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Visual texture is a powerful cue for the semantic description of scene structures that exhibit a high degree
of similarity in their image intensity patterns. This paper describes a statistical approach to visual texture
description that combines a highly discriminative local feature descriptor with a powerful global statis-
tical descriptor. Based upon a SIFT-like feature descriptor densely estimated at multiple window sizes, a
statistical descriptor, called the multi-fractal spectrum (MFS), extracts the power-law behavior of the
local feature distributions over scale. Through this combination strong robustness to environmental
changes including both geometric and photometric transformations is achieved. Furthermore, to increase
the robustness to changes in scale, a multi-scale representation of the multi-fractal spectra under a wave-
let tight frame system is derived. The proposed statistical approach is applicable to both static and
dynamic textures. Experiments showed that the proposed approach outperforms existing static texture
classification methods and is comparable to the top dynamic texture classification techniques.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Visual texture has been found a powerful cue for characterizing
structures in the scene, which give rise to certain patterns that ex-
hibit a high degree of similarity. Classically, static image texture
was used for classification of materials, such as cotton, leather or
wood, and more recently it has been used also on unstructured
parts of the scene, such as forests, buildings, grass, trees or shelves
in a department store. Dynamic textures are video sequences of
moving scenes that exhibit certain stationary properties in time,
such as sequences of rivers, smoke, clouds, fire, swarms of birds,
humans in crowds, etc. A visual texture descriptor becomes useful
for semantic description and classification, if it is highly discrimi-
native and at the same time robust to environmental changes
[51]. Environmental changes can be due to a wide range of factors,
such as illumination changes, occlusions, non-rigid surface distor-
tions and camera viewpoint changes.

Starting with the seminal work of [21], static image texture has
been studied in the context of various applications [15,20]. Earlier
work was concerned with shape from texture (e.g. [1,16,28]), and
most of the recent works are about developing efficient texture rep-
resentations for the purpose of segmentation, classification, or syn-
thesis. There are two components to texture representations:
ll rights reserved.
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statistical models and local feature measurements. Some widely
used statistical models include Markov random fields
(e.g. [11,43]), joint distributions, and co-occurrence statistics (e.g.
[22,23,36]). Local measurements range from pixel values over sim-
ple edge responses to local feature descriptors and filter bank re-
sponses (e.g. [7,19,24,25,30–32,43,46,47,49]).

Approaches employing sophisticated local descriptors usually
compute as statistics various texton histograms based on some
appearance based dictionary. Depending on the percentage of pixel
information used in the description, these approaches can be clas-
sified into two categories: dense approaches and sparse approaches.
Dense approaches apply appearance descriptors to every pixel. For
example, Varma et al. [43] used the responses of the MR8 filter
bank, consisting of a Gaussian, a LOG filter and edges in different
directions at a few scales. In contrast, sparse approaches employ
appearance-based feature descriptors at a sparse set of interest
points. For example, Lazebnik et al. [24] obtained impressive re-
sults by combining Harris and Laplacian keypoint detectors and
RIFT and Spin image affine-invariant appearance descriptors. Both
the sparse and dense approaches have advantages and disadvan-
tages. The sparse approaches achieve robustness to environmental
changes because the features are normalized. However, they may
lose some important texture primitives by using only a small per-
centage of the pixels. Also, there are stability and repeatability is-
sues with the keypoint detection of existing point or region
detectors. By using all pixels, the dense approaches provide rich
information for local texture characterizations. However, on the
negative side, the resulting descriptions tend to be more sensitive
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to significant environmental changes, such as changes in view-
point, that affect the local appearance of image pixels. To rectify
the local appearance, we would need adaptive region processes.
Such processes, however, would require strong patterns in the lo-
cal regions of image pixels, which are not available for most image
points. Thus, rectification, which is standard for sparse sets of im-
age points, cannot be adapted for dense sets.

In addition to the static texture in single images, dynamic tex-
ture analysis also considers a stochastic dynamic behavior in the
temporal domain. Chetverikov and Péteri [5] gave a brief survey
of methods on dynamic texture description and recognition. Earlier
dynamic texture classification systems (e.g. [33,10,38,45]) often
explicitly modeled the underlying physical process, and then dis-
tinguished different dynamic textures by the values of the associ-
ated model parameters. For example, Doretto et al. [10] used
linear dynamical system (LDS) to characterize dynamic texture pro-
cesses. The LDSs of the different textures were then compared in a
space described by Stiefel manifolds using the Martin distance.
Ghanem and Ahuja [18] introduced a phase-based model for dy-
namic texture recognition and synthesis. Dynamic characteristics
of dynamic texture were measured in Fazekas and Chetverikov
[13] using optical flow based statistical measurements. However,
it appears that so far no universal physical process has been found
that can model a large set of dynamic textures. Thus, recently,
appearance based discriminative methods have become more pop-
ular for dynamic texture classification [3,37,44,50]. Wildes and
Bergen [44] constructed spatiotemporal filters to qualitatively clas-
sify local motion patterns into a small set of categories. The
descriptor proposed by Zhao and Pietikäinen [50] is based on local
spatio-temporal statistics, specifically an extension of the local bin-
ary pattern (LBP) in 2D images to the 3D spatio-temporal volumes.
To compare different descriptors efficiently the co-occurrence of
LBPs was computed in three orthogonal planes. Ravichandran
et al. [37] combined local dynamic texture structure analysis and
generative models. They first applied the LDS model to local
space-time regions and then constructed a bag-of-words model
based on these local LDSs. Chan and Vasconcelos [3] used kernel
PCA to learn a non-linear kernel dynamic texture and applied it
for video classification.

