole database using the median value9. These
values are plotted on the Y-axis of each figure. On the
X-axis we plot the average segment size, instead of the
color resolution hr. Thus all the plots below show the
implicit curve of one comparison measure with respect
to the average segment size. The motivation behind this
choice is the following; a major goal of a segmentation
algorithm is to create as large segments as possible with-
out merging areas belonging to different objects. Thus
the measures described above in conjunction with the
segment size only, can indicate whether a segmentation
is good and useful. For the computation of the Boundary
Displacement Error and the Probabilistic Rand Index we
use the code provided by J. Wright and A. Yang [35].

8.3 Filtering+Grouping vs Grouping

In the first set of experiments we compare the seg-
mentation methods with and without filtering. We start
with the simple segmentation method of connected
components (CC5D) in Fig. 17. Note that filtering the
image before performing the final grouping improves
the segmentation results in both measures. In Fig. 18
we present similar results when the GAT grouping is
used. As mentioned in 8.2 there are two variations of
the GAT; one with a constant parameter k = 500 and one
where k changes according to Eq. 20. We observe that in
both cases the results when we performed the filtering
and the grouping were better than when we performed
the grouping on the original images only. Especially in
the case of GAT with varying k there was a significant
improvement on both measures.

8.4 Epanechnikov vs Gaussian kernel and RGB vs
Luv color space

On our previous work [36] we presented a comparison
between the two kernels; Epanechnikov and Gaussian,
and the two color spaces; RGB and Luv. As it is shown
in Fig. 19 significantly better results were obtained with
the Luv/Normal kernel combination.
In Fig. 20 we extend the results for the case where

the GAT algorithm is used for grouping. Confirming our
previous observation the best combination is also Luv
color space and Normal kernel function. Furthermore,

8. Out of the infinite number of combinations for the pair (k, hr) we
match the average segment size obtained with CMS + CC5D with
the one obtained by GAT only to compute the coefficients. Thus, we
calculated the coefficients of the linear system by solving the system
of (k, hr) for values (170, 0.6) and (1050, 19.8).
9. Since the comparison measures vary significantly for different

images we choose the median value as opposed to the mean value
because it is more robust to outliers.

for average segment sizes greater than 250 pixels the
clear winner for the filtering algorithm is CMMS. This
is contrary to the results for CC5D where CMS outper-
formed CMMS in all cases. Thus, it is evident that to
obtain the best segmentation results one needs to consider
the combination of filtering and grouping algorithms.

9 CONCLUSIONS

In this paper we presented our position that the problem
of color based segmentation should be subdivided into
a filtering and a grouping component. We used the
Berkeley segmentation dataset to validate our position.
Furthermore, we created a number of new segmentation
algorithms by combining existing and new filtering and
grouping methods and we evaluated all the methods
extensively. Table 3 synopsizes the results of the ex-
perimental comparison for performing edge preserving
filtering and color based segmentation.
There are two main results that we want to emphasize

here. In all the experiments, processing the image with
an edge preserving filter before using a grouping method
produced significantly better results. Thus it is beneficial
to consider the segmentation process to be a combination of
a filtering and a grouping step.
Second, depending on the grouping method that is

used, a different filtering process produces best results.
For grouping with a hard threshold (i.e. CC3D and
CC5D methods) Color Mean Shift filtering worked best.
When grouping with an adaptive threshold (i.e. GAT
method) Mode Finding proved to be the best method.
As a conclusion, when considering the problem of color
based segmentation, one should study the combination of
the filtering and the grouping method to obtain the best
results. Studying only one component in isolation is not
sufficient.
Our overall comparison showed that for the Berkeley

dataset the best method to use is a combination of Mode
Finding with Grouping with Adaptive Threshold (with
variable k). Furthermore the results are better when the
filtering is performed in Luv color space with a Normal
kernel.
There are many interesting directions for future re-

search. In this paper we focused on the filtering more
than the grouping step. It would be interesting to per-
form the comparison using a more wide range of group-
ing methods, namely global energy minimization meth-
ods (e.g. graph cut), eigenvector based methods (e.g.
normalized cuts) and soft assignment methods based on
algebraic multigrid.
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Figure 17: Comparison of CC5D grouping with and without filtering the images. The filtering in the plots was
performed on the RGB color space with an Epanechnikov kernel. Similar results were obtained on the Luv color
space and with the Gaussian kernel. Both BDE and PR measures show that filtering improves the quality of
segmentation.