In order to achieve good robustness necessary for semantic clas-
sification, both components of texture description, the local
appearance descriptors and the global statistical characterization,
should accommodate environmental changes. In the past, very ro-
bust local feature descriptors have been developed, such as the
widely used SIFT feature [27] in image space. Most approaches
making use of these feature points use histograms for global statis-
tical characterization. However, such histograms are not invariant
to global geometrical changes. Furthermore, important informa-
tion about the spatial arrangement of local features is lost. An
interesting statistical tool, the so-called MFS (multi-fractal spectra)
was proposed in [47] as an alternative to the histogram. The advan-
tage of the MFS is that it is theoretically invariant to any smooth
transform (bi-Lipschitz geometrical transforms), and it encodes
additional information regarding the regularization of the spatial
distribution of pixels. A similar concept was used also in other tex-
ture applications, for example in texture segmentation [6]. In [47]
the MFS was applied to simple local measurements, the so-called
local density function, and in [48] it was applied to wavelets.
Although the MFS descriptor proposed in [47] has been demon-
strated to have strong robustness to a wide range of geometrical
changes including viewpoint changes and non-rigid surface
changes, its robustness to photometric changes is weak. The main
reason is that the local feature description is quite sensitive to pho-
tometric changes. Moreover, the simple local measurements have
limited discriminative information. On the other hand, local fea-
ture descriptors, such as SIFT [27], have strong robustness to pho-
tometric changes as has been demonstrated in many applications.
In particular, the gradient orientation histogram used in SIFT and
variations of SIFT has been widely used in many recognition and
classification tasks including texture classification (e.g. [24]).

Here we propose a new statistical framework that combines the
global MFS statistical measurement and local feature descriptors
using the gradient orientation histogram. The new framework is
applicable to both static and dynamic textures. Such a combination
will lead to a powerful texture descriptor with strong robustness to
both geometric and photometric variations. Fig. 1 gives an outline
of the approach for static image textures. First, the scale-invariant
image gradients are derived based on a modification of the scale-
selection method introduced in [26]. Next, at every pixel multi-
scale gradient orientation histograms are computed with respect
to multiple window sizes. Then, using a rotation-invariant pixel
classification scheme defined on the orientation histograms, pixels
are categorized, and the MFS is computed for every window size.
The MFSs corresponding to different window sizes together make
up an MFS pyramid. The final texture descriptor is derived by sam-
pling the leading coefficients (that is, coefficients of large magni-
tude) of the MFS pyramids under a tight wavelet frame
transform [8].

The approach for dynamic textures is essentially the same as
that for static textures with the 2D image SIFT feature replaced
by the 3D SIFT feature proposed in Scovanner et al. [40]. Our ap-
proach falls in the category of appearance-based discriminative ap-
proaches. Its main advantage stems from its close relationship to
certain stochastic self-similarities existing in a wide range of dy-
namic processes capable of generating dynamic textures.

The rest of the paper is organized as follows. Section 2 gives a
brief review of the basic tools used in our approach. Section 3 pre-
sents the algorithm in detail, and Section 4 is devoted to experi-
ments on static and dynamic texture classification. Section 5
concludes the paper.
2. Preliminaries: multi-fractal analysis

In this section, we give a brief review on multi-fractal analysis.
A review on tight framelet systems is given in Appendix A. Multi-
fractal analysis [12] is built upon the concept of the fractal dimen-
sion, which is defined on point sets. Consider a set of points E in the
2D image plane with same value of some attribute, e.g., the set of
image points with same brightness. The fractal dimension of such a
point set E is a statistical measurement that characterizes how the
points in E are distributed over the image plane when one zooms
into finer scales. One definition of the fractal dimension, associated
with a relatively simple numerical algorithm, is the so-called box-
counting fractal dimension, which is as follows: Let the image
plane be covered by a square mesh of total n � n elements. Let
# E; 1

n

� �
be the number of squares that intersect the point set E.

Then the box-counting fractal dimension, denoted as dim(E), is de-
fined as

dimðEÞ ¼ lim
n!1

log # E; 1
n

� �
� log 1

n

: ð1Þ

In other words, the box-counting fractal dimension dim(E) measures
the power law behavior of the spatial distribution of E over the scale
1/n:

# E;
1
n

� �
/
�1

n

��dimðEÞ
:

In a practical implementation, the value of n is bounded by the im-
age resolution, and dim(E) is approximated by the slope of the line
fitted to



Fig. 1. Outline of the proposed approach.
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log # E;
i
N

� �
with respect to � log

i
N

for i ¼ 1;2; . . . ;m; m < N;

with N denoting the image resolution. In our implementation we
use the least squares method at points at i = 4, 5, 6, 7 to estimate
the slope.

Multi-fractal analysis generalizes the concept of the fractal
dimension. One approach of applying multi-fractal analysis to
images is to classify the pixels in the image into multiple point sets
according to some associated pixel attribute a. For each value of a
in its feasible discretized domain, let E(a) be the collection of all
points with the same attribute value a. The MFS of E then is defined
as the vector dim(E(a)) vs a. In other words,

MFS ¼ ½dimðEða1ÞÞ;dimðEða2ÞÞ; . . . ; dimðEðanÞÞ�:

For example, in [47] the density function (a function describing the
local change of the intensity over scale) was used as the pixel attri-
bute. The density was quantized into n values, and then the fractal
dimensions of n sets associated with these n values were concate-
nated into a MFS vector.

3. Main components of the texture descriptor

Our algorithm, taking as input a static texture image, consists of
four computational steps:

1. The first step is to calculate scale-invariant image gradients in
the scale-space of the texture image. At each point the scale is
determined by the maximum of the Laplacian measure result-
ing in a scale-invariant image gradient field.

2. Next, using as input the scale-invariant image gradient field, at
every pixel local orientation histograms are computed over m
window sizes (m = 5 in our implementation). Similar as in the
SIFT feature approach, we use 8 directions in the orientation
histogram. Two types of orientation histogram are used: one
simply counts the number of edges in each direction and the
other uses the summation of edge energy in each direction.
Thus, in total we obtain 2⁄m sets of local orientation histograms
for the given image.
3. Then the MFS pyramid is computed. The orientation histograms
are discretized into n (n = 29 in our implementation) classes
using rotation-invariant templates, and an MFS vector is com-
puted on this classification. We then combine the m MFS vec-
tors corresponding to the m window sizes into an MFS
pyramid. At the end of this step, we have 2 MFS pyramids of size
m � n.

4. Finally, a sparse tight framelet coefficient vector of each MFS
pyramid is estimated, by keeping only the frame coefficients
of largest magnitude and setting to 0 all others.

The algorithms for static texture images and dynamic texture
sequences are similar, but a SIFT-type descriptor in 2D image space
is used in the former case and a SIFT-type descriptor in 3D spatio-
temporal volume (see [40]) in the latter. Next, we give a detailed
description of every step described in the algorithm above.

3.1. Scale-invariant image gradient field

The texture measurement of the proposed method is built upon
the image gradients of the given image. To suppress variations of
image gradients caused by possible scale changes, we compute
the image gradients in scale-space. Given an image I(x,y), its linear
scale-space L(x,y;r) is obtained by convolving I(x,y) with an isotro-
pic Gaussian smoothing kernel of standard deviation r:

gðx; y; rÞ ¼ 1
2pr2 e

� x2þy2

2r2

� �
; ð2Þ

such that

Lðx; y;rÞ ¼ ðgð�; �;rÞ � IÞðx; yÞ ð3Þ

with a sequence of r = {1, . . . ,K} ranging from 1 to K (K = 10 in our
implementation). Then, at each pixel (x,y), its associated image gra-
dient is calculated as

½@xLðx; y;r�ðx; yÞÞ; @yLðx; y; r�ðx; yÞÞ�

for a particular standard deviation r⁄(x,y). The value r⁄(x,y) is
determined by the scale selection method proposed in [26] which
selects at every point the scale at which some image measurement
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takes on the extreme value. We use the Laplacian measurement, de-
fined as

ML ¼ r4 Lx2 þ Ly2

� �
ð4Þ

with Lxmyn ðx; y;rÞ ¼ @xmyn ðLðx; y; rÞÞ. In our implementation, the Pre-
witt filters are used for computing the partial derivatives in scale-
space. Then, the scale is derived by taking the maximum value of
the Laplacian measurement over scale. The gradient magnitude
and orientation are computed by applying the finite difference
operator to L(x,y;r⁄). See Fig. 2 for an illustration of the scale se-
lected at each pixel and the corresponding image gradients.

3.2. Multi-scale local orientation histograms

Our proposed local feature descriptor relies on the local orienta-
tion histogram of image pixels, which also is used in SIFT [27] and
similar features. Its robustness to illumination changes and invari-
ance to in-plane rotations has been demonstrated in many applica-
tions. For each image gradient field computed in the previous step,
at every pixel, two types of local orientation histograms are com-
puted. One simply counts the number of orientations; the other
weighs them by the gradient magnitude. The gradient orientations
are quantized into 8 directions, covering 45 degrees each. To cap-
ture information of pixels in a multi-scale fashion, for each pixel,
we compute the orientation histograms at 5 window sizes ranging
from 3 � 3 to 11 � 11. The orientation histograms, as in SIFT, are
rotated to align the dominant orientation with a canonical
direction.