Figure 18: Comparison of GAT grouping with and without filtering the images. The filtering in the plots was
performed on the Luv color space with a Gaussian kernel. Similar results were obtained on the RGB color space and
with the Epanechnikov kernel. Both BDE and PR measures show that filtering improves the quality of segmentation.
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Figure 19: Comparison of segmentation methods when performing the filtering on different color spaces using
different kernels. Two color spaces (RGB and Luv) and two kernel functions (Epanechnikov and Normal) were
compared. We used the two best filtering methods, namely CMMS and CMS and the CC5D grouping method.

Figure 20: Comparison of segmentation methods when performing the filtering on different color spaces using
different kernels. Two color spaces (RGB and Luv) and two kernel functions (Epanechnikov and Normal) were
compared. We used the two best filtering methods, namely CMMS and CMS and the GAT grouping method.
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APPENDIX

Claim 3: Local mode filtering (and mode finding with
a Gaussian kernel) can be considered as gradient de-
scend methods for solving the corresponding optimiza-
tion problem (Eqs. 13 and 10 respectively) with a step
size at iteration t of

γt
i = −

1
∑

j KN ([xi,St
i]− [xj ,S0

j ])
. (21)

Proof: A proof for local mode filtering follows. Each
pixel pi is optimized separately. So if we replace the step
size γi in the general gradient descent algorithm we get

S
t+1
i = S

t
i − γt

i∇
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∑
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∑

j KN([xi,S
t
i]− [xj ,S

0
j ])S

0
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∑

j KN ([xi,St
i]− [xj ,S0

j ])
(26)

that is exactly the intensity values for pixel xi at the next
iteration t + 1.

To prove the claim for mode finding with a Gaussian
kernel one only needs to replace the occurrence of

Table 3: Synopsis of the filtering results

• Segmentations obtained by grouping methods alone have
much lower quality than the ones obtained using a com-
bination of a filtering and a grouping method.

• All segmentation methods are very sensitive to image
variations. The methods based on Grouping with an
Adaptive Threshold (GAT) are the least sensitive to inter
image variation. They also exhibit the least sensitivity to
the segmentation parameters (hr, k) when segmenting the
same image.

• Segmentation methods based on GAT grouping are not
monotonic.

• Segmentation methods based on GAT grouping outper-
form , on average, all the other segmentation methods.

• Segmentation methods based on GAT grouping are the
most stable to color resolution changes i.e., exhibit less
variation of the average segment size.

• Segmentation methods based on CC3D and CC5D group-
ing have very similar performance, with the CC3D ones
producing slightly better segmentation results.

• The graphs of the Probabilistic Rand Index (PR) and
Boundary Displacement Error (BDE) measures are the
most discriminative.

• Color Mean Shift (CMS) based segmentation methods
outperform all the other filtering methods when they are
combined with CC3D or CC5D grouping methods.

• When using GAT grouping with varying parameter k
Mode Finding (CMMS) produces the best results.

• Filtering in Luv produces much larger segments than
filtering in RGB for a given color resolution hr . Filtering
with a Normal kernel results in larger segments compared
to using a Epanechnikov kernel.

• The selection of the kernel function seems to be very im-
portant for the segmentation results. More specifically, we
obtained the best segmentation results when the filtering
was performed with a Normal kernel in the Luv color
space. The second best configuration is a Normal kernel
with an RGB color space, while the results obtained with
an Epanechnikov kernel in either RGB or Luv color spaces
are much worse.

S
t
i, S

t+1
i ,S0

j with [xt
i,S

t
i], [xt+1

i ,St+1
i ], [x0

j ,S
0
j ] respec-

tively, because the optimization is performed on the 5−D
domain.
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