3.3. Pixel classification and the MFS

The next step is to compute the MFS vector. The MFS vector de-
pends on how the pixels are classified. To obtain a reasonable sta-
(a) Sample texture region (b) Scale

Fig. 2. (a) Sample texture region. (b) Selected scale r⁄ based on the maximum of the Lap
image gradient field, where the circle at a point denotes the size of the Gaussian smoot

(a)
Fig. 3. (a) Representative elements for each of the 29 classes of orientation histogram te
obtained from the possible mirror-reflections and rotations of the basic element.
tistics of the spatial distribution of pixels, the number of pixels in
each class needs to be sufficiently large. We thus need a meaning-
ful way of discretizing the very large amount of possible orienta-
tion histograms. Our approach is to introduce a fixed bin
partitioning scheme based on a set of basic orientation histogram
templates.

First, the estimated orientation histograms are quantized as fol-
lows. For each bin the value is set to 0 if the magnitude is less than
1
8 of the overall magnitude and to 1 otherwise. We then define a
partitioning scheme based on the topological structure of orienta-
tion histograms, with a total of 29 classes. See Fig. 3a and b for an
illustration. The proposed templates are defined on the basis of the
number of significant image gradient orientations and their rela-
tive positions. Each template class contains the basic element
shown in Fig. 3a and all of its rotated and mirror-reflected copies
as shown in Fig. 3b for one of the elements.

Next, for each window size the corresponding MFS feature vec-
tor is calculated as follows: For each template class (out of 29 clas-
ses), a binary image is derived by setting the value of the pixel to 1
if its associated template falls into the corresponding template
class and to 0 otherwise (see Fig. 4). Thus, there are 29 binary
images. For each binary image the box-counting fractal dimension
is computed, and the fractal dimensions are concatenated into a
29-dim MFS vector. The MFS feature vectors corresponding to dif-
ferent window sizes are then combined into a multi-scale MFS pyr-
amid. The size of this MFS pyramid is 5 � 29.

It is noted that the box-counting fractal dimension amounts to
fitting the slope of the line in the co-ordinate space of log # E; i

N

� �
vs. � log i

N. Thus, the validity of the MFS largely depends on how
applicable such linearity assumption is for the given data. In our
application we used four points only (corresponding to four win-
dow sizes) in the computation, and we found the variance in the
fitting reasonably small to justify the fitting. Fig. 5a and b (the forth
(c) Image gradient
0
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lacian measure in scale-space with the scale ranging from 1 to 10. (c) Corresponding
hing kernel (defined by r⁄) when computing the gradient.

(b)
mplates. (b) All the elements in one orientation histogram template class, which are



Fig. 4. (a) Two texture images in UIUC dataset [27]. (b)–(e) Examples of binary images with respect to pixel classification based on the orientation histogram templates.
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Fig. 5. Illustration of the MFS and the linear fitting behavior when computing the fractal dimensions for 2 static texture classes in (a, b) and 2 dynamic texture classes in (c, d).
The sample static textures are from the UMD dataset [47], and the sample dynamic textures are from Ref. [9]. For each class, the first three rows show three sample static
texture images, or key frames of three sample dynamic textures. The forth row shows for one particular orientation histogram template, the graph of linear fitting in the co-
ordinates of log # E; i

N

� �
vs. � log i

N ; i ¼ 4; . . . ;7. The mean variances of the line fitting were found as 0.05, 0.11, 0.01 and 0.04 respectively. The fifth row shows the MFS
pyramids (as vectors) of the corresponding texture images and dynamic texture sequences.
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row) illustrate the behavior of the linear fitting in log-log coordi-
nates for three images, each from two of the classes in the UMD
dataset [47], which represent one of the best and one of the worst
cases in the set, with variances of 0.05 and 0.11, respectively. The
last row in Fig. 5 illustrates the corresponding MFSs. As can be
seen, both for (a) and (b), the MFS pyramids of the three textures
are almost the same, demonstrating that the MFS descriptor cap-
tures well the identity of texture classes.

It is easy to see that the orientation histogram templates pro-
vide a pixel classification scheme which is invariant to rotation
and mirror-reflection; in addition, the robustness to illumination
changes is guaranteed by the orientation histogram itself [27].
Using the MFS as the replacement of the histogram for statistical
characterization leads to better robustness to global geometric
changes (see [47] for more details).

3.4. Robustifying the texture descriptor in the wavelet frame domain

The final step is to construct the texture descriptor by only taking
the leading coefficients of the MFS pyramids in a wavelet frame do-
main. The purpose is to further increase the robustness of the texture
descriptor to environmental changes. The construction is done as
follows: We first decompose the MFS pyramid using the 1D un-dec-
imal linear-spline framelet transform [8], as it has been empirically
observed that the corresponding tight frame coefficients tend to be
highly relevant to the essential structure of textures.

Let the matrix E(s,n) denote the MFS pyramid where s denotes
the scale (window size of local orientation histogram) and n de-
notes the index of the template class. Let F denote the L-level
decomposition of E(s,n) under a 1D tight framelet system with re-
spect to s defined as

Fðj; s;nÞ :¼ AEðs;nÞ;

where A is the frame decomposition operator, and j denotes the le-
vel of the frame decomposition. See Appendix A for more details on
the frame decomposition operator A. The multi-dimensional matrix
F consists of two kinds of components: one low-pass framelet coef-
ficient component H0, the output of applying the low-pass h0 on the
pyramid at scale 2�L; and multiple high-pass framelet coefficient
components H1, . . ., Hr, the outputs of applying high pass filters
h1, . . ., hr to the pyramid at multiple levels ranging from 2�1, . . .,
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(a)
Fig. 6. Illustration of the framelet coefficient components of the MFS vector at a single
framelet coefficient components {H1,H2}. (a) Framelet features of the glass image in Fig. 4
for maximum of Laplacian measure. In each component of the frame coefficients, the fi
corresponded to gradient magnitude.
2�L. Each high-pass framelet coefficient component has three vari-
ables: scale 2�j, j = 1, . . ., L, level s, s = 1, . . ., 5 and bin index n,
n = 1, 2, . . ., 29. See Fig. 6 for an illustration of the single level frame
coefficients of the sample images in Fig. 4.

Recall that the un-decimal framelet tight frame is a redundant
transform, and thus the information encoded in the framelet coef-
ficients of F is redundant. In contrast to orthogonal mappings,
redundant transforms are likely to yield sparse leading coefficients
with large magnitude. The next step then involves extracting these
leading coefficients such that the resulting descriptor provides
strong robustness to inter-class texture variations. In our approach,
we simply keep the 70% leading coefficients with largest amplitude
and set all others to 0. The final texture descriptor then consists of
only leading framelet coefficients of all MFS pyramids. The final
dimension of the resulting descriptor in our implementation is
3 � 2 � 5 � 29 = 870.
3.5. Dynamic texture

Dynamic textures are image motion sequences that vary not
only in the spatial distribution of texture elements, but also in their
dynamics over time. Dynamic texture can be regarded as a 3D vol-
ume of data, which encodes both spatial distribution and temporal
variations of texture pixels. To capture the spatio-temporal nature
of dynamic texture, the 3D SIFT descriptor [40] is used in our ap-
proach. The procedure is essentially the same as the one for 2D im-
age textures. Thus, in this section, we only highlight the differences
in the four steps.

In our approach, a dynamic texture is viewed as a 3D volume of
data with three orthogonal axes, i.e. two spatial axes (x-axis and y-
axis) and a time axis (t-axis). For Step 1 (Section 3.1), the spatio-
temporal gradients of each pixel (x,y, t) in 3D volume, denoted by
Lx, Ly and Lt, are computed using the finite difference operator.
Since most dynamic textures don’t have large scale changes, the
step of calculating scale-invariant image gradients is omitted. In-
stead, we just use the standard image gradients.

The main difference lies in Step 2 (Section 3.2). We need to de-
fine local orientation histograms that capture the spatio-temporal
aspect of dynamic textures. Following [40], for a given point in 3D
volume, we parameterize its orientation by the angle vector [/,w]
defined as
O
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scale, including the low-pass framelet coefficient component H0 and two high-pass
for maximum of Laplacian measure. (b) Framelet features of the plaid image in Fig. 4
rst five rows are corresponded to gradient orientation, and the last five rows are



(a) 25 sample static textures from the UIUC dataset.

(b) 25 sample static textures from the UMD dataset.

Fig. 7. Sample static texture images.
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/ ¼ tan�1 Ly

Lx

w ¼ tan�1 Ltffiffiffiffiffiffiffiffiffi
L2

xþL2
y

p ;

8<
:

with the two angles ranging from 0� to 360�. To reduce the compu-
tational cost, we only use the orientation variable w in the orienta-
tion histogram templates. This variable captures the temporal
information of dynamic textures. Using the orientation histogram
templates described in Section 3.2 with respect to w, we obtain
the orientation histograms for the 3D volume data. The procedure
of computing dynamic texture descriptor is as follows.

1. For each pixel, we compute the orientation histograms with
respect to parameter w at 5 windows (3D cubes) ranging in size
from 3 � 3 � 3 to 11 � 11 � 11. For each scale, we compute two
types of local orientation histograms, one based on the number
of orientations, the other based on the gradient magnitude.

2. Then we classify the volumetric windows into 29 classes based
on the 29 orientation histogram templates described in
Section 3.2.

3. Based on this classification we calculate using the 3D box-count-
ing fractal dimension (1) the MFS vectors, and concatenate the
MFS feature vectors of different window sizes into a multi-scale
MFS pyramid.

It is noted that the last step used in the computation of static
textures (Section 3.3) is not used here, as it leads to very minor
improvements in the classification experiments. The final dimen-
sion of the 3D dynamic texture descriptor is 2 � 5 � 29 = 290.
Fig. 5c and d illustrate the estimated MFS and the fitting of the line
for one 3D orientation histogram template on a good and a bad
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was run on the UMD dataset using SVM classification.
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Fig. 9. Classification rate vs. number of training samples for the UIUC dataset based on S
et al. [24], the MFS method in Xu et al. [47], the VG-Fractal method in Varma et al. [42] a
rate for all 25 classes. (c) Classification rate of the worst class.
case, demonstrating the variance sufficiently small to justify the
linearity assumption in the estimation of the fractal dimension.
4. Experimental evaluation

The performance of the proposed texture descriptor is evalu-
ated for static and dynamic texture classification. All code is avail-
able at [52].
4.1. Static texture

We evaluated the performance of texture classification on two
datasets, the UIUC dataset [27] and the high-resolution UMD data-
set [47]. Sample images of these datasets are shown in Fig. 7. The
UIUC texture dataset consists of 1000 uncalibrated and unregis-
tered images: 40 samples for each of 25 textures with a resolution
of 640 � 480 pixels. The UMD texture dataset also consists of 1000
uncalibrated and unregistered images: 40 samples for each of 25
textures with a resolution of 1280 � 900 pixels. In both datasets
significant viewpoint changes and scale differences are present,
and the illumination conditions are uncontrolled.

In our experiments, the training set is selected as a fixed size
random subset of the class, and all remaining images are used as
the test set. A final texture description is based on a two-scale
framelet-based representation. The reported classification rate is
the average over 200 random subsets. An SVM classifier [4,41] is
used, which was implemented as in Pontil et al. [35]. The features
of the training set are used to train the hyperplane of the SVM clas-
sifier using RBF kernels as described in Scholkopf et al. [39]. The
optimal parameters are discovered by cross-validation.
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The approach was implemented in Matlab 2011b and run on a
laptop computer with Intel Core 2 Duo with 2.10 GHz and 4 GB
memory. For each image in the UIUC dataset, the running time of
the proposed feature extraction is about 10 s. Since our proposed
approach does not require expensive clustering, the classification
is very efficient. The average running time is around 16 s for clas-
sifying 750 images of 25 classes from the UIUC dataset using the
SVM-based classifier with 10 training samples for each class.

To understand the influence of applying the wavelet transform
on feature vectors, we compared the average classification rates of
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Fig. 10. Classification percentage vs. index of classes for the UIUC dataset based on SVM
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class.
the proposed texture descriptor with and without wavelet frame
robustification. Referring to Fig. 8, it can be seen that the wavelet
robustification provides a small amount of improvement, although
not significant.

The proposed texture descriptor is compared against three
other texture descriptors: Lazebnik et al. [24], Varma et al. [42],
and Xu et al. [47]. The first one [24] is the so-called (H+L)(S+R) tex-
ture descriptor, which is based on a sophisticated point-based tex-
ture representation. The basic idea is to first characterize the
texture by clusters of elliptic regions. The ellipses are then trans-
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formed to circles such that the local descriptor is invariant to affine
transforms. Two descriptors (SPIN and SIFT) are defined on each re-
gion. The resulting texture descriptor is the histogram of clusters of
these local descriptors, and the descriptors are compared using the
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Fig. 12. Classification percentage vs. index of classes for the UMD dataset based on SVM
sub-figure is the average classification percentage of all 25 classes. (a) (H+L)(S+R) meth

Fig. 13. Samples images from the dyna
EMD distance. The second method is the VG-fractal method by
Varma and Garg [42], which uses properties of the local density
function of various image measurements resulting in a 13 dimen-
sional descriptor. The resulting texture descriptor is the histogram
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mic textures in the DT-9 dataset.



Table 1
Classification results (in %) for the UCLA dataset. Note: Superscript ‘‘M’’ is used to denote results using maximum margin learning (followed by 1NN) [17]; ‘‘–’’ means ‘‘not
available’’. Boldface print is used to mark the best results.

Method DT-7 DT-8 DT-9 DT-50 DT-SIR

Classifier 1NN SVM 1NN SVM 1NN SVM 1NN SVM 1NN

[37] – – 70.00 80.00 – – – – –
[9] 92.30 – – – – – 81.00 – 60.00
[17] – – – – 95.60M – 99.00M – –
3D-OTF 96.11 98.37 95.80 99.50 96.32 97.23 99.25 87.10 67.45
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Fig. 14. Confusion matrices for DT-50 for classification. The upper is using a NN classifier, and the lower is using an SVM classifier.
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Fig. 15. Confusion matrix for DT-SIR for classification using NN classifier.
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of clusters of these local descriptors. The third method, the MFS
method by Xu et al. [47], derives the MFSs of simple local measure-
ments (the local density function of the intensity, image gradient
and image Laplacian). The texture descriptor is a combination of
the three MFSs. The results on the UIUC dataset using the SVM
classifier for the (H+L)(S+R) method is from [24]. The other results
are obtained from our implementations. We denote our approach
as OTF method. Fig. 9 shows the classification rate vs. the number
of training samples on the UIUC dataset. Fig. 10 shows the classifi-
cation percentage vs. the index of classes on the UIUC dataset
based on 20 training samples. Figs. 11 and 12 show the results of
the UMD dataset using the same experimental evaluation.
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Table 2
Results in leave-one-group-out test (%) on DynTex dataset.

LBP-TOP [50] 3D-OTF

Non-weighting 95.71 95.89
Best-weighting 97.14 96.70

1010 Y. Xu et al. / Computer Vision and Image Understanding 116 (2012) 999–1013
From Fig. 9–12, it is seen that our method clearly outperformed
the VG-fractal method and the MFS method on both datasets. Also
our method obtained better results than the (H+L)(S+R) method.
We emphasize that heavy clustering is needed in both, the VG-
fractal method and the (H+L)(S+R) method, which is very computa-
tionally expensive. In contrast, our approach is much simpler and
efficient without requiring clustering.

4.2. Dynamic texture

There are three public dynamic texture datasets that have been
widely used: the UCLA dataset [10], the DynTex dataset [34] and
the DynTex++ dataset [17]. We applied our dynamic texture
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Fig. 17. Confusion matrices by our method 3D-OTF on
descriptor for dynamic texture classification on these three data-
sets and compared the results with those from a few state-of-
the-art dynamic texture classification approaches.

4.2.1. UCLA dataset
A popular dynamic texture benchmark for performance evalua-

tion is the UCLA dataset (e.g. [9,17,38,37,45]). The original UCLA
dataset consists of 50 dynamic textures. Each dynamic texture is
given in terms of four grayscale image sequences captured from
the same viewpoint, resulting in a total of 200 sequences, each of
which consists of 75 frames of size 110�160. The literature does
not agree on a ground truth regarding the classification of the UCLA
dataset. In [9,17,37] the following five classifications, termed DT-
50, DT-SIR, DT-9, DT-8 and DT-7, were considered:

1. DT-50 [9,17]. All 50 classes are used for classification.
2. DT-SIR (Shift-invariant recognition) [9]. Each of the original 200

video sequences is spatially cut into non-overlapping, left and
right halves resulting in a total of 400 sequences. The ‘‘shift-
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the DynTex (left) and DynTex++(right) datasets.
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Fig. 18. Classification rate (in %) for the different classes of the DynTex dataset.

Table 3
Results (%) on DynTex++dataset.

Method DL-PEGASOS [17] 3D-OTF

Classification rate 63.70% 89.17%
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invariant recognition’’ was used to eliminate the effects due to
biases in identical viewpoint selection. Nearest-neighbor classi-
fication was applied in the recognition process.

3. DT-9 [17]. The dataset is divided into 9 classes: boiling water
(8), fire (8), flowers (12), fountains (20), plant (108), sea (12),
smoke (4), water (12) and waterfall (16), where the number
in parentheses denotes the number of elements of each class.
Sample frames are shown in Fig. 13. In our experiments we used
the original images of size 110⁄160.
100 100 92 100 86 78

94 98 100 100 96 98

98 28 24 100 86 100

Fig. 19. Classification rate (in %) for the dif
4. DT-8 [37]. This dataset is obtained from DT-9 by discarding the
large class ‘‘plants’’, and considering only the eight other
classes.

5. DT-7 [9] The original sequences in the dataset are split spatially
into left and right halves resulting in 400 sequences, which
were classified into seven semantic categories: flames (16),
fountain (8), smoke (8), turbulence (40), waves (24), waterfall
(64) and vegetation (240).

We compared our method using both NN(Nearest-neighbor)
and SVM classifiers to the methods in [9,17] and [37] on the five
categorizations (DT-7, DT-8, DT-9, DT-50 and DT-SIR). See Table 1
for a comparison of these methods. As can be seen from Table 1 our
method outperformed the other three state-of-the-art methods.
We also included the so-called confusion matrix to show the details
100 96 60 100 100 82

100 100 100 100 94 94

100 82 86 64 100 74

ferent classes of the DynTex++dataset.
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Fig. A.20. Piecewise linear wavelet frame system [8].
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of the performance of the proposed method for each class. Each
column of the confusion matrix represents the instances in a pre-
dicted class and each row represents the instances in an actual
class. The confusion matrices of the proposed method for DT-50,
DT-SIR, DT-9, DT-8 and DT-7 are shown in Figs. 14–16 respectively.

4.2.2. DynTex dataset
The DynTex dataset [34] consists of various kinds of videos of

dynamic texture, including struggling flames, whelming waves,
sparse curling smoke, dense swaying branches, and so on. The se-
quences are in color and of dimension 400 � 300 in space and con-
sisting of 250 frames (over 10 s) de-interlaced with a spatio-
temporal median filter.

The DynTex dataset has been used in [14,17,50] with different
experimental configurations. Here we follow the settings in [50],
and we compare to the method described there, which achieved
very good recognition performance using the so-called LBP-TOP
[50] method. This method in essence extends the so-called 2D
LBP descriptor (a qualitative local statistical descriptor, that codes
for a point which pixels in its neighborhood have larger value and
which have smaller value than the point) to the spatio-temporal
domain by applying the LBP descriptors in three orthogonal planes.
The classification was implemented using the leave-one-group-out
scheme. Table 2 reports the average performance over 2000 runs. It
can be seen from Table 2 that our method performs better than the
method in [50] when not using weighting, but performs worse
when weighting is used. The confusion matrix is shown in
Fig. 17, and the classification rate for individual classes is shown
in Fig. 18.

4.2.3. DynTex++dataset
The DynTex++dataset [17] provides a rich and reasonable

benchmark for dynamic texture recognition. This challenging dy-
namic texture dataset contains 36 classes of dynamic textures,
each of which contains 100 sequences of size 50 � 50 � 50. The
DL-PEGASOS method proposed in [17] is chosen for comparison,
which is based on the maximum margin distance learning (MMDL)
method. Good performance is obtained on the UCLA dataset and
the DynTex++dataset by learning class-independent and class-
dependent weights. We used the experimental setting in [17].
SVM was used as a classifier, with 50% of the dataset used for train-
ing and the rest for testing. Table 3 summarizes the comparison.
Our 3D-OTF descriptor obtained an average recognition rate of
89.17%, which is noticeably better than the 63.7% achieved by
the method in [17]. The confusion matrix is shown in Fig. 17, and
the classification rate on each class of the DynTex++dataset is
shown in Fig. 19.

5. Summary and conclusions

In this paper, we proposed a new texture descriptor, which ap-
plies the global MFS to local gradient orientation histograms. The
proposed descriptor has strong robustness to both local and global
illumination changes and is robust to many geometric changes. Lo-
cally, robustness to illumination changes and geometric variations
is achieved by using templates of local gradient orientation histo-
grams; robustness to local scale changes is achieved by using scale-
invariant image gradient fields. Globally, the multi-fractal spec-
trum [47] and its sparse approximation in a wavelet frame system
are employed to obtain further robustness to global environmental
changes. Our texture description is rather efficient and simple to
compute without feature detection and clustering. Experiments
on static and dynamic texture classifications showed that our ap-
proach performed well. In future research, we would like to inves-
tigate how to apply the proposed framework to other recognition
tasks including object recognition and scene understanding.
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Appendix A. Wavelet frame system

Instead of directly using the MFS vector as the texture descrip-
tor, we decompose it under a shift-invariant wavelet frame system
and only take the leading wavelet coefficients (coefficients with
large magnitude). The reason for doing so is to further increase
the robustness of the resulting texture descriptor by removing
insignificant coefficients which are sensitive to environmental
changes. In this section, we give a brief review on wavelet frame
systems. For an in-depth theoretical analysis and practical imple-
mentation, see for example [2,8].

A wavelet frame system is a redundant system that generalizes
the orthonormal wavelet basis (see [8] for more details). Wavelet
tight frames have greater flexibility than orthonormal bases by sac-
rificing orthonormality and linear independence, but they have the
same efficient decomposition and reconstruction algorithms as
orthonormal wavelet bases. The filters used in wavelet frame sys-
tems have many attractive properties, not present in those used in
orthonormal wavelet systems: e.g., symmetry (anti-symmetry),
smoothness,and shorter support. These nice properties make
wavelet frame systems ideal for building a descriptors with strong
robustness.

An MRA-based wavelet frame system is based on a single scal-
ing function / 2 L2ðRÞ and several wavelet functions
fw1; . . . ;wrg � L2ðRÞ that satisfy the following refinable equation:

/ðtÞ ¼
ffiffiffi
2
p X

k

h0ðkÞ/ð2t � kÞ; w‘ðtÞ ¼
ffiffiffi
2
p X

k

h‘ðkÞ/ð2t � kÞ; ‘

¼ 1;2; . . . ; r:

Let /k(t) = /(t � k) and wk,j,‘ = w‘(2jt � k). Then for any square inte-
grable function f 2 L2ðRÞ, we have a multi-scale representation of f
as follows:

f ¼
X1

k¼�1
ck/kðtÞ þ

Xr

‘¼1

X1
j¼0

X1
k¼�1

dk;j;‘wk;j;‘; ðA:1Þ

where ck ¼
R

R
f ðtÞ/kðtÞdt and dk;j;‘ ¼

R
R

f ðtÞwk;j;‘ðtÞdt. Eq. (A.1) is
called the perfect reconstruction property of wavelet tight frames.
The coefficients {ck} and {dk,j,‘} are called low-pass and high-pass
wavelet coefficients respectively. The wavelet coefficients can be
efficiently calculated by a so-called cascade algorithm (see e.g.
[29]). In this paper, we use the piece-wise linear wavelet frame
developed in [8]:
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h0 ¼
1
4
½1;2;1�; h1 ¼

ffiffiffi
2
p

4
½1;0;�1�; h2 ¼

1
4
½�1;2;�1�:

See Fig. A.20 for the corresponding / and w1, w2. We follow [2] for a
discrete implementation of the multi-scale tight frame decomposi-
tion without downsampling. For convenience of notation, we de-
note such a linear frame decomposition by a rectangular matrix A
of size m � n with m > n. Thus, given any signal f 2 Rn, the discrete
version of (A.1) is expressed as follows:

f ¼ AT w ¼ ATðAfÞ;

where w 2 Rm is the wavelet coefficient vector of f. It is noted that
we have ATA = I but AAT – I unless the tight framelet system degen-
erates to an orthonormal wavelet system.
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